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Abstract

Phillips and Shi (2021) have argued that there may be some leakage from

the estimate of the permanent component to what is meant to be the transitory

component when one uses the Hodrick-Prescott filter. They argue that this can be

eliminated by boosting the filter. We show that there is no leakage from the filter

per se, so boosting is not needed for that. They also argue that there are DGP’s for

the components for which the boosted filter tracks these more accurately. We show

that there are other plausible DGP’s where the boosted filter tracks less accurately,

and what is crucial to tracking performance is how important permanent shocks

are to growth in the series being filtered. In particular, the DGP’s used in Phillips

and Shi (2021) have a very high contribution from permanent shocks.
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1 Introduction

The Hodrick-Prescott (HP) filter has come in for some bad press in recent times. It

is worth looking at some of this criticism and solutions to it in more detail. Some

of the criticisms are clearly valid although often ignored. For example, it is a two-

sided filter so it needs to be used with care as an independent variable in a regression.

An example would be the estimation of an “output gap” from a HP filter on output

followed by inputting this into a regression to capture the Phillips curve; see Fukac

and Pagan (2010, Section 4). It is a generated regressor that a↵ects the consistency

of the regression estimator rather than just the standard errors. A one-sided HP filter

obviously avoids some of that criticism, although even a regressor constructed with that

may be correlated with the Phillips curve error due to its dependence on current output

levels. Others have pointed out that there are issues when the HP filter is used as

a stand-alone measure of various concepts such as a potential GDP. Underlying this

latter literature is an unobserved components (UC) model of a time series, yt = Tt + ct,

where Tt is a permanent component and ct a transitory component. Names are often

given to ct, such as “cycle”, “gaps”, etc., and to Tt, such as “trend”. Alternatives to

the HP filter for performing a permanent/transitory components decomposition include

the Beveridge-Nelson (BN) approach, and there have been suggestions that this may

provide a better set of outcomes. The BN approach focuses on producing an estimator

T̂t = yt + Et(
P1

j=1 �yt+j). A version that resembles this in some way is proposed

by Hamilton (2018) who argue that one should instead use T̂t = Et�h(yt), where h is

prescribed by the user.

In Section 2 we set out some properties of the HP and related filters. We begin by

observing that one cannot recover Tt and ct from the data on yt with any value of the

key tuning parameter �. This seems to conflict with some of the conclusions in Phillips

and Jin (2021) who examined what happened with the HP filter when � was allowed

to grow with sample size n. They concluded that “It is therefore to be expected that

for choices of the smoothing parameter that approximate � = µn4, the HP filter fails to

remove a stochastic trend and the imputed business cycle estimate ĉt inevitably imports

the random wandering character of a stochastic trend” (Phillips and Jin, 2021, Remark

9, p. 18). In their Table 2, this case is labelled as “inconsistent”, in contrast with a

fixed �, where it is termed “consistent”. So we need to explore the fact that the latter

reference cannot be to the recovery of Tt and ct. Indeed, we show that the “integration

leakage”, which seems to be an implication of their result, does not happen, i.e., if there
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is a permanent component in ĉt it is sourced from some other feature of the data yt, and

not from an inability to recover Tt. Potential integration leakage for other filters is also

discussed. A key requirement for there to be none is that the filter weights should sum to

unity, which they do for the HP filter. Section 3 looks at the question of the paper’s title.

In the event that ĉt did have a permanent component, Phillips and Shi (2021) proposed

to iterate the HP filter (boosting it) so as to remove that. This boosted filter applies

the basic HP filter with a fixed � to ĉt to produce ĉ(1)t , and then applies HP to ĉ(1)t to

get ĉ(2)t , and so on. There are stopping rules proposed to terminate the iteration. But,

if the permanent component is not due to leakage, then we might expect little change in

the nature of ĉ(j)t by boosting. As an example of this, Hall and Thomson (2022) show in

their Table 7 that there are only relatively minor changes in the persistence of ĉt when

moving from a basic to a boosted HP filter. We also show that this is the case for the

industrial production example considered in Phillips and Shi (2021).

However, an interesting feature of the boosted filter which Phillips and Shi (2021) find

is that var(T̂ boost

t
� Tt) is less than var(T̂HP

t
� Tt) for a range of specifications of Tt and

ct. That is, the boosted estimator of the permanent component more closely tracks the

latent value Tt, even though it can never equal it. This seems to provide a good argument

for boosting, as it does not vary any of the parameters assumed by HP but just iterates

the filter. One possibility is that the improvement in trend fit is a consequence of a

deterioration in that for the cycle. We show that this is not the case, as the variances of

the estimators of Tt and ct around their latent values are identical. Another comes from

the fact that the original HP filter was motivated by a components model in which Tt

was assumed to be I(2) and ct to be white noise. Hence the components model implies

that yt is ARIMA(0, 2, 2) with coe�cients that depend on �, which HP set to 1600 for

quarterly work. It is true that the derived coe�cients fail to match what one would get

from fitting an unrestricted ARIMA(0, 2, 2) model to the data, e.g., for quarterly US

GDP over 1973/1 to 2014/4:

US Data : �2yt = (1� .74L� .26L2)et,

while the process implied by HP is

HP: �2yt = (1� 1.77L+ .8L2)et.

Hamilton (2018) gives examples of this discrepancy for many series. So, perhaps boosting
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somehow provides a di↵erent model for the data, but it is hard to see how this can be.

Consequently, if the underlying components model is fixed then one has to explain how

var(T̂ boost

t
� Tt) can become smaller than that from the HP filter. We find that this can

occur for some DGP’s for Tt and ct but not others. A reduction seems to be dependent

on the permanent shocks having a big e↵ect on �yt and �2yt. The first might be thought

of as at variance with current thinking.

Sections 4 gives some answers to the question posted by the title of this paper.

2 Some Properties of the HP and Related Filters

2.1 Impossibility of trend and cycle recovery

The first property of the HP filter we consider here is dealt with in Pagan and Robinson

(2022) and Buncic and Pagan (2022). It is that one can never recover Tt and ct: since

each of the two latent variables are constructed from a single observable using a linear

filter, the estimates are in a linear relationship. This failure to recover Tt comes from

the fact that var(T̂t � Tt) is non-zero and does not depend on the sample size n, so

asymptotically one cannot recover Tt. In contrast, Phillips and Jin (2021) conclude that,

if � rises slowly enough relative to n, “the filter asymptotically captures the underlying

stochastic trend”. It is, however, a much more nuanced statement than implying that

one is recovering Tt. It actually implies that in the stated circumstances one will be

constructing a series T̂t that follows the same stochastic process as Tt, which is di↵erent

to recovery.

To explore this a little further, we consider the case of

yt = Tt + ct, Tt ⇠ I(1), ct ⇠ I(0), yt ⇠ I(1).

Here, for any time series (xt), we say xt ⇠ I(1) if n�1/2xdnre !d �B(r) as n ! 1, for

some � > 0 and the standard Brownian motion B(·) on [0, 1]; and we say xt ⇠ I(0) if

n�1/2
Pdnre

t=1 xt !d �B(r) as n ! 1, for some � > 0 and standard Brownian motion B(·)
on [0, 1]. Another way to characterize the di↵erence between I(1) and I(0) processes is

through the di↵erent stochastic orders of their asymptotically independent periodogram

coordinates around frequency zero, i.e. the so-called “low-frequency” coordinates in

the sense of Müller and Watson (2008, 2020). The following proposition states such a

characterization.
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Proposition 1. Suppose that (xt), t = 1, . . . , n, is a time series of either I(1) or I(0).

We define K periodogram coordinates
1 I(!nk) =

1p
n

P
n

t=1 xt sin(!nkt) with !nk = !k/n

and !k =
�
k � 1

2

�
⇡, for k = 1, . . . , K, where K is a fixed integer. It follows that, as

n ! 1, I(!n1), . . . , I(!nK) are asymptotically independent and for k = 1, . . . , K,

(i) if xt ⇠ I(1), then n�1I(!nk) !d N(0, �2!�2
k
) for some �2 > 0;

(ii) if xt ⇠ I(0), then I(!nk) !d N(0, �2), for some �2 > 0.

TheK periodogram coordinates I(!nk) correspond to the frequencies that are asymp-

totically around zero: sup
k=1,...,K !nk ! 0 as n ! 1. One implication of the above char-

acterization is that for I(1) process, sup
k=1,...,K I(!nk) = O(n) and sup

k=1,...,K I(!nk) =

O(1).

Under the assumptions in Proposition 1, the low-frequency coordinates of yt and Tt

satisfy (i) and those of ct satisfy (ii) given in the Proposition. What would happen if

one applies the two-sided HP filter with smoothing parameter � > 0 where � is allowed

to grow with n? It is known that the asymptotic operator solution of the estimated

trend and cycle components are T̂t = P (L)yt with P (L) = [1 + �L�2(1 � L)4]�1 and

ĉt = [1 � P (L)]yt. The frequency responses (i.e. the transfer functions) of these filters

are

P (!) =
1

1 + 4�(1� cos!)2
and 1� P (!) =

4�(1� cos!)2

1 + 4�(1� cos!)2
,

which are both strictly monotone functions on [0, ⇡] taking values between zero and

one. The filter gains that determine the spectral properties of T̂t and ĉt are simply

|P (!)| = P (!) and |1� P (!)| = 1� P (!).

In light of Proposition 1, we want to understand the behaviour of |P (!nk)| and

|1� P (!nk)| at the low frequencies !n1, . . . ,!nK , as n ! 1. To this end, we apply the

Taylor expansion of a cosine function, cos! =
P1

m=0(�1)m!2m/(2m)!, to write

|1� P (!)| = 1

1 + �!4(1 + g(!))
and |1� P (!)| = �!4(1 + g(!))

1 + �!4(1 + g(!))
, (1)

where

g(!) = 8
1X

m=1

(�1)m(4m+1 � 1)

(2m+ 4)!
!2m = O(!), as ! ! 0. (2)

1
The usual definition of periodogram coordinates of a time series is the discrete Fourier transform of

the time series which is complex-valued involving both cosine and sine components. Here, we use the

(Type IV) sine transform to define the periodogram coordinates.
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It then follows from (1) and (2) that for each k = 1, . . . , K,

|P (!nk)| =
1

1 + �n�4!4
k
(1 + o(1))

and |1� P (!nk)| =
�n�4!4

k
(1 + o(1))

1 + �n�4!4
k
(1 + o(1))

,

as n ! 1.

Let I
T̂
(!nk) and Iĉ(!nk) be, respectively, the low-frequency coordinates of T̂t and ĉt

around frequency zero. It can then be easily shown that, if � grows at rate � = µn4 for

µ > 0, then

n�1I
T̂
(!nk) !d �N

✓
0,

!�2
k

(1 + µ!4
k
)2

◆
,

n�1Iĉ(!nk) !d �N

✓
0,

µ2!6
k

(1 + µ!4
k
)2

◆
.

Since Iĉ(!nk) = O(n), ĉt must be nonstationary. Moreover, we also note that the asymp-

totic variance of IT (!nk) is di↵erent from that of IT (!nk), which is stated in Proposition 1

(i). These results are analogous to Theorem 3 in Phillips and Jin (2021, p. 17).

In contrast, if � rises with n at any power lower than 4, P (!nk) ! 1 as n ! 1 and

n�1I
T̂
(!nk) !d �N(0,!�2

k
),

which is the same as the asymptotic distribution of the low-frequency coordinates of the

original data. However, just because the low-frequency periodogram coordinates of T̂t

and Tt have the same asymptotic distribution, does not mean that T̂t recovers Tt. The

cycle ct is even further from being recoverable in that even the asymptotic distributions

of the periodogram coordinates Iĉ(!nk) and Ic(!nk) cannot be matched for any choice of

�.2

2.2 Trend-elimination and the row-sum of unity constraint

Phillips and Jin (2021) in their statement (setting � = µn4) were concerned about what

we call “integration leakage” when T̂t was not “consistent”. We would like to ask the

question: does a failure to recover Tt results in ĉt having a permanent component?

Consider how the filter is performed when there are n observations on yt. As above it

is assumed that the series has the structure yt = Tt + ct, where Tt is the permanent

2
Since ct ⇠ I(0), we have supk=1,...,K Ic(!nk) = O(1). We only have supk=1,...,K Iĉ(!nk) = O(1) when

� = µn
3
, in which case the asymptotic distribution of Iĉ(!nk) is di↵erent from that in Proposition 1

(ii). Therefore, the asymptotic distribution of Ic(!nk) is not recoverable.
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component and ct the transitory component. The objective is to estimate Tt and ct.

To do this with the two-sided HP filter, the two components Tt and ct are estimated

respectively as

T̂ = Hy and ĉ = (I �H)y

where y, T̂ , and ĉ are n⇥ 1 vectors, I is the n⇥ n identity matrix, and H = G�1 where

G = I + �D>D with D being the (n� 2)⇥ n matrix producing second-order di↵erence.

Specifically,

G =

2

66666664

1 + � �2� � 0 0 0 ...

�2� 1 + 5� �4� � 0 0 ...

� �4� 1 + 6� �4� � 0 ...

0 � �4� 1 + 6� �4� � ...
...

...
...

...
...

...
...

3

77777775

,

where the last two rows have the same numbers as the first two but re-arranged.

Letting h(t, ·) denote the tth row of H for t = 1, . . . , n, we can write

T̂t = h(t, ·)y and ĉt = yt � T̂t.

We define, respectively, the sequential right and left partial row sums of H by

b(t, j) =
nX

k=j

h(t, k) and d(t, j) =
jX

k=1

h(t, k),

for t, j = 1, . . . , n. It is clear that the entire row sum of H for the tth row is b(t, 1) or

d(t, n). Then we have the following proposition.

Proposition 2. Given the partial row sums b(t, j) and d(t, j) in, the estimated transitory

component ĉ can be written as

ĉt = [1� b(t, 1)]yt +
nX

j=2

a(t, j)�yj, t = 1, . . . , n,

where

a(t, j) =

8
<

:
d(t, t+ 1� j), 2  j  t,

b(t, j), t+ 1  j  n.

In the case of the HP filter, it is known that every row of H sums to unity (e.g. De
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Jong and Sakarya, 2016), i.e. b(t, 1) = 1, then it follows from Proposition 2 that

ĉt =
nX

j=2

a(t, j)�yj, t = 1, . . . , n. (3)

Therefore, the estimated ct inherits the properties of �yt rather than yt. If Tt is I(1) and

ct is I(0) then �yt is I(0). Thus what this says is that there is no integration leakage

for the HP filter from permanent to transitory component estimates when Tt is I(1).

Now there are other processes that Tt might follow. It could be an integrated process

of higher than first order and it could have deterministic terms nk (k > 1). In that case

one needs to look at the values of ↵(t, j). Sakarya and De Jong (2020, Theorem 3) find

that ĉt is a weakly dependent process if Tt is not of greater integration order than I(4).

This continues to hold when there is a linear trend in Tt. The presence of any quadratic

and higher order deterministic trends leaves a factor in ĉt that is non-zero for observations

at the beginning and end of the sample (Sakarya and De Jong, 2020, Theorem 5). At

the beginning there is a smooth decline to zero and, at the end, a smooth rise. Hence an

ADF test will suggest a unit root even though the process is not integrated. So one would

want to apply a HP filter to series that have already been adjusted for any polynomial

time trend higher than first order when computing ĉt.

To give an example, we take the quarterly log industrial production data yt from 1919

to 2018 used as the third empirical example by Phillips and Shi (2021). There seems

only a linear trend in this series. The regression of �yt on �yt�1 and a trend gives the

latter a coe�cient that is very small and not significantly di↵erent from zero (t statistic

being �.7) while the estimated coe�cient on �yt�1 of �.39. Consequently, since there is

only a linear trend, it should not be surprising that the ADF test on ĉt yields the value

of the test statistic �7.7.

What happens with the other proposed filters? We know that the BN solution is a

one-sided filter

T̂t = yt +
pX

j=1

�j�yt�j,

where p is the order of the autoregression for �yt. Clearly the same situation holds.

Provided that ct is transitory so is ĉt. Suppose instead that we used a filter that had

the same form as HP but b(t, 1) =
P

n

j=1 h(1, j) 6= 1. Then it follows from Proposition 2

that the first term [1� b(t, 1)]yt is nonzero in the expression of ĉt. Therefore, there is a

leakage to the cycle estimate, i.e., the unit root in yt influences ĉt. So, one needs a filter
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with the property that the rows of H sum to unity.

Just as for the BN filter, Hamilton (2018)’s filter is a one-sided filter and it involves

defining ĉt as yt�Et�h(yt). So we would have the permanent component as Tt = Et�h(yt)

rather than Et(y1) as in BN. Of course Tt =
P

h

j=1 �jyt�j and so

T̂t = �1yt�1 +
hX

j=2

�j�yt�j,

meaning that

ĉt = yt � �1yt�1 �
hX

j=2

�j�yt�j

= (1� �1)yt�1 +�yt �
hX

j=2

�j�yt�j.

We are therefore left with an I(1) component unless �1 = 1. In large samples we might

expect that the regression which gives an estimate of �1 would give such a value when

Tt is I(1). Indeed, Phillips and Shi (2021) point out that the estimate of �1 with the

industrial production data is e↵ectively unity.

3 Boosting the HP Filter

We now turn to looking at how boosting the HP filter can do better at recovering Tt

and reducing any serial correlation in ct. Boosting involves repeatedly using the HP filter

on ĉt to reduce the serial correlation in ĉt. Let us take the basic HP estimate of the

transitory component as ĉ(1)t and then iterate this by applying the HP filter to ĉ(1)t to

produce ĉ(2)t etc. This can be thought of as computing the Kalman smoother applied to

ĉ(1)t and using the UC model

ĉ(1)t =  t + ct,

with the assumptions that �2 t and ct are white noise. Because we use the same value

of � as at the first iteration, from (3) it follows that

ĉ(2)t = �
nX

j=2

↵(t, j)�ĉ(1)
j
.
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Going back to the the quarterly log industrial production example where we saw earlier

that there was no I(1) behaviour in ĉ(1)t , now the ADF test statistic for ĉ(2)t on this data is

�8.6. There seems little evidence of a unit root in the original HP filtered ĉ(1)t and there

is less as one iterates. The stopping rule Phillips and Shi (2021) have used, reported in

their Figure 8(b), is based on the value of BIC and not ADF, and it involves 7 iterations.

Applying ADF test to ĉ(7)t , we find the test statistic being �11. It is interesting that the

value of ADF test statistic continues to decline. To understand why we regress ĉ(j) on

ĉ(j)
t�1 and �ĉ(j)

t�1 and find that the coe�cient of ĉ(j)
t�1 is 0.8 for j = 1; 0.76 when j = 2;

and 0.66 when j = 7. So there doesn’t seem to be any argument for using the boosted

filter based on the idea that there will be very strong persistence in ĉt which boosting

is being used to eliminate. The results are very similar to what is in Hall and Thomson

(2022). One might add that if one thinks of ĉt as an output gap why would one want

small persistence in it?

Now a feature that Phillips and Shi (2021) point to when boosting is that the vari-

ance of the filtered trend estimate around the actual Tt declines with each iteration.

Consider a simulation of Tt and ct that gives some realizations of the latent variables

with corresponding realizations for yt, which we call yR
t
. Then applying HP to yR

t
we

have

yR
t
= Tt + ct = T̂t + ĉt,

producing

⇠Tt = �⇠ct,

where

⇠Tt = T̂t � Tt and ⇠ct = ĉt � ct.

Consequently, var(⇠Tt) = var(⇠Tt) and the variance of the estimated trend is the same as

that for the estimated cycle. It is also apparent that ⇠Tt and ⇠ct are perfectly negatively

correlated. These results hold for each boosted estimate of Tt and ct.

So is it the case that the reduction in std(⇠(j)ct ) observed from boosting applies gen-

erally or is it a result of the particular DGP’s for Tt and ct that Phillips and Shi (2021)

use? Ultimately, to judge this we need to have some knowledge of what a reasonable
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DGP would be for the components. Take the following one for example:

yt = Tt + ct

�Tt = "1t

ct = 0.5ct�1 + "2t + "2t�1,

where "jt are uncorrelated and are independently normally distribution with zero mean

and unit variance. The above model has similarities to Clark (1987), and corresponds

to DGP3 in Phillips and Shi (2021) when ct is set to be zero instead. Phillips and Shi

(2021) show that for their DGP3, boosting the HP filter results in a very large reduction

in the MSE of (ĉt � ct), after one boosts a relatively large number of times. On average,

the BIC criterion they use as a stopping rule does 9 boosts (shown in their Table 2)

and, with our simulations, the MSE reduces from 1.58 to 0.83, which agrees with the

figures in their Table 2. Note that with such a DGP where yt = Tt, permanent shocks

contribute 100% to the standard deviation of �yt. However, when the cycle ct described

above is added to Tt to get a new yt, this fraction reduces to 75%, while the MSE reduces

from 2.17 to 2.03 after the 9th boost. So, with this new DGP for yt, there is just a 6%

reduction in the MSE – much less dramatic.

It seems unlikely that permanent shocks would account for such a high proportion

of �yt though. Angeletos, Collard and Dellas (2020) argued that TFP shocks were not

very important for the standard deviation of US quarterly GDP growth, and Gillman

and Pagan (2023) argued for a 20% contribution of the TFP shocks to the standard

deviation of �yt. To reduce it to that level we need to increase the standard deviation of

"2t to 10, and then we find that the MSE increases by 45%, a result that is not attractive

for boosting.

Phillips and Shi (2021) are mainly concerned about what happens when there are

unaccounted for deterministic trends in Tt, i.e., no adjustment is made to yt before

application of the HP filter. They propose adding on a cubic deterministic trend of the

form .0005t3 to DGP3 to get their DGP1. That now results in a large fall in the MSE, as

seen in their Figure 3(a). If the shocks for ct have higher standard deviation than unity

(specifically 3.5) we find that the first boost increases MSE. Since 3.5 is lower than the

value of 10 used earlier, permanent shocks are actually very important to �yt in this

case.

Mei, Phillips and Shi (2022) construct a DGP for yt that has Tt as an I(2) process
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and ct is

ct = cos(⇡/10)ct�1 � .25ct�2 + �"2t.

They set � = 5. This is their DGP1. Here we have less opinions about what the fraction

of the standard deviation of �2yt would be due to permanent shocks. Essentially HP set

� based on a judgement about that. When using their components model and � = 1600

it translates into a contribution from permanent shocks of around 1% to the standard

deviation of �2yt. That seems to suggest that permanent shocks are likely to be a

minor cause of fluctuating growth rates. In the experiment above, setting � = 5 gives

a contribution of permanent shocks to the standard deviation of �2yt of around 10%,

and it results in a 28% reduction in the standard deviation of ⇠ct by boosting once. This

agrees with their Table 1. Accepting Hodrick and Prescott’s reasoning about the relative

contribution we would need to set � to around 98, and not 5, to get that outcome. If one

does that then twicing (boosting once) raises the standard deviation of ⇠ct by 13%. In

order to get a reduction in the latter we need to put � = 28, and then the contribution

of the permanent shock to the standard deviation of �2yt is 1.8%. It is clear that the

nature of the DGP is crucial to whether boosting will improve tracking performance and

one cannot assume that it will always result in improved tracking.

One interesting question is how di↵erent the boosted and basic HP estimates of the

cycle are. Figure 1 shows this for the industrial production data over 1919 to 1940.

There are di↵erences, and these raise some historical issues. The solid line is the basic

HP estimate and it says that the output gap was much larger than one would get from the

7th boost of it. Particularly evident is that the boosted output gap estimates are smaller

than the standard HP filter estimates in the first part of the Depression (1930-1933) than

in the latter part (1938-1940), which would be counter to narrative evidence.

4 Conclusion

What answers do we give to the question in the paper’s title? There are two. First, one

does not need to boost to avoid a unit root in ĉt. The possibility of a unit root in ĉt based

on an ADF test is either because ct has a unit root (a very unusual components model)

or one has not adjusted the series yt for a deterministic trend of higher than second

order when estimating ct. Does boosting eliminate higher order deterministic trends?

The answer is in the negative. The impact of such a trend remains in the estimated cycle

and does not go to zero. Second, whether you want to boost the HP filter to improve

12



Figure 1: Quarterly US Industrial Production 1919-1940: HP Cycle and Boosted HP
Cycle

tracking performance will depend on how important you think the permanent shocks

are to �yt and �2yt. There are plausible specifications of Tt and ct which result in a

poorer tracking performance by boosting. One can never really know about this. One

has more confidence that a likely contribution or permanent shocks to �yt would result

in boosting worsening the tracking of ct. The situation is much less clear if data follows

an I(2) process. It should be noted that in all cases there is a perfect negative correlation

between the estimated trend and cycle gaps.
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Appendix: Mathematical Proofs

Proof of Proposition 1. For a time series (xt), we define its partial sum process

St = x1 + . . .+ xt with S0 := 0, and then a sequence of stochastic process Sn(r) = Sdnre

for r 2 [0, 1], where dae denotes the smallest integer that is greater than a 2 R. This

sequence of stochastic process, under proper normalization, has di↵erent limit depending

on the stochastic order of (xt). In particular, under Part (i) of the proposition where

(xt) ⇠ I(1), we have

n�3/2Sn(r) !d �

Z
r

0

B(s)ds, as n ! 1, (4)

where B(·) denotes the standard Brownian motion on [0, 1]. If (xt) ⇠ I(0) as assumed

in Part (ii) of the proposition, then we have

n�1/2Sn(r) !d �B(r), as n ! 1, (5)

where B(·) denotes the standard Brownian motion on [0, 1]. We combine (4) and (5) to

the following result:

Gn(r) := n�↵Sn(r) !d �G(r), (6)

where ↵ = 3/2 and G(r) =
R

r

0 B(s)ds if xt ⇠ I(1), and ↵ = 1/2 and G(r) = B(r) if

xt ⇠ I(0).

Now, consider 'k(r) = sin(!kr), r 2 [0, 1], with !k = (k � 1/2)⇡ for k = 1, . . . , K

where K is a fixed positive integer. That is, {'k(r)}kk=1 are the first K orthonormal

basis functions of the Karhunen-Loève representation of the standard Brownian motion

on [0, 1]. Furthermore, we define the first K periodogram coordinates of xt as

Ink =
nX

t=1

�tkxt, k = 1, . . . , K,

where for each k = 1, . . . , K,

�tk =
1p
n
'k(t/n) =

1p
n
sin(!nkt), with !nk = !k/n,

for t = 1, . . . , n. We denote I(!nk) = Ink to indicate that they are periodogram coordi-

nates with frequency !nk.
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In light of (6), we write

n�↵+1/2I(!nk) = n�↵+1/2Ink = n�↵+1/2
nX

t=1

�tk(St � St�1)

= n�↵+1/2

"
�nkSn � �1kS0 �

nX

t=2

St�1(�tk � �t�1,k)

#

=
p
n�nkGn(1)�

nX

t=2

Gn

✓
t� 1

n

◆p
n(�tk � �t�1,k) (7)

where
p
n�nk = 'k(1), and

p
n(�tk � �t�1,k) = 'k

✓
t

n

◆
� 'k

✓
t� 1

n

◆
= '0

k

✓
t̄

n

◆
1

n
, (8)

for t̄ 2 (t� 1, t).

It then follows from (6), (7), (8), and continuous mapping that for each k = 1, . . . , K,

n�↵+1/2I(!nk) !d Zk (9)

as n ! 1, where

Zk = �


'k(1)G(1)�

Z 1

0

G(r)'0
k
(r)dr

�
= �

Z 1

0

'k(r)dG(r) (10)

where the second equality is due to integration by parts and the fact that G(0) =
R 0

0 B(s)ds = 0 a.s.

Under Part (i) where xt ⇠ I(1), we have ↵ = 3/2 and G(r) =
R

r

0 B(s)ds. Then (9)

and (10) yield n�1I(!nk) !d Zk where Zk = �
R 1

0 'k(r)B(r)dr. Therefore, the random

vector Z = (Z1, . . . , ZK)0 follows the multivariate normal distribution

Z =d �N(0,⌃K)

where ⌃K = [�jk] is an K ⇥K covariance matrix with entries

�jk = cov(Zj, Zk) = �2

Z 1

0

Z 1

0

'j(r)'k(s)C(r, s)drds

where C(r, s) is the covariance function of the standard Brownian motion on [0, 1]. Since

{'k(r)}kk=1 are the first K basis functions of the Karhunen-Loève representation of the
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standard Brownian motion on [0, 1], they are the first K eigenfunctions of C(r, s) with

corresponding eigenvalues !�2
k
. Therefore, we have

�jk = !�2
k
�jk, j, k = 1, . . . , K,

where �jk denotes the Kronecker delta function. We can then deduce that I(!nk) are

asymptotically independent and n�1I(!nk) !d N(0, �2!�2
k
), as claimed in Part (i) of the

proposition.

Under Part (ii) where xt ⇠ I(0), we have ↵ = 1/2 and G(r) = B(r). Then (9) and

(10) yield I(!nk) !d Zk where Zk = �
R 1

0 'k(r)dB(r). Therefore, the random vector

Z = (Z1, . . . , ZK)0 follows the multivariate normal distribution Z =d �N(0,⌃K) where

⌃K = [�jk] is an K ⇥K covariance matrix with entries

�jk = cov(Zj, Zk) = �2

Z 1

0

Z 1

0

'j(r)'k(s)E[dB(r)dB(s)]

= �2

Z 1

0

'j(r)'k(r)dr = �2�jk, j, k = 1, . . . , K.

Therefore, we can deduce again that I(!nk) are asymptotically independent, and I(!nk) !d

N(0, �2), as claimed in Part (ii) of the proposition. This complete the proof of the propo-

sition.

Proof of Proposition 2. We start with t = 1. By definition of the matrix operation

of HP filter, we have

T̂1 = h(1, 1)y1 + h(1, 2)y2 + . . .+ h(1, n)yn

= h(1, 1)y1 + h(1, 2)(y1 +�y2) + . . .+ h(1, n)(y1 +�y2 + . . .�yn)

= b(1, 1)y1 +
nX

j=2

b(1, j)�yj,

and hence ĉ1 = y1 � T̂1 = [1� b(1, 1)]y1 �
P

n

j=2 b(1, j)�yj. When t = 2, note that

T̂2 = h(2, 1)y1 + h(2, 2)y2 + . . .+ h(2, n)yn

= h(2, 1)(y2 ��y2) + h(2, 2)y2 + h(2, 3)(y2 +�y3) + . . .+ h(2, n)(y2 +�y3 + . . .�yn)

= b(2, 1)y2 � b(2, 1)�y2 +
nX

j=3

b(2, j)�yj,

17



from which it follows that ĉ2 = y2 � T̂2 = [1� b(2, 1)]y2 + d(2, 1)�y2 �
P

n

j=3 b(2, j)�yj.

When t = 3, we have

T̂3 = h(3, 1)y1 + h(3, 2)y2 + . . .+ h(3, n)yn

= h(3, 1)(y3 ��y3 ��y2) + h(3, 2)(y3 ��y2) + . . .+ h(3, n)(y3 +�y4 + . . .�yn)

= b(3, 1)y3 � (h(3, 1) + h(3, 2))�y2 � h(3, 1)�y3 +
nX

j=4

b(3, j)�yj

= a(3, 1)y3 � d(3, 2)�y2 � d(3, 1)�y3 +
nX

j=4

a(3, j)�yj,

and hence ĉ3 = y3 � T̂3 = [1 � b(3, 1)]y3 + d(3, 2)�y2 + d(3, 1)�y3 �
P

n

j=4 b(3, j)�yj.

Analogously, we can easily show that the formula in the proposition holds for all t =

1, . . . , n.
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