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Abstract

Financial bubbles arise when the underlying asset�s market price deviates from its fundamen-

tal value. Unlike other bubble tests that use time series data and assume a reduced-form price

process, we infer the existence of bubbles nonparametrically using option price data. Under

no-arbitrage and acknowledging data constraints, we can partially identify asset price bubbles

using a cross section of European option prices. In the empirical analysis, we obtain interval

estimates of price bubbles embedded in the S&P 500 Index. The estimated index bubbles are

then used to construct pro�table momentum trading strategies that consistently outperform a

buy-and-hold trading strategy.

Keywords: asset price bubble, fundamental value, risk-neutral probability measure, state price

distribution, partial identi�cation, nonparametric estimation
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1 Introduction

The existence of asset price bubbles has been alledged for centuries, starting with the Dutch tulip

bulb mania of 1634 (see Jarrow, Protter, and Shimbo (2010) for a brief summary of early alleged
�We thank Eric Ghysels, the co-editor, the anonymous referees, and the participants in 2019 Time Series and

Forecasting Symposium, 2021 NASMES, 2021 IAAE Annual Conference, and the seminar at UNSW. Their construc-
tive comments led to substantial improvement of the paper. Jarrow: Samuel Curtis Johnson Graduate School of
Management, Cornell University, Ithaca, N.Y. 14853 and Kamakura Corporation, Honolulu, Hawaii 96815; Email:
raj15@cornell.edu. Kwok: School of Economics, The University of Sydney, NSW 2006, Australia; Email: si-
mon.kwok@sydney.edu.au.
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bubbles). Despite the longevity of these allegations, bubbles�existence is still debated because the

literature di¤ers both (i) on the de�nition of asset price bubbles (see Protter (2013)), and (ii) given

a particular de�nition, on the joint hypotheses needed on future prices, cash �ows, interest rates,

and risk premiums to compute a bubble�s magnitude.

Some methodologies rely on speci�c asset price processes. For example, Jarrow, Kchia, and

Protter (2011a,b) assume that the asset price process follows a simple di¤usion model. To de-

tect bubbles, they apply Feller�s test for explosions, estimated using a kernel method. Shiryaev,

Zhitlukhin, and Ziemba (2014, 2015) specify a more complex di¤usion process (aka stochastic dis-

order model) in which the drift and volatility parameters jump at change points. The bubble

tests developed by Phillips, Shi, and Yu (2015a,b) look for explosive dynamics in long time series

of asset prices using variants of an augmented Dickey-Fuller test, which is implemented using an

autoregressive framework.

All of these approaches, however, focus on using time series price data. By contrast, the

purpose of this paper is to infer the existence of bubbles using option price data, based on the

recently developed local-martingale theory of bubbles. This theory provides a characterization of

bubbles under a re�nement of the notion of no-arbitrage, called �no free lunch with vanishing risk�

(NFLVR). The �rst Fundamental Theorem of Asset Pricing (Delbaen and Schachermayer (1994,

1998)) asserts that NFLVR is equivalent to the existence of an equivalent local martingale measure

(ELMM). Given an ELMM, a price process exhibits a bubble if and only if it is a strict local

martingale under this ELMM.1 This theory generates a number of results that characterize the

impact of price bubbles on related call and put options (See Protter (2013) for a comprehensive

survey of this new approach). These results provide the foundations for the empirical analysis in

this paper.

Unlike time series price based approaches, the cross section of option prices contains useful

information about the state-price distribution (SPD) of the underlying asset which is related to

the risk-neutral measure. Breeden and Litzenberger (1978) show that the partial derivative of a

European option price with respect to the strike price identi�es the risk-neutral distribution and

density function. Nonparametric methods that recover the SPD from option data are abundant

1A strict local martingale is a local martingale that is not a martingale. In the empirical option pricing literature,
one typical assumes the existence of an equivalent martingale measure, which directly rules out the presence of
bubbles.
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in the literature (e.g., Aït-Sahalia and Lo (1998), Aït-Sahalia and Duarte (2003), Yatchew and

Härdle (2006), Fan and Mancini (2009), Kitsul and Wright (2013), Song and Xiu (2016), Lu and

Qu (2018)). In principle, we may also deduce the fundamental asset value (de�ned as the mean of

the SPD) and obtain an estimate of the asset price bubble.

However, several empirical challenges arise. In terms of data quality, options with extreme

moneyness have noisy prices, although they are the most informative with respect to the tails of

the SPD. A more serious problem is that option prices are only available over a bounded range of

strike prices. Many empirical works implicitly treat the bounded strike range as the support of the

SPD.2 Since the true state-price distribution has unbounded support (e.g., over the positive reals),

the two tails are truncated due to missing option data, thus leading to bias in the probability and

moment estimates based on the truncated probability distributions. An exception is the recent

work of Lu and Qu (2018) which allows probability masses to spread beyond the bounded strike

range.3 An imposed parametric functional form may resolve the missing observation issue (e.g.,

Shimko (1993), Figlewski (2010)), but the modeler is still subject to the �curse of a joint hypothesis

problem.�

In this paper, we do not impose any parametric model structure on the SPD, and at the same

time acknowledge that the fundamental asset value (and hence the bubbles) cannot be point-

identi�ed due to missing observations in the tails. We show that it is possible to achieve partial

identi�cation of asset price bubbles under mild restrictions, namely NFLVR and the independence

of call price bubbles on strike prices. The latter restriction is much weaker than the assumption of

no-dominance, but it still facilitates the nonparametric identi�cation of asset price bubbles using

call prices in the presence of call price bubbles. We propose two methods to infer asset price bubbles:

(i) a set of simple bounds expressed in terms of option prices with extreme moneyness, and (ii) a

more re�ned nonparametric interval estimator that utilizes the entire cross section of option prices.

Both methods do not assume no-dominance, which allows violations of put-call parity in market

2Nonparametric local estimation, which is popular in the literature, is silent about the tail parts of the distribution.
Nonetheless, there are strategies to enlarge the strike range in practice, e.g., focusing only on options with a short
time-to-maturity, pooling data across times, or using both calls and puts.

3Lu and Qu (2018) show that the risk-neutral density can be identi�ed up to a set of constraints on the tail
probabilities and moments. Their sieve estimation, however, is not suitable for inferring asset price bubbles because
the sieve estimates using call data as an input would be contaminated by the existence of call price bubbles. Local
polynomial �tting, which yields the estimate of the �rst-order derivative of the call price function, resolves this
problem. See Section 3.
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prices.4

We apply our bubble inference procedure to S&P 500 index time series price data. We �rst

illustrate that the massive index options�data on any single day contains su¢ cient information

to infer the size of S&P 500 bubbles on that day. With the combined use of call and put data,

the nonparametric interval estimator indicates that bubbles are present and that they closely track

market performance. In the second application, we construct momentum trading strategies based

on the S&P 500 bubble estimates. The main �nding is that pro�table bubble-based momentum

trading strategies exist, and they can earn consistently higher annual returns than the simple

buy-and-hold and pure momentum strategies.5 For the sample period spanning 1996-2015, the

bubble-based momentum strategy (based on S&P 500 or its bubble deduced from call and put

options expiring in three months) outperforms a pure momentum strategy by 1.8 percentage points

and the buy-and-hold strategy by 3.6 percentage points, after netting out transaction costs. The

superior performance suggests that the bubble estimates derived from option price data contains

forward-looking information which, if used judiciously, may generate abnormal pro�ts by �riding

on the bubble�(Conlon (2004)).

Recently, Fusai, Jarrow and Lamichhane (2020) also proposes a new, but di¤erent methodology

to detect and quantify bubbles in asset prices using option prices. In contrast to our approach, they

use a parametric model for the evolution of the asset price process that facilitates the estimation

of the option�s fundamental value. To obtain their estimates, they impose the joint assumptions

of NFLVR and no-dominance. Consistent with our results, they document the existence of bubble

episodes in the S&P 500 index over the 2014-2018 time period.

The rest of the paper is organized as follows. Section 2 reviews the local-martingale theory of

bubbles. Section 3 develops the methods for inference of asset price bubbles. Section 4 presents

the empirical �ndings on the S&P 500 index. Section 5 concludes. Technical details about the

proposed methodology and all proofs of theoretical results are collected in the Appendix.

4There exist empirical studies that report violations of put-call parity in certain time periods (e.g., Battalios and
Schultz (2011), Nishiotis and Rompolis (2019)). In light of this empirical evidence, it is desirable to develop an
inference method for asset price bubble that does not depend on the validity of put-call parity.

5The existence of pro�table bubble-based trading strategies does not violate the local martingale theory because
these strategies involve risk and do not constitute arbitrage opportunities.
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2 The Local-Martingale Theory of Bubbles

This section reviews the local martingale theory of bubbles and presents the arbitrage-free option

valuation formulas used to test for the existence of bubbles. The local martingale theory of bubbles

was developed in a sequence of papers by Loewenstein and Willard (2000a,b), Cox and Hobson

(2005), Heston, Loewenstein, and Willard (2007), and Jarrow, Protter, and Shimbo (2010). This

theory extends the characterization of bubbles from discrete time, in�nite horizon models to �nite

or in�nite horizon, continuous trading models. It has been shown that rational bubbles, consistent

with no-arbitrage and equilibrium, can exist in such settings (see Jarrow (2015) for a review of this

literature). This approach facilitates the use of continuous time stochastic process mathematics to

help estimate and to test for the existence of asset price bubbles.

Let us describe the market setting (see Jarrow, Protter, and Shimbo (2010), and Jarrow and

Larsson (2012) for details). We start with a �ltered complete probability space (
;F ;F; P ) where 


is the state space, F is a �-algebra, F = fF tg0�t�T is a �ltration that satis�es the usual hypothesis

(e.g., Protter (2005)), and T is the terminal date which is assumed �nite. The probability measure

P is the physical measure. We assume that the market is frictionless (no transaction costs and

restrictions on trade; e.g., short-selling and borrowing are permitted), competitive (all investors

are price-takers), and incomplete (there are more random sources than traded securities). Market

incompleteness is required so that bubbles can start, die, and be reborn within the model�s horizon.

For simplicity, we assume that the market contains a money account and a single risky asset.

The value of a unit of money account at time t is given by Rt := exp
�R t
0 rsds

�
where rs is the

default-free spot rate of interest at time s. We assume that r is F-adapted and that
R T
0 jrsj ds <1

P -a:s: The market price of a share of risky asset at time t is denoted St. The price is the ex-dividend

price if the asset pays dividends. We assume that the price process fStgt�0, is a non-negative, càdlàg

semimartingale with respect to F.

To facilitate further discussion of the market structure, we de�ne the notion of trading strategies.

A trading strategy is an F-adapted vector process H := fHtgt�0 where Ht := (�t; �t) denotes the

portfolio consisting of �t units of money account and �t units of the risky asset at time t. Denote

the time-t value of a unit share in each of these securities as U := fUtgt�0 where Ut := (Rt; St).

The portfolio value at time t is given by Vt := �tRt + �tSt. The stochastic integral (H � U)t :=
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R t
0 �udRu +

R t
0 �udSu, with the convention (H � U)0 = 0, represents the total pro�ts generated by

the trading strategy H over the period (0; t] starting from a zero initial investment.

The trading strategy is said to be self-�nancing if Vt = (H � U)t for all t. This implies that

the portfolio starts with zero initial investment and that there are no cash in�ows or out�ows from

the portfolio over time. An F-predictable and U -integrable process H is said to be a F-admissible

trading strategy if H is self-�nancing and does not lead to unbounded loss with positive probability;

more precisely, there exists a real number a > 0 such that (H �U)t � �a for all t � 0 almost surely.

Now we are ready to discuss the key market attributes for the study of bubbles. We adopt the

no-free-lunch-with-vanishing-risk condition due to Delbaen and Schachermayer (1994, 1998a). This

is essentially an asymptotic analog of the standard no-arbitrage condition.

Assumption NFLVR: There exists no sequence fn = (Hn �U)T where each F-admissible trading

strategy Hn is such that, as n!1, kmax(�fn; 0)k1 ! 0 and fn ! f P -a:s: for some f � 0 with

P (f > 0) > 0.

By the Fundamental Theorem of Asset Pricing (Delbaen and Schachermayer (1994, 1998a)),

NFLVR holds if and only if there exists a nonempty setMloc of equivalent local martingale measures

(ELMM) under which the wealth process V0 + (H � U)t is a local martingale. The existence of an

ELMM allows for the computation of the fundamental price of an asset, de�ned as the conditional

expectation of the risky asset�s discounted cash �ows, where the expectation is taken under an

ELMM.

In an incomplete and NFLVR market, there is more than one such measure in Mloc, so the

fundamental price is not unique and depends on the ELMM chosen by the market. The existence

of this non-empty set of ELMMs allows for the dynamic nature of asset price bubble birth, death,

and rebirth (see Section 4.2 of Jarrow, Protter, and Shimbo (2010)).

Another market attribute that is often imposed is the assumption of no dominance. The con-

dition was introduced by Merton (1973) in the option pricing context and is formalized for the

study of bubble process by Jarrow, Protter, and Shimbo (2010). We say that the ith asset in the

U i 2 (U0; U1) := (R;S) for i = 0; 1 is undominated on [0; T ] if there exists no F-admissible trading

strategy H such that U i0+(H �U)T � U iT a:s: and P
�
U i0 + (H � U)T > U iT

�
> 0. In other words, the

no-dominance condition on an asset holds if no admissible trading strategiy can yield more payo¤
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than a buy-and-hold strategy in the asset itself.

Assumption ND: All assets (both the money account and the risky asset) are undominated on

[0; T ].

Assumption ND rules out bubbles in a complete market (Jarrow, Protter, and Shimbo (2006))

but can accommodate di¤erent types of bubbles in an incomplete market (Jarrow, Protter, and

Shimbo (2010)). A natural implication of ND is that put-call parity holds for the market prices

of European options. While NFLVR is an individual-trader assumption, ND is a market-wide

condition that governs the collective actions of investors (Jarrow and Protter (2010)).6

Suppose the market selects the ELMM Q�t 2 Mloc at time t. Under this probability measure,

the fundamental price of the risky asset is de�ned by

��t := E
�
t [R

�1
t RTST ]; (1)

where E�t [�] denotes the expectation taken under Q�t conditional on Ft, and ST corresponds to the

liquidation value of the risky asset at the model�s horizon (at �nite time T ). This is the expected

(risk-adjusted using the ELMM) discounted cash �ow from liquidating the stock at the model�s

horizon. Alternatively stated, it is the value agents would pay if after purchase, they had to hold

the stock until liquidation. This fundamental value is consistent with the standard de�nition of

an asset�s fundamental value used in the classic economics literature (see Jarrow (2015) for the

documentation of this claim).

When studying options, however, we need to generalize this de�nition to identify the funda-

mental value of the risky asset when the risky asset is sold before time T . The reason for this

generalization is that we are going to infer an asset�s price bubble using option data. And, an

option�s payo¤ is de�ned relative to the market price of the risky asset on the option�s maturity

date, which is before T . Hence, the fundamental value of an option must be de�ned relative to the

market price of the risky asset on the option�s maturity date, and not the fundamental value of the

risky asset on the option�s maturity date as given in expression (1) above.

Hence, we de�ne the time-t fundamental price of the risky asset to be sold at time t+ � (where

6We will not assume ND for bubble identi�cation except for the naïve bound in Corollary 1.
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� � T � t) to be

��t := E
�
t [R

�1
t Rt+�St+� ]: (2)

The di¤erence between expression (1) and (2) is clari�ed by rewriting (1) as

��t = E
�
t [R

�1
t Rt+��

�
t+� ]

where

��t+� = E
�
t+� [R

�1
t+�RTST ]:

We see here that the generalized de�nition replaces the fundamental value of the risky assset at

the selling time t+ � , ��t+� , with the market price of the risky asset, St+� .

The risky asset�s bubble associated with the selling time t+� is de�ned as the di¤erence between

the market and fundamental prices of the asset:

�St (�) := St � ��t : (3)

As de�ned, the bubble depends on the selling date of the asset. This is necessary because under

the ELMM the asset price process is a supermartingale (Jarrow, Protter, and Shimbo (2010)). The

expectation declines as the time to the asset�s selling date decreases, hence, the dependence.

There is a related econometric literature that has explored bubble detection using historical

time series asset prices and alternative methods (e.g., see Phillips, Shi, and Yu (2015a,b)). These

papers use a di¤erent model structure and a di¤erent de�nition for an asset price bubble. Our

model structure is continuous trading over a �nite horizon; theirs is discrete trading over an in�nite

horizon. As discussed in Jarrow, Protter, and Shimbo (2010) and Jarrow (2015), in the most general

model structure, there are three types of bubbles, called type 1, type 2, and type 3 bubbles. A type

1 bubble only exists in in�nite horizon models, and it captures �at money (a security with zero

cash �ows, but strictly positive value). A type 2 bubble also only exists in in�nite horizon models

and it corresponds to an asset whose price process (under the risk neutral probability measure)

is a martingale but not a uniformly integrable martingale. Intuitively, the risk-adjusted expected

discounted cash �ows and liquidation value at time �in�nity�do not equal the market price. Last,
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a type 3 bubble only exists in continuous trading models and it corresponds to an asset whose price

process is a local martingale, but not a martingale. In economic terms, the risk adjusted expected

discounted cash �ows and liquidation value at any �nite time do not equal the market price. We

study type 3 bubbles in our paper (expression (3) above), while the econometric literature studies

type 2 bubbles.

Type 2 and 3 bubbles capture di¤erent economic phenomena. In an in�nite horizon model,

one is looking at long time horizons to do the estimation, and a bubble re�ects the price process

not converging to a terminal value. One can get explosive time series behavior. In a �nite horizon

model, a type 3 bubble corresponds to short horizon trading strategies that create value via buying

and selling, independent of the fundamental value�s cash �ows (e.g. high frequency trading). Con-

sequently, to test for type 2 bubbles, one needs a long-time period. By contrast, to test for type 3

bubbles, one can study short-time periods. This obvious sampling period di¤erence is important in

�nancial markets which exhibit structural shifts that invalidate the estimated model�s assumptions.

Over the past three decades, it is uncontested that our �nancial markets have undergone signi�cant

structural changes. Hence, testing for type 2 bubbles is problematic; but this is not true for type

3 bubbles.7

Let Ct(k; �) and Pt(k; �) be the time-t market prices of the European call and put options8

written on the risky asset with strike price k and time-to-maturity � (where � � T � t). Under the

ELMM, their time-t fundamental prices are de�ned to be C�t (k; �) := E
�
t [R

�1
t Rt+� (St+� �k)+] and

P �t (k; �) := E�t [R
�1
t Rt+� (k � St+� )+]. Note that the options have an implied selling date for the

underlying asset and the market price, not the fundamental value of the underlying asset, is in the

payo¤.

We de�ne the options� bubbles to be the di¤erence between their market and fundamental

7For type 3 bubbles, in a complete market, there is an equivalent de�nition of a bubble to that given above, which
is that the asset�s price process is dominated (see Heston, Loewenstein, and Willard (2000)). Our de�nition extends
this complete market de�nition to an incomplete market where the market may satisfy ND. We point out that in a
complete market, under NFLVR and ND, there are no bubbles.

8We will focus on European options throughout this paper. Our bubble inference results remain valid when
American options are used, as long as the underlying asset pays no dividends and the jump process of the asset price
satis�es certain regularity conditions (see Theorem 6.7 of Jarrow, Protter, and Shimbo (2010)).
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prices, i.e.,

�Ct (k; �) := Ct(k; �)� C�t (k; �); (4)

�Pt (k; �) := Pt(k; �)� P �t (k; �): (5)

Jarrow, Protter, and Shimbo (2010) obtains some key results on the bubbles of risky assets in an

incomplete market. In particular, under NFLVR, all put bubbles are identically zero, while call

bubbles, like risky asset�s bubble, are nonnegative in general. This holds regardless of Assumption

ND. This is stated in the following proposition.

Proposition 1 Under Assumption NFLVR, �St (�) � 0, �Ct (k; �) � 0 and �Pt (k; �) � 0.

To explain the above result intuitively, we note that a bubble can only exist when an asset

is purchased to sell in the future at a higher price. But, if the price of the asset (or option) is

bounded above, then at some future time, this can no longer happen. By backward induction,

rational traders will realize this possibility at earlier times as well, and the motive for this purchase

disappears at all earlier times. Hence, assets whose price processes are bounded above can have no

bubbles. This is the case for a put option.9 By contrast, risky assets and call options can exhibit

bubbles because their payo¤s are unbounded above.

If in addition ND holds, then put-call parity holds for market prices, and it follows that

�Ct (k; �) = �St (�) + �
P
t (k; �) (Jarrow et al. (2010)). By above proposition, we deduce that

�Ct (k; �) = �
S
t (�) � 0 for all k, and hence the call bubble is independent of the strike price.

The independence property of call bubble on strike is generally weaker than ND and does not

imply put-call parity for market prices. When the latter fails, a call bubble can remain invariant

to the strike price, and can be di¤erent from the asset�s price bubble. This observation will play

an important role in asset price bubble identi�cation without ND and without put-call parity for

market prices.

Assumption INK: �Ct (k; �) = �
C
t (�) for all k > 0.

10

9 In practice, traded put prices may re�ect �panic sales�during crises where puts with lower strike prices increase
in value. This tends to decrease the estimate of the fundamental price (as there is more probability at the left tail
of Q�t ). According to Proposition 1, although panic sales may change the fundamental value of the stock, the put�s
market price remains equal to its fundamental value under no-arbitrage.
10We rule out k = 0 in the condition because the European call with zero strike is essentially the same as the
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This bubble independence assumption is a mild restriction to impose on call option market

prices. It can be shown that Assumption INK implies that, for all t and � , the market prices of

calls satisfy Ct(k1; �) > Ct(k2; �) if k1 < k2.11 This condition is likely to hold in option markets

because its violation would immediately invoke market transactions.

In addition, we may characterize the time series dynamics of the European call bubble process

f�Ct g0�t�T . In a static market (Q�t is time-invariant), the bubble process, if not trivially zero for

all time t, is a non-negative strict local martingale (i.e., a local martingale that is not a martingale),

and once it collapses it stays at level 0 until time T . By contrast, a dynamic market environment

(Q�t is time-varying) allows for multiple bubble births and collapses through a regime-switching

mechanism, and f�Ct g0�t�T is generally a non-negative local martingale. See Jarrow et al. (2010)

for details. We adopt a dynamic market setting for the rest of our analysis.

3 Inferring Asset Price Bubbles from Option Data

Our goal is to infer the asset price bubble �St (�) of a risky asset without parametric assumptions.

We �rst discuss the possibility of using option price to uncover the state-price distribution (SPD)

and its mean � the fundamental price. We then introduce several methods that yield a feasible

bound or interval estimate of �St (�) (Sections 3.2-3.3).

3.1 Identifying the SPD and Fundamental Price from Option Data

Suppose a share of risky asset price is priced at St at time t. Let Q�t denote the ELMM chosen

by the market at time t. With a slight abuse of notation12, we use the same notation Q�t for

the conditional cumulative distribution function (cdf) of St+� (aka the state price at time t + �)

given Ft. That is, the conditional state-price distribution is given by Q�t (s) := Q�t fSt+� � sg :=

underlying risky asset.
11Assume INK. Fix t and � . Drop these arguments from the notation. Assume that C(k1) � C(k2) for k1 < k2.

Then, �C(k1) + C�(k1) � �C(k2) + C�(k2), or, C�(k1)� C�(k2) � �C(k2)� �C(k1). But C�(k1) > C�(k2) by the
property of the fundamental call price. This implies that 0 < C�(k1) � C�(k2), and hence 0 < �C(k2) � �C(k1).
This gives the contradiction.
The converse is not quite true. Suppose C(k1) > C(k2) for k1 < k2. It follows that �C(k1)� �C(k2) > C�(k2)�

C�(k1), where C�(k2)� C�(k1) is a negative number. It is therefore possible that �C(k1) = �C(k2).
12More precisely, the conditional cdf depends on both the current time and the holding period, and hence should

be indexed by both t and � . Since the holding period is kept �xed in the subsequent analysis, dropping � should not
cause confusion.
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Q�fSt+� � sjFtg. Assume (without a slight loss of generality) a constant risk-free spot interest

rate r, so that Rt = ert.13

Fix a given time t and time-to-maturity � . To reduce the notational burden, we suppress the

time subscript t (e.g., in the ELMM and the conditional cdf, fundamental prices, bubbles and

boundary strike prices) and the time-to-maturity argument � (e.g., in option price functions and

bubbles) wherever necessary.

The following lemma, due to Breeden and Litzenberger (1978), is important for recovering Q�

as it provides the link between Q� and the price function of European options.

Lemma 1 Under Assumption NFLVR, we have

@C(k)

@k
= �e�r� [1�Q�(k)] + @�

C(k)

@k
; (6)

@P (k)

@k
= e�r�Q�(k): (7)

Lemma 1 is fundamentally important for identifying �� and hence asset price bubbles. Propo-

sition 1 implies that bubbles are included in call prices but not in put prices, and so that we can

obtain Q� from put prices. Nonetheless, when call bubbles are independent of the strike (Assump-

tion INK), they can be eliminated by taking the �rst-order partial derivative of the call price with

respect to strike (as @�
C(k)
@k � 0); consequently, Q� can be recovered using both put and call price

data.

How can we obtain the fundamental price from the state-price distribution? Based on the

de�nition in (2), it is evaluated as follows:

�� :=

Z 1

0
e�r�sdQ�(s) =

Z 1

0
e�r� [1�Q�(s)]ds; (8)

where the last step follows from an integration by parts.

The fundamental price can be computed from (8) if Q� is precisely known. In practice, however,

Q� is not revealed beyond the strike price range. Nonetheless, when evaluating ��, we can obtain

reasonable bounds on the contribution from the truncated tails of Q�. This is made possible by

the following result.

13The result directly generalizes to the case with time-varying and deterministic interest rate.
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Lemma 2 For �nite `; u > 0, we have

Z `

0
e�r� [1�Q�(s)]ds = e�r� `� P �(`);Z 1

u
e�r� [1�Q�(s)]ds = C�(u):

Applying the above lemma with u = uc (the maximum strike for calls) and ` = `p (the minimum

strike for puts), we can decompose ��t in (8) as follows.

�� =

Z uc

`p

e�r� [1�Q�(s)]ds+ [e�r� `p + C�(uc)� P �(`p)]: (9)

The integral on the right side of (9) is the contribution to �� from the middle portion of Q�. The

integration is over the available range of strike prices of option data and hence can be evaluated.

The last term (in square bracket) is the contribution to �� from the two tails of Q�. It involves

the fundamental prices of options C�(uc) and P �(`p), which are unobserved but can be bounded.

Indeed, it follows from Proposition 1 that

�P (`p) � C�(uc)� P �(`p) � C(uc): (10)

The bounded range can be quite narrow in practice, as C(uc) and P (`p) are the prices of the most

out-of-the-money (OTM) calls and puts, which are the most inexpensive among the cross section

of options. This will be useful for constructing bounds on price bubbles.

3.2 Simple Bounds on Asset Price Bubbles

Our �rst method constructs simple bounds on asset price bubbles by pooling together both call

and put price data when possible. A complication arising from this data is that the strike range of

calls and puts are bounded and unlikely identical. To allow for this feature, we let [`c; uc] ([`p; up])

denote the range of strike prices for calls (puts), and we consider all (six) combinations of strike

price ranges.

The following proposition provides the bounds on asset price bubbles. Assumption INK is

crucial for identifying such bounds using call prices which contain bubbles.
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Proposition 2 Suppose Assumptions NFLVR and INK hold. De�ne:

L1 = St � e�r� `c + P (`c)� P (`p)� C(`c); U1 = S � e�r� `c + P (`c) + C(uc)� C(`c);

L2 = S � e�r�up + P (up)� P (`p)� C(up); U2 = S � e�r�up + P (up) + C(uc)� C(up);

L3 = S � e�r� `p � C(`p); U3 = S � e�r� `p + P (`p) + C(uc)� C(`p);

L4 = S � e�r�uc + P (uc)� P (`p)� C(uc); U4 = S � e�r�uc + P (uc);

L5 = S � e�r� `c + P (up)� P (`p)� C(`c); U5 = S � e�r�up + P (up) + C(uc)� C(`c);

L6 = S � e�r� `p � C(uc); U6 = S � e�r�uc + P (`p):

For �xed time t and time-to-maturity � , and for any ! 2 [0; 1], we have:

(a) maxf0; !L1 + (1� !)L2g � �S � !U1 + (1� !)U2 for `p � `c < up � uc,

(b) maxf0; !L3 + (1� !)L4g � �S � !U3 + (1� !)U4 for `c � `p < uc � up,

(c) maxf0; !L1 + (1� !)L4g � �S � !U1 + (1� !)U4 for `p � `c < uc � up,

(d) maxf0; !L3 + (1� !)L2g � �S � !U3 + (1� !)U2 for `c � `p < up � uc,

(e) maxf0; L5g � �S � U5 for `p < up < `c < uc, and

(f) maxf0; L6g � �S � U6 for `c < uc < `p < up.

Remark : The bounds are generated by repeated applications of Lemmas 1 and 2. Wherever the

strike ranges of calls and puts overlap, the bounds may be expressed in terms of the call or put

prices, or a linear combinations of them (the weight ! 2 [0; 1] indicates the proportion of the bound

expression contributed from calls).

As discussed in Section 3.2, the information about Q� is not fully revealed beyond the bounded

range of strike prices. This is why the asset price bubble is identi�ed only up to an interval. The

width of the interval indicates the degree of uncertainty of the bubble size. For cases (a)-(d), the

maximum length of the interval is C(uc) + P (`p), the sum of the most OTM call and put option

prices (see (10)). The intervals for cases (e)-(f) are wider as the available call and put prices do not

seamlessly cover the whole strike price range [`p; uc] (hence additional uncertainty is involved).14

14 In our empirical application, the proportions of each of the six cases are as follows: (a) 90.6%, (b) 0.14%, (c)
4.9%, (d) 2.0%, (e) 2.4%, (f) 0.0%.
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The following corollary gives much simpler bounds for �S(�) when the stronger Assumption

ND is imposed.

Corollary 1 Under Assumptions NFLVR and ND, we have

0 � �S(�) � C(uc; �): (11)

Remark : The bounds in (11) are sharper but less general than in Proposition 2 (where ND may

fail). Indeed, the bounds in cases (a)-(d) of Proposition 2 reduce to (11) in the corollary when

put-parity holds for market prices (a consequence of ND).

Intuitively, under ND, the asset price bubble is equal to the call bubble (see the discussion after

Proposition 1), which is bounded from above by the call price, i.e., �S = �C(k) = C(k)�C�(k) �

C(k) for any k. The least upper bound is obtained by selecting the most OTM call option, the

cheapest one available in the cross section.

3.3 Interval Estimation of Asset Price Bubbles

The simple bounds in Proposition 2 (and Corollary 2) involve the prices of options with extreme

moneyness. These options are usually thinly traded and subject to the most pricing uncertainty due

to the lack of liquidity. The illiquidity of these options might a¤ect the precision of the bound. This

is also part of the reason (apart from short-sale constraints, recording error, etc.) that option prices

are sometimes inconsistent with no arbitrage. On the other hand, options which have less extreme

moneyness are more frequently traded. Since the transactions of these options are abundant in

the data, they are informative about the middle part of Q�. The unintended tail truncation is an

artifact of missing observations of option prices beyond the strike price range, and will generally

lead to bias when estimating asset price bubbles. Any practical methodology that attempts to

infer the size of asset price bubbles needs to take into account the bounded and discrete nature of

strike prices in option data. Our next proposed inference procedure delivers interval estimates of

asset price bubbles that respect the aforementioned data constraints (e.g., discrete number of strike

prices in a bounded range, inaccuracy of option prices) and are consistent with no arbitrage.
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We introduce the tail-truncated state-price distribution over the support [`; u], where ` :=

min(`c; `p) and u := max(uc; up).

Qy(s) :=
Q�(s)�Q�(`)
Q�(u)�Q�(`) for s 2 [`; u]; (12)

Qy(s) = 0 for s < `; and Qy(s) = 1 for s � u. This probability distribution is obtained by evenly

redistributing probability mass in the tails of Q�(s) to the strike price range [`; u].15 It is clear that

Qy de�nes a valid probability measure with support [`; u]. Under this (incorrect) tail-truncated

probability measure, the fundamental asset value is evaluated as �yt := E
y
t [e

�r�St+� ] (where E
y
t [�]

denotes the conditional expectation taken with respect to Qyt). It is given by (with subscript t

suppressed)

�y = e�r�
��Z `

0
+

Z u

`
+

Z 1

u

�
[1�Qy(s)]ds

�
= e�r�

�
`+

Z u

`
[1�Qy(s)]ds

�
: (13)

The estimator �̂y based on the tail-truncated distribution is biased for the fundamental asset value

��, but, as we will discuss below, it is possible to correct and bound the bias.

Let us outline the steps for obtaining the point and interval estimates of the asset price bubbles

(more details are found in the Appendix). The �rst step is to validate the option price data for

further analysis. There may exist anomalies in the collected option data; in particular, the actual

recorded prices may violate the theoretical relationships of option prices implied by no-arbitrage.16

To mitigate this data issue, we follow Aït-Sahalia and Duarte (2003) by conducting a constrained

least squares optimization on each cross section of option prices (over strike prices k, for �xed time

t and maturity �).17 This step is detailed in Appendix A1. The constrained optimization yields a

15An alternative transformation is to use the estimator �Q�(s) = Q�(s) for `p � s < uc; �Q�(s) = 0 for s < `p; and
�Q�(s) = 1 for s � uc. This essentially lumps all the left tail mass to `p and right tail mass to up. Since there is no
natural a priori reason to load the tail probability mass to the boundaries, we do not pursue this transformation in
the empirical study.
16By the no-arbitrage theory of option pricing (Black and Scholes (1973), Merton (1973)), the prices of European

calls and puts must obey certain properties. For example, the traded call (put) price decreases (increases) with
strike price (monotonicity) in a smooth way (convexity); e.g., see Theorem 8.5 of Merton (1973). Nonetheless, one
can occasionally spot violations of these properties in actual option data. Some possible causes are recording error
and illiquid trading. The imperfection of option data is at odds with the no-arbitrage theory, although it may not
constitute an arbitrage opportunity in practice after taking into account market frictions (e.g., bid-ask spread and
transaction costs), which the theory assumes away.
17The aim of Aït-Sahalia and Duarte (2003) is to recover the state-price density from option data. By contrast,
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collection of adjusted option price data. We henceforth work with the adjusted option price data

fki;migni=1.

Next, using the adjusted option data, we recover the state price distribution Q�(�) and the

fundamental value. To this end, we estimate the call (put) price function mc(�) (mp(�)) as a

function of strike price, by �tting a local polynomial to the cross section of option prices. The �tting

is done separately for each cross section of puts or calls and for each � and t. The estimator Q̂�o(�)

(o = c; p) of Q�(�) is constructed using the �rst-order derivative estimator m̂(1)
o (�) of the call or put

price function (by Lemma 1).18 De�ne Q̂�(s) := !Q̂�c(s)+(1�!)Q̂�p(s), where ! 2 [0; 1] re�ects the

relative importance of call data in the estimation. Due to tail truncation, only those values of Q̂�(s)

over s 2 [`; u] can be obtained. To make it a proper distribution function, we renormalize Q̂�o(s)

(o = c; p) to Q̂yo(s) according to (12). De�ne the distribution function Q̂y(s) := !Q̂
y
c(s)+(1�!)Q̂yp(s)

to be the estimator of the tail-truncated cdf Qy(s). The construction of Q̂y(s) is summarized as

follows (1fo = cg takes the value of one if call data are used, and is zero otherwise):

Q̂�o(s) := e
r�m̂(1)

o (s) + 1fo = cg for o = c; p; (14)

Q̂yo(s) :=
Q̂�o(s)� Q̂�o(`o)
Q̂�o(uo)� Q̂�o(`o)

for o = c; p; (15)

Q̂y(s) := !Q̂yc(s) + (1� !)Q̂yp(s): (16)

An estimator �̂y of the fundamental value computed (incorrectly) under Q̂y is then obtained by

discretizing (13) over state prices s and substituting Q̂y(s) for Qy(s). More precisely, after choosing

a grid of deterministic values fsignsi=1 over [`; u] with s0 = `, sns = u, and step sizes �si := si�si�1,

we evaluate �̂y using the following relations:

�̂y := e�r� `+ e�r�
nsX
i=1

[1� Q̂y(si)]�si: (17)

The asymptotic normality of the local polynomial estimator is well known (Fan and Yao (2005),

Theorem 6.3) and will be useful for the large-sample inference of �y.

our target parameter is the mean of the state-price distribution, which can be estimated as a function of the cdf as
in (8). Compared to density estimation which requires the second-order derivative, it is more e¢ cient to obtain the
cdf estimate involving only the �rst-order derivative.
18Motivated by bias and variance considerations, Fan and Gijbels (1996) recommend the use of a local quadratic

�t for estimating the �rst-order derivatives. See Appendix A1 for details.
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Due to unintended tail truncation, there is a bias in �̂y as an estimator for the fundamental

value ��. The following result is useful for computing the bias.

Lemma 3 The di¤erence �y � �� takes the form

�y � �� = B �A;

where A = C�(u)� P �(`) and

B =
e�r�Q�(`)(u� `)
Q�(u)�Q�(`) �

�
1

Q�(u)�Q�(`) � 1
�
e�r�

Z u

`
Q�(s)ds:

Remark : The �rst term B in the di¤erence �y � �� arises from tail truncation. It vanishes as the

strike price interval expands on both sides, i.e., Q�(`) ! 0 as ` ! 0 and Q�(u) ! 1 as u ! 1.

This term is point-identi�ed and can be feasibly estimated under Assumptions NFLVR and INK

(using Lemma 1). The second term A, which arises from missing observations beyond the strike

range, is partially identi�ed and is bounded by (10).

Let B̂ be the feasible estimator of B by replacing the unobserved Q�(s) with the sample analog

(see Appendix A1). De�ne �̂ := �̂y � B̂ as the estimator of the fundamental asset value with the

bias term B corrected. This leads to the bias-corrected point estimator of the asset price bubble:

�̂S := S � �̂ = S � �̂y + B̂: (18)

It is important to note that �̂S is not consistent for the asset price bubble as the latter is not

point-identi�ed. Nonetheless, it is possible to obtain a consistent interval estimate of the asset price

bubble. The interval estimate accounts for both the sample variation of �̂y and the partial identi�-

cation of �� (due to term A). The validity of the con�dence interval using a normal approximation

is justi�ed by the following proposition. Let h be the bandwidth of the local polynomial �t. Recall

that n is the size of the option sample in the cross section.

Proposition 3 Suppose Assumptions NFLVR and INK hold, and that regularity conditions (a)-

(e) (stated in Appendix A2) are satis�ed. Let fsignsi=1 be a sequence of deterministic numbers in
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[`; u] such that �si = 1=ns for all i, and that ns satis�es
logn
ns

= O(1) as n; ns ! 1. Then, as

n; ns !1, h! 0 and log(n)
nh3

! 0, we have

�̂y
p�! �y

and
p
nh3[�̂y � �y �O(n�1s + h2)]

p�! N(0; V );

where V := plimVns;n;h and

Vns;n;h := (nh
3)V ar

 
1

ns

nsX
i=1

m̂(1)(si)

!
:

By the normal approximation, the 100(1 � �)% con�dence interval for the asset price bubble

�S is given by:

[�̂S � z�=2 � s:e:(�̂)�Au, �̂S + z�=2 � s:e:(�̂)�A`]; (19)

where z�=2 is the standard normal variate with right tail probability �=2. The standard error s:e:(�̂)

accounts for the sample variability in �̂y and B̂. It is computed by the Newey-West method which

allows for heteroskedasticity and weak cross-sectional correlations of option prices across strikes.

Details are found in the Appendix.

4 The Empirical Study

This section applies the previous theory to study the existence of price bubbles in the S&P 500

index using call and put option prices. The estimated bubbles are then used to construct pro�table

momentum trading strategies.

4.1 The Data

We collect daily prices of European call and put options written on the S&P 500 index spanning

1996 to 2015 from OptionMetrics. We �lter the option data by retaining only those trade records

with positive volume, best bid or o¤er prices at least $0.05, a time-to-maturity longer than eight

days and no longer than a year, and an expiry date before the 27th of a month. This last �lter
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e¤ectively removes all �non-standard� option contracts.19 To ensure su¢ cient observations for

estimation, we remove those maturity groups that have fewer than three observations.20 The above

�ltering criteria are largely in line with data-cleaning practices commonly adopted in the empirical

option pricing literature. An exception from common practices is that we retain all the deep

in- and out-of-the-money options, which are useful to bound the asset price bubbles as shown in

Propositions 2 and 3. The option prices used for further analysis are the average of the bid and

o¤er prices.

The risk-free interest rate is the one-month T-bill rate released by the Federal Reserve Board.

If the one-month rate is unavailable (which may be the case in earlier years in the sample period),

the three-month T-bill rate is used instead.

4.2 The Information Content of Option Prices

In this section we examine the information content contained in options written on the S&P 500

index. Lemma 1 suggests that call and put index options provide information on the risk-neutral

state-price distribution Q�t of the future realizations of the S&P 500 index. The theory, however,

does not tell us whether we should use calls or puts or both of them to recover Q�t . Nor is it clear

which of the bubble inference methods are more appropriate empirically. Some exploratory analysis

on the option data provides guidance on the methods to use.

First, we examine the trading volume of the S&P 500 index options. Figure 1 plots the three-

month moving average of the daily trading volume of di¤erent options (classi�ed by option types

and moneyness) over time (1996-2015). From the time series plot, we observe that, in general, more

puts are traded than calls and that, for each option type, the ATM (at-the-money) options are the

most heavily traded, followed by the OTM (out-of-the-money) and ITM (in-the-money) options.

The popularity of the ATM put options increases sharply in 2007 when the S&P 500 index reached

its peak before the global �nancial crisis.

Table 1 allows for a more re�ned comparison of the trading volume across option types, mon-

eyness and maturity groups. Put options account for 63 percent of all the traded index options

19The �standard� options are those option contracts that expire on or before the third Friday of the expiration
month.
20A maturity group is de�ned as the collection of options that share the same option type (call/put) and range of

maturities. In our analysis, we classify options into three time-to-maturity groups with � spanning up to 3 months,
3-6 months, and 6-12 months (i.e., � 2 [0; 0:25], [0:25; 0:5] and [0:5; 1]).
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expiring within a year. Among the traded put (call) options in the sample, 83 (84) percent expire

within three months. The OTM puts are nearly six times more actively traded than are the OTM

calls. The average daily trading volume of the OTM puts is 63,600 contracts (which is 32 percent

of all traded puts in the sample). This contrasts to a daily volume of 10,800 contracts for the

OTM calls (which takes up less than 10 percent of all traded calls). OTM options are especially

informative about the tails of the state-price distribution; in particular, OTM puts (calls) re�ect

the downside (upside) risk associated with the left tail (right tail). This vibrant trading activity

for both calls and puts (especially ATM and OTM options) suggests that we would ignore much

trading information by considering just the puts or calls as the data used.

We now study the range of strike prices. As discussed in Section 3.3, the span of strike prices

crucially determines the revealed part of the SPD. Figure 2 documents the strike price ranges for all

calls (green-colored band) and puts (blue-colored band) over time.21 These strike prices represent

the support of Q�t revealed by call and put prices. The overlapping region is the part of the support

revealed by both the calls and puts. There is clearly some persistent asymmetry in the manner in

which call and put prices recover Q�t . At any point in time, the cross section of all the put data

reveals a much wider range of the discounted future state prices, especially those values at the

lower end (downside) that are revealed only by OTM puts. By contrast, the call data, in particular

OTM calls, tend to reveal the upper part (upside) of the SPD. With reference to the discussion in

Section 3.3, the SPD is subject to less truncation when only puts are used for estimation (instead

of calls). From a bias-reduction perspective, the bubble estimates derived using both calls and puts

is preferred, followed by that derived from purely puts and purely calls.

Next, we investigate the validity of put-call parity. De�ne Dt(k; �) := St� [Ct(k; �)�Pt(k; �)+

ke�r� ], which is the discrepancy between the S&P 500 index and its �synthetic�version (in squared

bracket) derived from the call and put prices with the same strike price and maturity. The discrep-

ancy is equal to zero if put-call parity holds in market prices.

Figure 3 plots the discrepancy averaged over all matched strike prices and over each of the three

maturity groups. We observe a generally non-zero discrepancy except in 2000 and near the end of

2008 when the actual index dips below the �synthetic� index. Nonetheless, the magnitude of the

21The three-month moving averages are plotted to smoothen the data. Also plotted in Figure 1 are the narrower
ranges of strike prices (shown in dashed and dash-dotted lines) of ATM calls and puts, where ATM options are de�ned
with absolute log-moneyness less than 0.1.
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discrepancy is quite small relative to the index level (e.g., the average discrepancy is < 0.2 percent

of S&P 500 index for � 2 [0; 0:25]).

The discrepancy measure also reveals the extent to which empirically call bubbles depend on

the strike price. Indeed, from the de�nition of option bubbles and by put-call parity in fundamental

prices, it follows that Dt(k; �) = �St (�) � �Ct (k; �). This provides a way to validate the empirical

validity of strike independence of call bubbles (Assumption INK), which our proposed methods

presume as an identi�cation condition for asset price bubbles when call option prices are used.

Figures A1-A3 show the same plots as in Figure 3, except that the discrepancy measure is averaged

over strike prices associated with ITM, ATM and OTM calls (equivalently, OTM, ATM and ITM

puts), respectively. Assumption INK is empirically con�rmed if the plots in Figures A1-A3 look

alike. The plots reveal that the discrepancy remains stable over the strikes associated with ITM

and ATM calls (OTM and ATM puts) (Figures A1-A2), while the discrepancy associated with

OTM calls (ITM puts) takes on somewhat smaller values (Figure A3). Since OTM calls and ITM

puts have a much lower trading volume (see Figure 1 and Table 1), Assumption INK seems to be

supported by the empirical evidence.

From the above empirical observations, it is desirable to adopt a method which does not depend

on the validity of put-call parity and uses both call and put data. The strike price independence of

call bubbles is the assumed structure which our proposed method employs to identify asset price

bubbles.

4.3 Inferring the S&P 500 Bubble

In this section, we implement the methods in Section 3 to infer the presence of bubbles in the S&P

500 index using option prices. Recall that the bubble embedded in an option is a function of its

time-to-maturity � . Since there are multiple strike options associated with di¤erent maturities,

we classify the option data into three maturity groups: 0-3 months, 3-6 months, and 6-12 months

(i.e., � 2 [0; 0:25], [0:25; 0:5] and [0:5; 1], measured in years). We then compute the average bubble

within each maturity group.

The naïve bounds (Corollary 1) assume the put-call-parity being valid. The upper bound, de-

noted ~�1(�), is essentially the price of the most OTM call and is a function of the time-to-maturity.22

22For notational simplicity, we suppress the time subscript t in all bubble estimates in the empirical discussion
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Figure 4 plots the moving averages of ~�1(�) associated with the three maturity groups.23 We ob-

serve two major spikes: the �rst one occurs near the end of 1990�s, another one at the end of 2007.

The surge is particularly pronounced for � 2 [0:5; 1]. These bubble bounds need to be interpreted

with care in light of the thin trading volume of deep OTM call options and the empirical violation

of put-call parity (see the end of Section 4.2).

The simple bounds (Proposition 2) do not rely on the validity of put-call-parity. We evaluate

these bounds by setting ! equal to the proportion of call options in the cross section. Figure 5

shows the moving averages of these bounds and their mid-points, denoted ~�2(�), for each maturity

group. We note that the width of the interval changes over time, re�ecting the varying level of

uncertainty of the bubble size. The interval tends to be wider during more volatile periods (e.g.,

mid-1997 to 2002, end of 2007 to 2008, and 2015). The interval also tends to be wider and more

volatile for longer maturities. Similar to the naïve bounds, the precision of the simple bounds are

subject to the illiquidity of options at extreme moneyness.

Nonparametric interval estimation (Section 3.3) delivers interval estimates of bubbles using the

entire cross section of option prices. Like the simple bounds, it does not presume put-call parity.

Figure 6 displays the moving averages of the point estimate (18) with ! = nc=n (point estimate

denoted �̂cp(�); nc is the number of call contracts in the data), and the associated 95% con�dence

bounds (19). The con�dence bounds keep track of the market performance more closely than the

naïve and simple bounds in Figures 4 and 5. We observe that bubbles exist, although they are

small most of the time.24 Bubbles were positive and economically signi�cant when the market

was thriving in the �rst half of 1998, 2006-2007 and 2014-2015. Bubbles tend to be larger when

the option�s maturity (viewed as the time-to-liquidation of the S&P 500 portfolio) is larger. This

is consistent with the supermartingale property of the bubble process (see the discussion after

expression (3)).

The bubble estimates dip into the negative domain during 2009 (for � 2 [0; 0:25]) and near the

end of 2011 (for � 2 [0:25; 0:5]). While the results are puzzling, the negative estimates occur when

(unless it is necessary to avoid causing confusion in the context).
23As the inference methods are designed for cross-sectional option data, the time series of bubble bounds/estimates

change over time. To smooth the time series and facilitate the visual presentation, we plot the three-month moving
average of all bubble estimates.
24One reason is that bubbles are generated when stocks are purchased to resell rather than to hold for a long time.

These two are almost always equal, except in trading frensies. When trading frensies occur, volatility increases, and
the size of the bubbles expands.
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the market is low. This inconsistency with the local-martingale theory of bubbles can be explained

by the facts that we are assuming both frictionless and competitive markets. When markets are

falling, both of these assumptions are less likely to be satis�ed.25 Nonetheless, these violations are

infrequent in our estimates.

Figures 7-8 show the analogous plots for ! = 0 (formed by puts only, point estimate denoted

�̂p(�)) and ! = 1 (formed by calls only, point estimate denoted �̂c(�)) respectively. The bubble

estimates are insigni�cantly di¤erent from zero over almost all time periods. Compared with �̂c(�)

and �̂p(�), it is clear that �̂cp(�) has a much narrower con�dence interval. This is due to both a

reduction in sample variability for the local polynomial estimate (leading to smaller s:e:(�̂)) and a

widening of the strike price range (leading to sharper bounds on A); see (19).

In summary, these empirical �ndings provide strong evidence for the existence of bubbles in

the S&P 500 index. And, it provides equally strong evidence supporting the validity of the local-

martingale theory of bubbles. Because the bubble estimates are derived from option data, one

may wonder whether they capture forward-looking information about the future prospects of the

market. Figure 9 displays the cross-correlograms between the bubble point estimates �̂cp(�) and

S&P 500 index, i.e., Corr(�̂cp;t(�); St+m) against lag m, where one lag represents a separation

of 10 days (two business weeks). The cross-correlograms reveal very persistent association from

�̂cp(�) to the S&P 500 index.26 For the case � 2 [0:25; 0:5] and [0:5; 1], the cross-correlations are

particularly strong and remain signi�cant over multiple lags. This provides some indirect evidence

suggesting that our bubble estimates predict future market performance. More direct evidence can

be obtained by forming trading strategies that pro�t from its use. This is the content of the next

section.

4.4 Bubble-based Trading Strategies

To a �nancial economist, a bubble re�ects the market�s information about the fundamental value

of an asset. Any discrepancy between the market and fundamental prices may indicate a dise-

25The presence of market frictions during crises can induce a liquidity di¤erential between traded stocks and options.
As seen in Figure 2, the S&P 500 falls below the lower bound of the strike price range of traded calls (in green) during
the global �nancial crisis of 2008 and in the second half of 2011. However, the S&P 500 stays within the strike price
range for put options (in blue). This indicates that the speed at which call option trading shifts towards the lower
tail of the strike price range does not catch up with the rapid decrease of the S&P 500.
26The interesting results are the signi�cant cross-correlations for positive lags. The cross-correlations for negative

lags are expected as the bubble estimates are functions of option prices, which depend on past market performance.
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quilibrium and trigger a series of adjustments in the market prices. Evaluating the out-of-sample

performance of the estimated bubbles may provide insights into the price adjustment process and

shed light on market ine¢ ciency. In addition, an investor may take advantage of information on

bubbles to design a pro�table trading strategy (buy when the bubble is expanding and sell before

it bursts). Such a strategy is motivated by the �greater fool� theory regarding the formation of

bubbles (see Conlon (2004)). There exists some empirical evidence that trading strategies based on

this principle can be pro�table (Shiryaev, Zhitlukhin, and Ziemba (2014, 2015), Milunovich, Shi,

and Tan (2019)).

To investigate the pro�tability of such strategies, we consider a joint momentum strategy based

on the S&P 500 index (denoted S) and its bubble estimate �̂S(�). More speci�cally, let MAi(S)t

and MAi(�̂S(�))t be, respectively, the ith (i = 1; 2) moving averages of S and �̂S(�) over the

window ft � wi + 1; t � wi + 2; : : : ; tg of length wi. The moving average windows are such that

w1 < w2. The strategy suggests holding the S&P 500 index at time t if

MA1(�̂
S(�))t > MA2(�̂

S(�))t or MA1(S)t > MA2(S)t; (20)

i.e., we take a long position when either the bubble estimate or the S&P 500 index (or both) exhibits

an upward trajectory. If the investor does not hold the S&P 500 index, the proceeds are deposited

into a money account with zero interest.

The bubble estimate is taken to be any one of the estimates/bounds studied in Section 3. This

trading strategy is more aggressive than the pure momentum strategy based on S&P 500 itself (i.e.,

hold the market portfolio if MA1(S)t > MA2(S)t). Another strategy is to buy-and-hold the S&P

500 index over the sample period. We investigate all three strategies. For our baseline results, the

two moving averages are computed over a window of length w1 = 3 months and w2 = 1 year, and

the portfolio is updated on a weekly basis.

The �rst three columns of Table 2 report the performance of di¤erent trading strategies over

1996-2015. The joint momentum strategy (20) with the bubble estimate chosen to be �̂cp(�) or

�̂p(�) achieves superior performance: e.g., it generates an annual net return (after subtracting

a round-trip 0.5% transaction cost) of 8.7 percent with bubble estimate �̂cp(�) for � 2 [0; 0:25],

whereas a pure momentum strategy based on S alone achieves 6.9 percent, and a buy-and-hold
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strategy earns 5.1 percent. It also dominates the remaining joint momentum strategies constructed

from the other bubble estimates. The conclusion is qualitatively similar after adjusting for risk, as

revealed by the Sharpe ratios.

This additional net pro�t is attributable to the predictability of the bubble estimates derived

from both put and call option prices. As shown in Figure 10, the joint momentum strategy takes

advantage of the dynamics of �̂cp(�), which tends to send �buy� signals earlier than the market

index does after a substantial market drop. The combined measure �̂cp(�) seems to predict better

the movement of the market index than the pure bubble estimates �̂p(�) and �̂c(�). Indeed,

compared to the joint momentum strategy based on S and �̂cp(�), the one based on S and �̂p(�)

generates slightly lower net returns (except for the maturity group � 2 [0:25; 0:5], for which the

net return is marginally higher). The boost in the performance of bubble-based trading strategies

seems to come from the combined use of calls and puts.

The rest of Table 2 shows the trading strategies�performance over three sub-periods, each span-

ning �ve years. The performance of the joint momentum strategy based on S and �̂cp(�) remains

stable and robust for the shortest maturity group � 2 [0; 0:25] �the strategy yields persistently high

annual net return in all of the sub-periods, outperforming the benchmark of the pure momentum

strategy on S and the buy-and-hold strategy. For � 2 [0; 0:25], the joint and pure momentum

strategies perform equally well in 1996-2000, indicating that the buy signals are solely triggered

by the S&P 500 index during this period. As the maturity becomes longer with � 2 [0:5; 1], the

performance depends on the sub-periods: the strategy outperforms the benchmark of the pure

momentum strategy on S by at least three percentage points per annum in 2006-2010 and 2011-

2015, but becomes worse than the pure momentum strategy on S in 1996-2000 and 2001-2005.

Replacing �̂cp(�) with �̂p(�) in the joint momentum strategy yields similar but slightly less stable

performance, while using other bubble measures (�̂c(�), ~�1(�) and ~�2(�)) results in more variable

(sometimes negative) net returns.

Next, we check the robustness of performance for di¤erent trading frequencies. The results are

presented in Table 3. The joint momentum strategies that use �̂cp(�) or �̂p(�) outperform those

adopting other choices of bubble estimates over all trading frequencies ranging from one to 10 days.

The performance slightly deteriorates as the trading frequency deceases to 20 days. This indicates

that both the bubble estimates and the index contain timely information about the changing market
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sentiment and hence trading signals, which would be costly to the investors if slowly acted upon.

We also study the e¤ect of changing the window lengths (w1 and w2) of the moving averages

in the design of the momentum strategies. This may be regarded as a sensitivity analysis that

calibrates the tuning parameters w1 and w2, which are unknown to the investors a priori. Table

4 records the performance of trading strategies for various window lengths. The joint momentum

strategies that adopt �̂p(�) and �̂cp(�) for � 2 [0; 0:25] exhibit robustness in performance: they out-

perform the pure momentum strategy and the buy-and-hold strategy as w1 varies over 1-6 months

and w2 is set to one year. The joint momentum strategies using other bubble estimates/bounds do

not yield performance as robust as those of �̂p(�) and �̂cp(�). The performance becomes more var-

ied when using bubbles for longer maturities (� 2 [0:25; 0:5] and � 2 [0:5; 1]) or when the long-span

window varies in length (w2).

One may be concerned that the robust performance of the above trading strategies is a result

of data snooping. To investigate their superior performance, while allowing for multiple testing,

we compute the Bootstrap Reality Check test of White (2000). Here, the best performing trad-

ing strategy is tested against other similar trading strategies, but with di¤erent combination of

trading frequencies (every 1, 5, 10, 20 days) and di¤erent lengths for the moving average window

f(w1; w2) : w1 = 21; 42; 63; 84; 105; 126, w2 = 126; 252; 378; 504, w1 < w2g (for joint momentum

strategies). The benchmark is selected to be the buy-and-hold strategy. To implement the station-

ary bootstrap, we consider a range of average block sizes spanning 3-12 months. Longer blocks tend

to better preserve the serial dependence of the price and bubble processes �a dynamic property

that momentum strategies rely on to generate pro�ts. Table 5 reports the p-value of the Bootstrap

Reality Check test. The tests con�rms the superiority of the best performing joint momentum and

pure momentum strategies against the buy-and-hold strategy. We note that the evidence is weaker

when the average block size is three months.

Table 6 investigates the e¤ect of redesigning the trading strategies. The baseline case of the joint

momentum strategy de�ned in (20) (�rst pair of columns) is compared to momentum strategies

purely based on the bubble estimates (second pair of columns), and to momentum strategies based

on S and the bubble estimates. The holding rule (20) is modi�ed by replacing �or�with �and.�

These alternative strategies are less aggressive in taking a long position in the S&P 500 index, and

thus yield substantially lower net returns than the baseline case.
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All of the above results assume a round-trip transaction cost of 0.5 percent. As our �nal ro-

bustness check, we study the impact of transaction costs on trading performance. Table 7 reports

the net returns of trading strategies for various round-trip transaction costs ranging from 0 percent

(gross returns, �rst column), 0.5 percent (baseline case, second column) to 3 percent. The joint

momentum strategy based on S and �̂cp(�) with � 2 [0; 0:25] becomes the only joint momentum

strategy that uniformly outperforms the pure momentum strategy based on S. The uniform su-

periority of this trading strategy is not a¤ected by the choice of the trading frequency.27 Due to

more frequent trading, other joint momentum strategies perform less well as the transaction cost

increases. Using ~�1(�) or ~�2(�) to form the joint momentum strategy could be a decent alternative

when transaction costs are low, but the need to trade frequently would lead to excessive transaction

costs that eventually o¤set the positive returns.

5 Concluding Remarks

In this paper, we study a number of model-free asset price bubble inference methods that use

option prices. Due to limited availability of option data (e.g., missing observations beyond a

bounded range of strike prices), the state-price distribution is subject to tail truncation and cannot

be fully recovered. We show that, under mild restrictions implied from the local-martingale theory

of bubbles, the fundamental asset value and hence the asset price bubbles associated with a given

maturity can be partially identi�ed with a bounded range of available strike prices. To infer asset

price bubbles from European option data, we propose two feasible methods: a general set of bounds

in terms of option prices with extreme moneyness, and a more re�ned interval estimate that utilizes

the entire cross section of both call and put data.

We illustrate the usefulness of the inference method in the empirical analysis of S&P 500 bubbles.

The estimated bubbles track the market performance closely, and remain largely positive in the

�rst half of 1998, during 2006-2007, and during 2014-2015. As an out-of-sample analysis, we show

that it is possible to construct pro�table momentum trading strategies based on both the S&P

500 index and the estimated bubbles. For our sample that spans 1996-2015, the joint momentum

strategies consistently outperform the benchmarks, including a buy-and-hold strategy and the pure

27 In the sample period 1996-2015, this strategy generates 12 transactions at all trading frequencies ranging from
1, 5, 10 to 20 days.
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momentum strategy based on S&P 500 index alone. The empirical results indicate that the bubble

estimates derived from option prices contain valuable forward-looking information.

The current method has some limitations. Our proposed methods are static in the sense that

the state-price distribution (and hence the bubbles) are inferred from the cross-section of option

data on the same day. According to the local-martingale theory, the bubble process satis�es some

dynamic properties, e.g., it is a supermartingale from the birth to the death of a bubble cycle.

An empirical investigation of the time series dynamics of asset price bubbles would shed light on

the bubble formation process. In our empirical analysis, option prices were taken as the simple

average of the bid and o¤er prices. The estimation method could be improved by incorporating

additional data such as the bid-o¤er spread, so that the level of noise associated with the option

price is explicitly taken into account. Furthermore, other weighting schemes could be considered

when estimating the bubbles using put and call data (e.g., using a volume-weighted average in

expression (16)). The relaxation of these limitations is left for future research.
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Figure 1: Trading volume (in 1,000) of calls and puts.

Figure 2: Range of strike prices for all calls and puts, and for at-the-money options with
absolute log-moneyness less than 0.1 (boundaries in dashed and dash-dotted lines).
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Figure 3: Put-call disparity averaged over strike prices.
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Figure 4: Näıve upper bound of S&P 500 bubble obtained from the most OTM call.



Figure 5: Simple bounds of S&P 500 bubble obtained from calls and puts of extreme mon-
eyness.

Figure 6: S&P 500 bubble estimate Π̂cp(τ).



Figure 7: S&P 500 bubble estimate Π̂p(τ).

Figure 8: S&P 500 bubble estimate Π̂c(τ).
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Figure 9: Cross-correlations of S&P 500 and its bubble estimate Π̂cp(τ).

Figure 10: Momentum strategies based on S&P 500 and its bubble estimate Π̂cp(τ) with
τ ∈ [0, 0.25].



Table 1: Average daily trading volume (in 1,000) of S&P 500 index options

maturity group
log-moneyness τ ϵ[0, 0.25] τ ϵ[0.25, 0.5] τ ϵ[0.5, 1]

OTM puts m ϵ(-∞,-0.1) 48.9 8.9 5.8

ATM puts m ϵ[-0.1,0.1] 116.3 13.0 5.4

ITM puts m ϵ(0.1,∞) 0.5 0.2 0.2

OTM calls m ϵ(0.1,∞) 6.3 2.3 2.2

ATM calls m ϵ[-0.1,0.1] 90.8 9.4 4.2

ITM calls m ϵ(-∞,-0.1) 0.6 0.2 0.1
Note: The sample horizon is 1996-2015. Log-moneyness is defined as 𝑚 = log 𝑘𝑒 /𝑆 .



Table 2: Performance of trading strategies on S&P 500 over different sample horizons

gross net Sharpe gross net Sharpe gross net Sharpe gross net Sharpe gross net Sharpe

momentum on S&P 500 or Π

for τ ϵ[0, 0.25]:

9.1 8.7 0.50 13.6 13.3 0.44 6.7 6.6 0.48 9.4 9.0 0.55 6.6 6.2 0.44

8.4 7.9 0.43 12.7 12.4 0.39 6.3 5.5 0.36 7.1 6.7 0.39 7.6 7.2 0.50

6.5 6.1 0.27 13.6 13.3 0.44 -1.5 -1.8 -0.28 9.9 9.5 0.60 5.5 5.2 0.37

6.3 5.8 0.26 13.6 13.3 0.44 -0.9 -1.8 -0.29 8.9 8.5 0.50 6.7 6.3 0.44

5.8 5.2 0.21 13.6 13.3 0.44 4.1 3.0 0.09 2.4 1.8 -0.02 4.6 4.0 0.28

for τ ϵ[0.25, 0.5]:

8.2 7.6 0.42 13.6 13.3 0.44 4.5 3.8 0.20 5.9 5.3 0.29 7.1 6.8 0.47

8.2 7.7 0.43 13.6 13.3 0.44 5.0 4.5 0.28 6.8 6.2 0.37 7.9 7.2 0.50

6.2 5.4 0.23 13.5 13.0 0.43 1.3 0.1 -0.16 5.1 4.3 0.15 5.7 5.4 0.38

6.1 5.3 0.23 13.6 13.3 0.44 0.4 -0.5 -0.22 2.2 1.0 -0.09 7.1 6.8 0.47

8.0 7.2 0.37 13.6 13.3 0.44 5.1 3.8 0.18 5.3 4.3 0.16 7.8 7.3 0.49

for τ ϵ[0.5, 1]:

8.5 7.8 0.41 12.7 12.4 0.39 3.4 1.8 -0.02 8.7 8.3 0.55 9.9 9.9 0.63

8.3 7.5 0.39 16.2 15.6 0.55 1.8 0.6 -0.13 8.6 8.2 0.51 7.9 7.5 0.48

6.5 5.7 0.25 12.7 12.4 0.39 -0.2 -1.8 -0.32 7.5 7.1 0.41 5.8 5.2 0.36

7.5 6.9 0.32 13.6 13.3 0.44 1.6 0.3 -0.12 8.7 8.3 0.55 8.0 7.3 0.61

7.2 6.6 0.31 13.6 13.3 0.44 2.0 0.9 -0.10 5.7 5.3 0.24 8.4 8.0 0.52

momentum on S&P 500 7.3 6.9 0.39 13.6 13.3 0.44 4.1 3.8 0.24 5.7 5.3 0.29 5.5 5.2 0.37

buy & hold 5.1 5.1 0.16 11.7 11.7 0.34 -0.5 -0.5 -0.19 -0.1 -0.1 -0.12 7.9 7.9 0.50

Note: All reported returns are annualized and in percentage. Sharpe ratios are annualized. Net returns are computed after accounting for transaction cost (0.05% per 
round-trip transaction). Trading frequency is once a week. The second-to-last row corresponds to momentum strategy based on S&P 500 only. The last row 
corresponds to the buy-and-hold strategy. The rest of the rows correspond to momentum strategies based on S&P 500 or its various bubble estimates with time-to-
liquidation τ . All momentum strategies yield a hold signal when the short-span (3 months) moving average exceeds the long-span (1 year) moving average of the 
associated variable. See the main text for definitions of the bubble estimates. 
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Table 3: Performance of trading strategies on S&P 500 for different trading frequencies

gross net Sharpe gross net Sharpe gross net Sharpe gross net Sharpe

momentum on S&P 500 or Π

for τ ϵ[0, 0.25]:

8.6 8.2 0.43 9.1 8.7 0.50 8.8 8.5 0.52 7.8 7.5 0.48

8.2 7.4 0.37 8.4 7.9 0.43 7.8 7.3 0.44 7.9 7.5 0.47

6.3 5.7 0.24 6.5 6.1 0.27 6.5 6.2 0.31 6.4 6.0 0.31

6.7 6.0 0.26 6.3 5.8 0.26 7.1 6.7 0.35 6.1 5.7 0.29

6.0 5.2 0.20 5.8 5.2 0.21 6.1 5.5 0.26 6.0 5.4 0.25

for τ ϵ[0.25, 0.5]:

7.9 7.3 0.37 8.2 7.6 0.42 7.7 7.2 0.43 6.8 6.4 0.38

8.2 7.6 0.39 8.2 7.7 0.43 7.7 7.2 0.43 7.4 7.0 0.43

6.5 5.4 0.20 6.2 5.4 0.23 5.3 4.7 0.18 5.8 5.2 0.24

5.7 4.7 0.18 6.1 5.3 0.23 6.0 5.4 0.26 5.9 5.4 0.28

7.5 6.4 0.29 8.0 7.2 0.37 7.3 6.6 0.35 7.7 7.2 0.42

for τ ϵ[0.5, 1]:

9.1 8.0 0.38 8.5 7.8 0.41 7.9 7.4 0.42 7.2 6.7 0.37

8.0 6.8 0.31 8.3 7.5 0.39 8.2 7.5 0.41 7.7 7.2 0.41

6.9 5.7 0.24 6.5 5.7 0.25 6.4 5.8 0.29 5.3 4.8 0.21

8.0 6.9 0.30 7.5 6.9 0.32 6.9 6.3 0.31 6.6 6.1 0.31

6.9 6.1 0.26 7.2 6.6 0.31 6.8 6.3 0.31 6.5 6.0 0.31

momentum on S&P 500 7.0 6.7 0.34 7.3 6.9 0.39 6.5 6.1 0.35 6.2 5.8 0.34

buy & hold 5.1 5.1 0.14 5.1 5.1 0.16 5.1 5.1 0.17 5.1 5.1 0.17

Δt : 20 days

Note: All reported returns are annualized and in percentage. Sharpe ratios are annualized. Net returns are computed after accounting for 
transaction cost (0.05% per round-trip transaction). Trading frequency is every Δt  days (vary from 1 day to 20 days). The second-to-last 
row corresponds to momentum strategy based on S&P 500 only. The last row corresponds to the buy-and-hold strategy. The rest of the 
rows correspond to momentum strategies based on S&P 500 or its various bubble estimates with time-to-liquidation τ . All momentum 
strategies yield a hold signal when the short-span (3 months) moving average exceeds the long-span (1 year) moving average of the 
associated variable. See the main text for definitions of the bubble estimates. The sample horizon is 1996-2015. 

Δt : 1 day Δt : 5 days Δt : 10 days

Π (𝜏)

Π (𝜏)

Π (𝜏)

Π (𝜏)

Π (𝜏)

Π (𝜏)

Π (𝜏)

Π (𝜏)

Π (𝜏)

Π (𝜏)

Π (𝜏)

Π (𝜏)

Π (𝜏)

Π (𝜏)

Π (𝜏)



Table 4: Performance of trading strategies on S&P 500 for different spans of moving averages

gross net Sharpe gross net Sharpe gross net Sharpe gross net Sharpe gross net Sharpe

momentum on S&P 500 or Π

for τ ϵ[0, 0.25]:

9.1 8.7 0.50 8.6 7.6 0.42 8.7 8.5 0.48 5.2 4.0 0.13 7.3 7.0 0.38

8.4 7.9 0.43 7.8 6.9 0.37 7.5 7.2 0.38 6.0 5.2 0.22 6.4 6.2 0.33

6.5 6.1 0.27 5.5 4.5 0.17 7.1 6.8 0.31 6.8 5.7 0.25 6.1 5.7 0.25

6.3 5.8 0.26 6.2 5.0 0.21 7.5 6.9 0.32 3.3 2.1 -0.01 5.6 5.2 0.24

5.8 5.2 0.21 6.5 5.3 0.23 7.0 6.5 0.30 3.0 1.8 -0.03 4.8 4.4 0.17

for τ ϵ[0.25, 0.5]:

8.2 7.6 0.42 7.2 6.1 0.31 7.8 7.4 0.40 6.1 5.2 0.23 6.6 6.4 0.34

8.2 7.7 0.43 9.0 7.8 0.44 8.6 8.4 0.47 6.1 5.1 0.22 6.7 6.6 0.35

6.2 5.4 0.23 5.6 4.4 0.16 5.3 4.6 0.16 6.5 5.4 0.22 6.0 5.5 0.24

6.1 5.3 0.23 7.0 5.5 0.24 6.2 5.7 0.25 4.5 3.5 0.08 5.2 4.7 0.19

8.0 7.2 0.37 8.0 6.7 0.33 9.4 9.0 0.50 7.4 6.0 0.26 6.0 5.5 0.26

for τ ϵ[0.5, 1]:

8.5 7.8 0.41 6.3 5.3 0.22 7.3 7.1 0.33 6.3 5.3 0.22 6.1 5.4 0.26

8.3 7.5 0.39 7.5 6.1 0.28 7.9 7.6 0.39 6.6 5.3 0.21 7.3 7.0 0.37

6.5 5.7 0.25 5.6 4.6 0.17 7.2 6.8 0.32 5.0 3.9 0.11 7.0 6.6 0.34

7.5 6.9 0.32 4.9 3.7 0.11 6.2 5.8 0.24 5.3 4.1 0.13 4.9 4.3 0.15

7.2 6.6 0.31 6.0 4.7 0.18 9.4 8.9 0.46 5.7 4.6 0.15 6.6 6.3 0.31

momentum on S&P 500 7.3 6.9 0.39 6.8 6.2 0.33 7.3 7.1 0.38 5.9 5.1 0.23 6.3 6.1 0.32

buy & hold 5.1 5.1 0.16 5.1 5.1 0.16 5.1 5.1 0.16 5.6 5.6 0.18 3.7 3.7 0.07

MA1: 3 mo
MA2: 2 yr

Note: All reported returns are annualized and in percentage. Sharpe ratios are annualized. Net returns are computed after accounting for transaction cost (0.05% per 
round-trip transaction). Trading frequency is once a week. The second-to-last row corresponds to momentum strategy based on S&P 500 only. The last row 
corresponds to the buy-and-hold strategy. The rest of the rows correspond to momentum strategies based on S&P 500 or its various bubble estimates with time-to-
liquidation τ . All momentum strategies yield a hold signal when the short-span moving average (MA1) exceeds the long-span moving average (MA2) of the 
associated variable. See the main text for definitions of the bubble estimates. The sample horizon is 1996-2015. 

MA1: 1 mo
MA2: 1 yr

MA1: 6 mo
MA2: 1 yr

MA1: 3 mo
MA2: 6 mo

MA1: 3 mo
MA2: 1 yr

Π (𝜏)

Π (𝜏)

Π (𝜏)

Π (𝜏)

Π (𝜏)

Π (𝜏)

Π (𝜏)

Π (𝜏)

Π (𝜏)

Π (𝜏)

Π (𝜏)

Π (𝜏)

Π (𝜏)

Π (𝜏)

Π (𝜏)



Table 5: Reality Check tests

S&P 500 and 

maturity group
Average block size τ ϵ[0, 0.25] τ ϵ[0.25, 0.5] τ ϵ[0.5, 1]

3 months 0.076 0.074 0.060 0.105

6 months 0.018 0.026 0.015 0.024

9 months 0.019 0.014 0.012 0.015

12 months 0.015 0.014 0.007 0.012

H0: buy-and-hold strategy H0: buy-and-hold strategy

Note: The sample horizon is 1996-2015.  The p-value of Bootstrap Reality Check test of White (2000) are reported for each given 
average block size used for the stationary bootstrap (first column). The benchmark is the buy-and-hold strategy. The tests for the 
superiority of joint momentum strategy (columns 2-4) take into account different combinations of moving average window lengths 
(w 1=21,42,63,84,105,126 days, w 2=126,252,378,504 days, where w 1<w 2) and trading frequencies (1,5,10,20 days). The tests for 

the superiority of pure momentum strategy (last column) take into account different trading frequencies (1,5,10,20 days). Number 
of bootstrap samples: 1,000. 

     H1: Joint momentum strategy based on H1: Pure momentum strategy
based on S&P 500Π (𝜏)



Table 6: Performance of different variants of trading strategies on S&P 500

gross net Sharpe gross net Sharpe gross net Sharpe

choice of Π

for τ ϵ[0, 0.25]:

9.1 8.7 0.50 5.6 4.2 0.19 3.8 2.4 0.02

8.4 7.9 0.43 4.7 3.7 0.13 3.6 2.7 0.05

6.5 6.1 0.27 3.1 2.1 -0.01 3.9 2.9 0.09

6.3 5.8 0.26 2.7 0.7 -0.13 3.7 1.8 -0.04

5.8 5.2 0.21 2.3 0.8 -0.13 3.8 2.6 0.05

for τ ϵ[0.25, 0.5]:

8.2 7.6 0.42 4.6 3.3 0.10 3.7 2.6 0.04

8.2 7.7 0.43 6.2 4.9 0.25 5.3 4.2 0.18

6.2 5.4 0.23 2.0 0.5 -0.15 3.1 2.0 -0.02

6.1 5.3 0.23 2.5 0.7 -0.13 3.7 2.3 0.02

8.0 7.2 0.37 3.0 1.5 -0.07 2.3 1.2 -0.12

for τ ϵ[0.5, 1]:

8.5 7.8 0.41 4.8 3.2 0.09 3.7 2.3 0.01

8.3 7.5 0.39 5.2 3.6 0.12 4.3 3.0 0.08

6.5 5.7 0.25 0.8 -0.8 -0.27 1.6 0.4 -0.21

7.5 6.9 0.32 4.2 2.6 0.03 4.0 2.6 0.05

7.2 6.6 0.31 3.8 2.4 0.02 3.9 2.8 0.07

momentum on S&P 500 7.3 6.9 0.39 7.3 6.9 0.39 7.3 6.9 0.39

buy & hold 5.1 5.1 0.16 5.1 5.1 0.16 5.1 5.1 0.16

Note: All reported returns are annualized and in percentage. Sharpe ratios are annualized. Net returns are 
computed after accounting for transaction cost (0.05% per round-trip transaction). Trading frequency is once 
a week. The second-to-last row corresponds to momentum strategy based on S&P 500 only. The last row 
corresponds to the buy-and-hold strategy. The rest of the rows correspond to momentum strategies based on 
different signalling variables: S&P 500 and/or its bubble estimate with time-to-liquidation τ , or the bubble 
estimate alone. All momentum strategies yield a hold signal when the short-span (3 months) moving average 
exceeds the long-span (1 year) moving average of the signalling variable. See the main text for definitions of 
the bubble estimates. The sample horizon is 1996-2015. 

Π or  S&P 500 Π only Π and  S&P 500

Π (𝜏)

Π (𝜏)

Π (𝜏)

Π (𝜏)

Π (𝜏)

Π (𝜏)

Π (𝜏)

Π (𝜏)

Π (𝜏)

Π (𝜏)

Π (𝜏)

Π (𝜏)

Π (𝜏)

Π (𝜏)

Π (𝜏)



Table 7: Performance of trading strategies on S&P 500 under different transaction costs

0% 0.5% 1% 2% 3%
momentum on S&P 500 or Π
for τ ϵ[0, 0.25]:

9.1 8.7 8.4 7.8 7.2

8.4 7.9 7.4 6.5 5.6

6.5 6.1 5.7 4.9 4.1

6.3 5.8 5.4 4.4 3.5

5.8 5.2 4.6 3.3 2.0

for τ ϵ[0.25, 0.5]:

8.2 7.6 7.1 5.9 4.8

8.2 7.7 7.1 6.0 4.9

6.2 5.4 4.7 3.1 1.5

6.1 5.3 4.4 2.8 1.2

8.0 7.2 6.5 5.0 3.4

for τ ϵ[0.5, 1]:

8.5 7.8 7.2 5.9 4.7

8.3 7.5 6.8 5.3 3.8

6.5 5.7 5.0 3.5 2.0

7.5 6.9 6.3 5.1 3.8

7.2 6.6 6.0 4.9 3.7

momentum on S&P 500 7.3 6.9 6.6 5.9 5.2

buy & hold 5.1 5.1 5.1 5.1 5.1

Note: All reported returns are annualized and in percentage. Sharpe ratios are annualized. Net returns are computed 
after accounting for transaction cost (vary from 0% to 3% per round-trip transaction). Trading frequency is once a 
week. The second-to-last row corresponds to momentum strategy based on S&P 500 only. The last row corresponds to 
the buy-and-hold strategy. The rest of the rows correspond to momentum strategies based on S&P 500 or its various 
bubble estimates with time-to-liquidation τ . All momentum strategies yield a hold signal when the short-span moving 
average (MA1) exceeds the long-span moving average (MA2) of the associated variable. See the main text for 
definitions of the bubble estimates. The sample horizon is 1996-2015. 

Π (𝜏)

Π (𝜏)

Π (𝜏)

Π (𝜏)

Π (𝜏)

Π (𝜏)

Π (𝜏)

Π (𝜏)

Π (𝜏)

Π (𝜏)

Π (𝜏)

Π (𝜏)

Π (𝜏)

Π (𝜏)

Π (𝜏)



Appendix

A1 Details of the Bubble Estimation Procedure

We now discuss the problem of recovering the state-price distribution from observed option data.

The estimation procedure, to be described below, delivers an asset price bubble estimate that

respects the data constraints (bounded strike price range, heterogeneous data precision) and is

consistent with Assumptions NFLVR and ND. It involves an application of constrained least squares

and local polynomial �tting.

Step 1: Constrained Least Squares Suppose each cross-sectional sample consists of put or

call prices over di¤erent strikes with �xed time t and time-to-maturity � (we suppress the subscripts

t and � for notational simplicity). As our �rst step of the estimation procedure, we mitigate the

data issue by conducting a constrained least squares estimation on each cross-sectional sample of

option prices over strikes. More precisely, we solve a minimization problem subject to monotonicity

and convexity requirements. For a given cross-sectional sample of put prices fki; Pigni=1, we solve:

min
fmigni=12Rn

nX
i=1

(mi � Pi)2

subject to 0 � mi+1 �mi

ki+1 � ki
� e�r� for i = 1; : : : ; n� 1 (monotonicity)

and
mi+1 �mi

ki+1 � ki
� mi+2 �mi+1

ki+2 � ki+1
for i = 1; : : : ; n� 2 (convexity).

For call price data fki; Cigni=1, the optimization problem is similar, except that the input data

are call prices and the monotonicity constraints are changed to �e�r� � mi+1�mi

ki+1�ki � 0 for i =

1; : : : ; n� 1. The solution fmigni=1 obeys the monotonicity and convexity restrictions.

Step 2: Local Polynomial Fitting As our second step, we estimate the cdf Q�(s) of the

state-price density using the adjusted option data obtained from step 1. For �xed t and � , we let

mp(s) and mc(s) denote the put and call option pricing functions that respect monotonicity and

convexity restrictions, and m(�)
p (s) and m(�)

c (s) their �th derivatives. Recall from Lemma 1 that

1



Q�(s) is connected to the �rst-order derivative of the pricing function as follows:

Q�p(s) = e
r�m(1)

p (k) if put data are used, or

Q�c(s) = e
r�m(1)

c (k) + 1 if call data are used.

This motivates the following estimators of Q�(s):

Q̂�p(s) := e
r�m̂(1)

p (s);

Q̂�c(s) := e
r�m̂(1)

c (s) + 1;

where m̂(1)
p (s) and m̂

(1)
c (s) are local estimators of m

(1)
p (k) and m

(1)
c (k), respectively.

To obtain m̂(1)(s) and its standard error (henceforth we drop the subscripts c and p as the

procedure applies to both calls and puts), we apply the nonparametric local polynomial �t (Fan

and Gijbels (1996), Fan and Yao (2005)). Our data consist of pairs of strike prices and adjusted

option prices fxi; yigni=1 = fki;migni=1. Next, we �t a local polynomial function of order p to

the data (p to be determined below). To estimate the functional value at s, we �rst obtain the

(p + 1)-vector �̂ := (X 0WX)�1X 0Wy. Here, X is a n � (p + 1) design matrix whose (i; j)th

element is (ki � s)j�1, W is a (p + 1) � (p + 1) diagonal matrix whose ith element is Kh(ki � s)

(Kh(x) = h�1K(x=h), where K is the kernel and h is the bandwidth, to be discussed below), and y

is a (p+1)-vector whose ith element is mi (same notations as in Fan and Yao (2005), Section 6.3.2).

The local polynomial estimator for m(�)(s) (� = 0; 1; : : : ; p) is given by m̂(�)(s) = �!�̂� , where �̂�

denotes the (� + 1)th element of �̂. Asymptotic normality result holds for the local polynomial

estimator applied to dependent data that satisfy certain stationary and mixing conditions (Masry

and Fan (1993); see also Fan and Gijbels (1996), Section 6.2.2). The asymptotic theory provides

guidance for the choice of the polynomial order p. To estimate m(1)(s) (i.e., � = 1), the best choice

is to �t a local quadratic function to the data, i.e., p = � + 1 = 2 (Fan and Gijbels (1996), Section

3.3; Fan and Yao (2005), Section 6.3.2). This will miminize both the model complexity and the

boundary bias of the estimator. By preasymptotic substitution (Fan and Yao (2005), Section 6.3.4),

2



the bias and variance of �̂ evaluated at s are estimated by:

B̂(s) = (X 0WX)�1X 0Wr̂;

V̂ (s) = diag(�̂);

where �̂ = �̂2(X 0WX)�1(X 0WWX)(X 0WX)�1, �̂2 = (X 0WX)�1X 0Wr̂2, and r̂ = y � X�̂ is

the residual vector, all evaluated at s. It follows that the standard error of m̂(�)(s) is given by

s:e:(m̂(�)(s)) = �!

q
V̂�(s), where V̂�(s0) denotes the (�+1)th diagonal element of �̂. Since the bias

of m̂(�)(s) for m(�)(s) involves higher-order derivatives, which are imprecisely estimated in �nite

samples, we follow the usual practice by ignoring the bias term (see Fan and Yao (2005), Section

6.3.4).

Both the point estimate m̂(�)(s) and its standard error are functions of the kernel K and the

bandwidth parameter h. In our application, we adopt the Gaussian kernel with optimal local

bandwidth given by (Fan and Gijbels (1996), equation (3.20), with � = 1 and p = 2):

ĥopt(s) = 0:884

"
msr(s)

nfm̂(3)(s)g2f̂(s)

#1=9
;

where msr(s) denotes the mean squared residuals msr(s) = 1
n

Pn
i=1[mi � m̂(s)]2, and f̂(s) is the

kernel density estimate f̂(s) = 1
nh0

Pn
i=1K

�
ki�s
h0

�
. To compute the plug-in estimates msr(s) and

f̂(s), we use a pilot bandwidth h0, which is set to be three times the average width of the strike

price intervals. To obtain m̂(3)(s) (for computing ĥopt(s) only), we �rst �t a (p + 3) = 5th-order

polynomial function to the pricing function m(s) =
P5
j=0 js

j by least squares, then di¤erentiate

it three times and evaluate at s, i.e., m̂(3)(s) =
P3
j=1

(j+2)!
j! ̂j+2s

j , where ̂j is the least squares

estimate of j .

Step 3: Point and Interval Estimation of Bubbles By the above procedure, we obtain

m̂
(1)
o (s) and hence Q̂�o(s) (o = c; p). Since the option data allow us to estimate Q�(s) over a

bounded range [`; u] only, we normalize Q̂�o(s) by (12) to obtain an estimator Q̂
y
o(s) of the tail-

truncated distribution Qy(s). To estimate the fundamental asset value under Qy(s), �x a grid of

deterministic values fsignosi=0 in the strike price range [`o; uo] with s0 = `o and snos = uo, and de�ne

3



the step size �si := si � si�1.28 At each value in the grid, we compute m̂(1)
o (si) and its standard

error s:e:(m̂(1)
o (si)) as above. The weighted estimators Q̂y(s) and �̂y are as given in (14)-(17). Note

that �̂y = !�̂yc + (1� !)�̂yp (! = [0; 1]).

In our empirical applications, the weight ! is chosen to be the proportion of traded call contracts

out of all n traded options in a cross section (with �xed t and �), i.e., ! = nc
n (nc is the number of

call contracts in the data).

With the help of Lemma 3, we can correct and bound the bias of �̂y caused by tail truncation.

De�ne B̂o (o = c; p) to be the estimator of B (given in Lemma 3) after replacing Q�(s) by Q̂�o(s).

Since Q̂�o(s) are consistent for Q
�(s) for each s 2 [`o; uo], the estimators B̂o (o = c; p) and hence

B̂ := !B̂c + (1 � !)B̂p (! = [0; 1]) are consistent for B. We then obtain the fundamental value

�̂ := �̂y � B̂ with the bias term B removed.

Both B̂ and �̂y involve sample variability and contribute to the variance of the bias-adjusted

fundamental asset value �̂ := �̂y� B̂. To compute the variance of �̂, the following lemma is useful.

Lemma A1 We have

(B̂o � �̂yo)� (B � �y) = e�r�
nosX
i=1

woi[Q̂
�
o(si)�Q�(si)];

where the weights are given by

woi = e
�r� �si

Q̂�o(uo)� Q̂�o(`o)
for i = 2; : : : ; nos � 1;

wo1 =
e�r�

Pnos
i=1Q

�(si)�si � e�r� (uo � `o)[Q̂�o(uo)�Q�(uo)]�Ro
[Q̂�o(uo)� Q̂�o(`o)][Q�(uo)�Q�(`o)]

+ e�r�
�s1

Q̂�o(uo)� Q̂�o(`o)
;

wonos =
�e�r�

Pns
i=1Q

�(si)�si + e�r� (uo � `o)[Q̂�o(`o)�Q�(`o)] +Ro
[Q̂�o(uo)� Q̂�o(`o))][Q�(uo)�Q�(`o)]

+ e�r�
�sns

Q̂�o(uo)� Q̂�o(`o)
;

with Rp = P (up)� P (`p) and Rc = C(uc)� C(`c) + e�r� (uc � `c).
28 In our empirical application, the step size �si is set to be 5. The point and interval estimation results are quite

insensitive to the choice of �si.
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By the above lemma, a Newey-West standard error of B̂o � �̂yo (o = c; p) is given by

s:e:(B̂o � �̂yo)

=

(
nosX
i=1

(s:e:[ŵoim̂
(1)
o (si)]�si)

2 + 2

LoX
l=1

nos�lX
i=1

�
1� l

Lo + 1

�
ŵoiŵo;i+l ~m

(1)
o (si) ~m

(1)
o (si+l)(�si)(�si+l)

)1=2
;

where ~m(1)
o (si) := m̂

(1)
o (si)� n�1os

Pnos
j=1 m̂

(1)
o (sj) is the demeaned estimate of m̂

(1)
o (si), and

ŵoi = e
�r� �si

Q̂�o(uo)� Q̂�o(`o)
for i = 2; : : : ; nos � 1;

ŵo1 =
e�r�

Pnos
i=1 Q̂

�
o(si)�si �Ro

[Q̂�o(uo)� Q̂�o(`o)]2
+ e�r�

�s1

Q̂�o(uo)� Q̂�o(`o)
;

ŵonos =
�e�r�

Pnos
i=1 Q̂

�
o(si)�si +Ro

[Q̂�o(uo)� Q̂�o(`o)]2
+ e�r�

�snos

Q̂�o(uo)� Q̂�o(`o)
;

with Rc = C(uc)� C(`c) + e�r� (uc � `c) and Rp = P (up)� P (`p). The maximum lag order Lo is

chosen to be the smallest integer greater than or equal to n1=4os (see Greene (2003)).

Assuming independence of the pricing error of calls and puts, and recalling that from (18), the

standard error of �̂S is given by

s:e:(�̂S) = s:e:(B̂ � �̂y) =
n
!2s:e:(B̂c � �̂yc)2 + (1� !)2s:e:(B̂p � �̂yp)2

o1=2
: (21)

Recall that the point estimate of asset price bubble is given by (18): �̂S = S + B̂ � �̂y. Note

that it is not consistent for �S as the fundamental asset value is not point-identi�ed (due to the

presence of term A). Nonetheless, it is partially identi�ed and there exists a consistent interval

estimator for �S , which we turn to next.

Since �̂y is asymptotically normal by Proposition 3, and since �̂ is (asymptotically) a linear

function of �̂y, we may construct the con�dence interval for the fundamental asset value (and hence

the bubble) by normal approximation. Fix the con�dence level at 100(1 � �)%. The minimum

possible fundamental asset value has con�dence interval given by the bounds �̂y� (B̂�A`)� z�=2 �

s:e:(�̂S), so that the con�dence interval for the maximum possible bubble is S � �̂y + (B̂ � A`)�

z�=2 � s:e:(�̂S). Similarly, the con�dence interval for the minimum possible bubble is S� �̂y+(B̂�

Au)� z�=2 � s:e:(�̂S). The 100(1� �)% con�dence interval of asset price bubble is the union of all

5



the con�dence intervals associated with all (partially identi�ed) bubbles, i.e.,

[S � �̂y + (B̂ �Au)� z�=2 � s:e:(�̂S), S � �̂y + (B̂ �A`) + z�=2 � s:e:(�̂S)];

as given in (19).

A2 Regularity Conditions of Proposition 3

This section states the regularity conditions in Proposition 3. Some of the regularity conditions are

adaptation of Condition 1 in Section 6.6.2 of Fan and Yao (2003).

(a) The option prices (as a function of strike k) are given by C(k) = mc(k) + �c(k) and P (k) =

mp(k) + �p(k), where mc(k) and mp(k) are �nite, strictly positive, and twice continuously

di¤erentiable at �nite k > 0.

(b) The error �c(k) (�p(k)) has mean zero and variance 0 < �2�c(k) < 1 (�2�p(k) < 1). Both

�2�c(k) and �
2
�p(k) are continuous in k.

(c) The error process f�c(k)gk (similarly for f�p(k)gk) is either �-mixing with
P1
j=1 �(j) <1, or

�-mixing with
P1
j=1 j

a[�(j)]1�2=� <1 for some � > 2 and a > 1� 2=�.

(d) There exists a sequence of positive integers satisfying rn ! 1 and rn = o(
p
nhn) such thatp

n=hn�(rn)! 0 and
p
n=hn�(rn)! 0 as n!1.

(e) �c(k) and �p(k0) are independent for all k; k0.

(f) The kernel function in local polynomial estimation is bounded with bounded support.

Remark : Condition (a) sets the stage for implementing local quadratic estimation, which yields

the estimates for m(1)
c (k) and m

(1)
p (k). Conditions (b)-(d) exert control on the pricing errors in

the cross section (heteroskedastic and weakly dependent errors are allowed), whereas condition (e)

assumes that the pricing errors of puts and calls are independent.29 Condition (f) is a technical

restriction assumed in Fan and Yao (2003), but it can be relaxed to include light-tailed kernels

(e.g., Gaussian kernel).
29The error independence between calls and puts o¤ers convenience while computing s:e:(�̂S) in (21) when ! 6= 0

or 1. This restriction can be relaxed, although it is not clear how to model the dependence of the call and put errors
in an empirically relevant way.
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A3 Technical Proofs

In all the proofs, we suppress the time subscript t and the time-to-maturity � , both of which are

taken as given, unless it is necessary to avoid confusion.

A3.1 Proof of Proposition 1

See Theorems 4.4 and 6.4 of Jarrow, Protter, and Shimbo (2010). Note that no dominance is not

needed to obtain the result.

A3.2 Proof of Lemma 1

First we show that C�(k) and P �(k) are di¤erentiable. Denote 1f�g the indicator function, and �f�g

the Dirac delta function. Now rewrite C�(k) =
R1
0 e�r�1fs�kg(s�k)dQ�(s) and de�ne the integrand

h(k) = e�r�1fs�kg(s� k). Its derivative is h0(k) = �e�r�1fs�kg� e�r��fs=kg(s� k) = �e�r�1fs�kg,

which is bounded as jh0(k)j � e�r� � 1. The upper bound is integrable as
R1
0 dQ�(s) = 1. It

follows from the dominated convergence theorem that C�(k) is di¤erentiable. Similar argument

shows that P �(k) is di¤erentiable.

Di¤erentiating both sides of (4) with respect to k yields

@C(k)

@k
=
@C�(k)

@k
+
@�C(k)

@k

=
@

@k

Z 1

k
e�r� (s� k)dQ�(s) + @�

C(k)

@k

= �
Z 1

k
e�r�dQ�(s) +

@�C(k)

@k

= �e�r� [1�Q�(k)] + @�
C(k)

@k
;

where the last step follows from integration by parts. We therefore obtain the �rst equality (6). The

second equality (7) is obtained by a similar argument applied to (5). The proof is now completed.

A3.3 Proof of Lemma 2

The proof of Lemma 1 shows that

@C�(k)

@k
= �e�r� [1�Q�(k)]:
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The �rst equality in the lemma is obtained by straightforward integration of the above equality

over k 2 (u;1) and by noting that C�(1) = 0. The second equality can be shown analogously.

A3.4 Proof of Proposition 2

To prepare for the proof, we �rst note that the fundamental values of options are non-negative by

de�nition, and that the option bubbles are non-negative by Proposition 1. This yields

0 � C�(uc) � C(uc) (22)

and

0 � P �(`p) = P (`p): (23)

(a) We evaluate the fundamental asset price by breaking down the integration into �ve parts:

�� = e�r�

 Z `p

0
+

Z `c

`p

+

Z up

`c

+

Z uc

up

+

Z 1

uc

!
[1�Q�(s)]ds

= e�r�

(
`p +

 Z `c

`p

+

Z up

`c

+

Z uc

up

!
[1�Q�(s)]ds

)
+ C�(uc)� P �(`p); (24)

where the last step is by Lemma 2. The integrals in the last line are computed in turn. Since only

put data are available in [`p; `c], we apply (7) to the integrand, yielding

e�r�
Z `c

`p

[1�Q�(s)]ds = e�r� (`c � `p)�
Z `c

`p

@P (s)

@s
ds

= e�r� (`c � `p) + P (`p)� P (`c):

Since only call data are available in [up; uc], we apply (6) to the integrand, yielding

e�r�
Z uc

up

[1�Q�(s)]ds = �
Z uc

up

@C(s)

@s
ds = C(up)� C(uc):

For the middle interval [`c; up], both call and put data are available, so we may apply (6) or (7) to

8



the integrand, yielding

e�r�
Z up

`c

[1�Q�(s)]ds = �
Z up

`c

@C(s)

@s
ds = C(`c)� C(up)

or

e�r�
Z up

`c

[1�Q�(s)]ds = e�r� (up � `c)�
Z up

`c

@P (s)

@s
ds = e�r� (up � `c) + P (`c)� P (up):

Substituting into (24), we obtain

�� = e�r� `c + [P (`p)� P (`c)] + [C(`c)� C(up)] + [C(up)� C(uc)] + C�(uc)� P �(`p)

= m1 + C
�(uc)� P �(`p);

where m1 := e
�r� `c + C(`c)� C(uc)� P (`c) + P (`p), or

�� = e�r�up + [P (`p)� P (`c)] + [P (`c)� P (up)] + [C(up)� C(uc)] + C�(uc)� P �(`p)

= m2 + C
�(uc)� P �(`p);

where m2 := e
�r�up +C(up)�C(uc) +P (`p)�P (up). Consequently, by Lemma 2, the bounds for

asset price bubble are thus deduced as

St �mj � C(uc) � �St (�) � St �mj + P (`p); (25)

for j = 1; 2, or any linear combination of the two inequalities.

(b) The fundamental asset price is given by:

�� = e�r�

(
`p +

Z uc

`p

[1�Q�(s)]ds
)
+ C�(uc)� P �(`p):

We may evaluate the integral using calls. The relation (6) from Lemma 1 implies that

e�r�

(
`p +

Z uc

`p

[1�Q�(s)]ds
)
= e�r� `p �

Z uc

`p

@Ct(s)

@k
ds = e�r� `p � C(uc) + C(`p) =: m1:

9



Alternatively, we may evaluate the integral using puts. Using (7) from Lemma 1, we have

e�r�

(
`p +

Z uc

`p

[1�Q�(s)]ds
)
= e�r�uc �

Z uc

`p

@Pt(s)

@k
ds = e�r�uc � P (uc) + P (`p) =: m2:

By the same argument as in part (a), the bounds for asset price bubble are given by (25) with mj

de�ned above.

(c) The fundamental asset price is given by:

�� = e�r�

(
`p +

 Z `c

`p

+

Z uc

`c

!
[1�Q�(s)]ds

)
+ C�(uc)� P �(`p):

The �rst integral is evaluated using puts only, while the second one can be evaluated using calls or

puts. With the help of (6) and (7), we obtain

e�r�

(
`p +

Z uc

`p

[1�Q�(s)]ds
)
= e�r� `c �

Z `c

`p

@Pt(s)

@k
ds�

Z uc

`c

@Ct(s)

@k
ds

= e�r� `c + P (`p)� P (`c) + C(`c)� C(uc) =: m1;

or

e�r�

(
`p +

Z uc

`p

[1�Q�(s)]ds
)
= e�r�uc �

Z uc

`p

@Pt(s)

@k
ds = e�r�uc + P (`p)� P (uc) =: m2:

By the same argument as in part (a), the bounds for asset price bubble are given by (25) with mj

de�ned above.

(d) We compute the fundamental asset price as follows:

�� = e�r�

(
`p +

 Z up

`p

+

Z uc

up

!
[1�Q�(s)]ds

)
+ C�(uc)� P �(`p):

The �rst integral can be evaluated using puts calls or puts, while the second one is evaluated using

calls only. With the help of (6) and (7), we obtain

e�r�

(
`p +

Z uc

`p

[1�Q�(s)]ds
)
= e�r� `p �

Z uc

`p

@Ct(s)

@k
ds = e�r� `p + C(`p)� C(uc) =: m1;
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or

e�r�

(
`p +

Z uc

`p

[1�Q�(s)]ds
)
= e�r�up �

Z up

`p

@Pt(s)

@k
ds�

Z uc

up

@Ct(s)

@k
ds

= e�r�up + P (`p)� P (up) + C(up)� C(uc) =: m2:

By the same argument as in part (a), the bounds for asset price bubble are given by (25) with mj

de�ned above.

(e) The fundamental asset price is given by:

�� = e�r�

(
`p +

 Z up

`p

+

Z `c

up

+

Z uc

`c

!
[1�Q�(s)]ds

)
+ C�(uc)� P �(`p):

The �rst integral is evaluated by puts only, and the third integral is evaluated by calls only:

Z up

`p

[1�Q�(s)]ds = e�r� (up � `p)�
Z up

`p

@Pt(s)

@k
ds = e�r� (up � `p) + P (`p)� P (up);Z uc

`c

[1�Q�(s)]ds = �
Z uc

`c

@Ct(s)

@k
ds = C(`c)� C(uc):

No data are available for computing the middle integral, but we know that the following bounds

are valid:

e�r�
Z `c

up

[1�Q�(s)]ds 2 [0; e�r� (`c � up)]:

Combining the above expressions, and applying Lemma 2, we can bound the fundamental price as

follows:

e�r�up � P (up) + C(`c)� C(uc) � �� � e�r� `c + P (`p)� P (up) + C(`c):

The stated bounds for asset price bubble follow immediately.

(f) The fundamental asset price can be expressed as:

�� = e�r�
��Z `p

�1
+

Z 1

uc

�
Z `p

uc

�
[1�Q�(s)]ds

�
= e�r� `p � P �(`p) + C�(uc)� e�r�

Z `p

uc

[1�Q�(s)]ds:

11



No data are available for computing the integral on the last line, but we know that the following

bounds are valid:

e�r�
Z `p

uc

[1�Q�(s)]ds 2 [0; e�r� (`p � uc)]:

By Lemma 2, we can bound the fundamental price as follows:

e�r�uc � P (`p) � �� � e�r� `p + C(uc):

The stated bounds for asset price bubble follow immediately.

A3.5 Proof of Corollary 1

We simply observe that, under ND, put-call parity in market prices hold, and the inequalities in

cases (a)-(d) reduce to the stated bound.

A3.6 Proof of Lemma 3

By (12) and (13), we have

�y = e�r�
�
`+

Z u

`

�
1� Q�(s)�Q�(`)

Q�(u)�Q�(`)

�
ds

�
:

On the other hand, we deduce from (8) that

�� = e�r�
�
`+

Z u

`
[1�Q�(s)]ds

�
+ C�(u)� P �(`):

By subtraction, we obtain

�y � �� = e�r�
Z u

`

�
Q�(s)� Q�(s)�Q�(`)

Q�(u)�Q�(`)

�
ds+ P �(`)� C�(u)

=

�
e�r�Q�(`)(u� `)
Q�(u)�Q�(`) �

�
1

Q�(u)�Q�(`) � 1
�
e�r�

Z u

`
Q�(s)ds

�
� [C�(u)� P �(`)]:

=: B �A:

12



To obtain the bounds for A, we note that

0 � C�(u) � C(u);

0 � P �(`) = P (`);

where the lower bounds are by the non-negative nature of the fundamental option values, while

the upper bounds are obtained from the de�nitions of option bubbles (4)-(5) and Proposition 1.

The stated expressions for B are obtained by integrating (6) and (7) and applying Lemma 2 and

Assumption INK. The proof is now completed.

A3.7 Proof of Proposition 3

From (14), we see that Q̂�(s) is linear in m̂(1)(s), and so it inherits the pointwise convergence and

asymptotic normality of m̂(1)(s) (Theorem 6.3 of Fan and Yao (2005), with � = 1 and p = 2). By

pointwise convergence of Q̂�(s) for each s 2 [`; u], we deduce from (12) that

Q̂y(s) =
Q̂�(s)� Q̂�(`)
Q̂�(u)� Q̂�(`)

=
Q̂�(s)�Q�(`)
Q�(u)�Q�(`) + op(1):

It follows from linearity that pointwise convergence and asymptotic normality hold for Q̂y(s). From

the de�nition of �̂y in (17), we have

�̂y = e�r� `+ e�r�
nsX
i=1

[1� Q̂y(si)]�si

=

(
e�r� `+ e�r�

nsX
i=1

[1�Qy(si)]�si

)
� e�r�

nsX
i=1

[Q̂y(si)�Qy(si)]�si

=: (I) + (II): (26)
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The �rst term (I) di¤ers from �y by O(n�1s ). Indeed, we note that

(I)� �y = e�r�
nsX
i=1

"Z si

si�1

Qy(s)ds�Qy(si)�si

#

� e�r�
nsX
i=1

"
sup

s2[si�1;si]
Qy(s)�Qy(si)

#
�si

� e�r�
nsX
i=1

ai(�si)
2 = O(n�1s );

where the second inequality is obtained by the continuity of Qy. The second term (II) has an

asymptotic bias of order O(h3) (Fan and Yao (2005), Theorem 6.3). The bias of �̂y is thus of order

O(n�1s + h3). The variance of �̂y is contributed by (II), and is equal to

V ar(�̂y) = e�2r�V ar

 
nsX
i=1

[Q̂y(si)�Qy(si)]�si

!

= V ar

 
nsX
i=1

m̂(1)(si)�si

!

= V ar

 
1

ns

nsX
i=1

m̂(1)(si)

!
; (27)

It has a uniform upper bound:

V ar(�̂y) � V ar
 

sup
i=1;:::;ns

m̂(1)(si)

!
= O

�
log(n)

nh3

�
;

which holds uniformly in ns (Fan and Yao (2005), Theorem 6.5). It follows that �̂y is consistent for

�y as bias(�̂y) = O(n�1s + h3) = o(1) and V ar(�̂y) = O
�
log(n)
nh3

�
= o(1) by the assumed asymptotic

rates on ns, n and h.

Subtracting (I) and the bias from both sides of (26) and then multiplying by
p
nh3, we obtain

p
nh3(�̂y � �y � bias(�̂y)) = �

p
nh3e�r�

nsX
i=1

[Q̂y(si)�Qy(si)]�si:
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By (27), the variance of the right-hand-side is

Vns;n;h = nh
3V ar

 
1

ns

nsX
i=1

m̂(1)(si)

!

=
nh3

ns

1

ns

nsX
i=1

V ar[m̂(1)(si)] +
nh3

ns

1

ns

ns�1X
`=1

ns�1X
i=1

Cov[m̂(1)(si); m̂
(1)(si+`)]:

The �rst term on the last line is nh3

ns
O
�
log(n)
nh3

�
= O

�
log(n)
ns

�
, which follows the uniform bound:

V ar[m̂(1)(s)] = O
�
log(n)
nh3

�
uniformly in s (Fan and Yao (2005), Theorem 6.5). The second term

is O
�
log(n)
ns

�
by the absolute summability of the covariances and the regularity conditions on the

underlying mixing process. We thus deduce that Vns;n;h = O(1), as
log(n)
ns

= O(1) by assumption.

Finally, the asymptotic normality of �̂y is inherited from that of Q̂y(s) as �̂y is linear in Q̂y(s). The

proof is now completed.

A3.8 Proof of Lemma A1

We �rst consider using only put price data to evaluate �̂. By simple algebra, we obtain

B̂ �B =e
�r� (u� `)Q�(u)� [P (u)� P (`)]
[Q̂�(u)� Q̂�(`)][Q�(u)�Q�(`)]

[Q̂�(`)�Q�(`)]

+
[P (u)� P (`)]� e�r� (u� `)Q�(`)
[Q̂�(u)� Q̂�(`)][Q�(u)�Q�(`)]

[Q̂�(u)�Q�(u)];

and

�̂y � �y =e�r� Q̂
�(u)(u� `)�

Pns
i=1Q

�(si)�si

[Q̂�(u)� Q̂�(`)][Q�(u)�Q�(`)]
[Q̂�(`)�Q�(`)]

� e�r�
nsX
i=1

�si

Q̂�(u)� Q̂�(`)
[Q̂�(si)�Q�(si)]

+ e�r�
Pns
i=1Q

�(si)�si � Q̂�(`)(u� `)
[Q̂�(u)� Q̂�(`)][Q�(u)�Q�(`)]

[Q̂�(u)�Q�(u)]:

It follows that

(B̂ � �̂y)� (B � �y) = e�r�
nsX
i=1

wi[Q̂
�(si)�Q�(si)];

where the weights are as given in the statement of the lemma. The result for using only call price

data is obtained by replacing P (u)� P (`) by C(u)� C(`) + e�r� (u� `).
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Appendix Figures
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Figure A1: Put-call disparity averaged over strikes associated with ITM calls/OTM puts
(log-moneyness < −0.1).
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Figure A2: Put-call disparity averaged over strikes associated with ATM calls/puts (−0.1 <
log-moneyness < 0.1).



97 98 99 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15

-5

0

5

10

15

20

25

30

600

800

1000

1200

1400

1600

1800

2000

2200
put-call disparity, OTM call options

Figure A3: Put-call disparity averaged over strikes associated with OTM calls/ITM puts
(log-moneyness > 0.1).
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