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Abstract

We develop a class of regression-based estimators, called Principal Components Differ-

ence-in-Differences estimators (PCDID), for treatment effect estimation. Analogous to

a control function approach, PCDID uses factor proxies constructed from control units

to control for unobserved trends, assuming that the unobservables follow an interactive

effects structure. We clarify the conditions under which the estimands in this regression-

based approach represent useful causal parameters of interest. We establish consistency

and asymptotic normality results of PCDID estimators under minimal assumptions on

the specification of time trends. We show how PCDID can be extended to micro/group-

level data and be used for testing parallel trends under the interactive effects structure.

The PCDID approach is illustrated in an empirical exercise that examines the effects of

welfare waiver programs on welfare caseloads in the US.
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1 Introduction

The difference-in-differences (DID) method is a workhorse for policy evaluation in empirical

economics and other disciplines. Its key underlying assumption is that trends are parallel

among the control and treated units. In this paper, we develop a class of regression-based esti-

mators, called Principal Components Difference-in-Differences Estimators (PCDID), that can

be applied to scenarios in which trends are potentially unparallel and stochastic among control

and treated units. Unlike existing approaches such as synthetic control, unconfoundedness

and matrix completion estimators, PCDID uses factor-augmented regressions to estimate

specific parameters related to treatment effects. Specifically, PCDID does the following: (1)

use a data-driven method (principal component analysis (PCA)) on data from control units

to form factor proxies that capture the endogeneity arising from unparallel trends; (2) among

treated unit(s), run regressions using the factor proxies as extra covariates. Our method is

analogous to the control function approach in the microeconometric literature, in the sense

that the factor proxies play the same role as control functions.

Our main theoretical findings are as follows. First, we clarify the conditions under which

the estimands in this regression-based approach represent useful causal parameters of in-

terest. This is useful because the recent literature has shown that, under treatment effect

heterogeneity, a standard DID two-way fixed effect (2wfe) regression may yield an estimate

that no longer represents a useful causal parameter of interest, but instead a weighted av-

erage of treatment effects where some of the weights can be negative (e.g., Borusyak and

Jaravel (2017), Abraham and Sun (2018), Athey and Imbens (2018), de Chaisemartin and

D’Haultfœuille (2018), Goodman-Bacon (2018)). Because our factor-augmented regression

extends the 2wfe regression by incorporating unparallel trends, it is important to show that

it targets meaningful causal parameters under reasonable assumptions. Second, based on the

various ways the factor-augmented regression can be carried out, we consider three different

PCDID estimators (basic, mean-group, pooled), and establish consistency and asymptotic

normality results for each estimator with respect to its target causal parameter. Their dif-

ferences in identification conditions and rates of convergence are clarified. Importantly, we

show that asymptotic normality holds under minimal assumptions on the specification of

trends, e.g., it encompasses nonstationary trends. Thus standard inference (e.g., t-tests with

standard critical values) is valid and does not depend on the unknown nature of the time
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trends. Third, based on the PCDID approach, we develop a test of parallel trends under

the functional form specification of the interactive effects model. We establish consistency

and asymptotic normality results of the test statistic and, as in PCDID estimators, standard

inference is valid and does not depend on the unknown nature of the time trends. We discuss

how the test is related to the parallel trend assumptions in the fully nonparametric DID

framework of Callaway and Sant’Anna (2018). Extending the above theoretical results, we

consider micro/group-level data where an aggregated PCDID estimator is introduced. We

then consider Monte Carlo simulations, a placebo exercise based on Bertrand et al. (2004),

and an empirical illustration that examines the effects of welfare waiver programs on welfare

caseloads in the US.

The PCDID approach is related to the large literature on factor-augmented regression

models (e.g., Stock and Watson (2002), Bernanke et al. (2005), Bai and Ng (2006)), which

forecast one or several time series using a large number of predictor series. We extend

this literature to treatment effect estimation. Our stepwise implementation is also related to

common correlated effects (CCE) estimators pioneered by Pesaran (2006). The key difference

is that PCDID specifically exploits the DID data structure when it constructs factor proxies.1

Other estimators in interactive effects models, such as Bai (2009) or Moon and Weidner

(2015), are typically based on the assumption of homogeneous parameters, and they do not

exploit the specific data structure as in our approach. Bai (2009) has recently been used

or adapted for treatment effect estimation, e.g., Kim and Oka (2014), Gobillon and Magnac

(2016), Xu (2017). These approaches use Bai (2009)’s iterative procedure to attain numerical

convergence of at least some of the coefficients, whereas PCDID does not require numerical

iterations.

The PCDID approach is related to the rapidly growing literature on synthetic control

(SC), unconfoundedness and matrix completion estimators (e.g., Abadie et al. (2010), Hsiao

et al. (2012), Xu (2017), Ferman and Pinto (2018), Ben-Michael et al. (2018), Athey et al.

(2018), Chernozhukov et al. (2018), Arkhangelsky et al. (2019)). In this literature, both

the control panel and pre-intervention data of treated units (an “L-shaped” matrix, as in

1In addition, CCE estimators, which are chiefly based on exogenously weighted cross-sectional averages
in generic panel data, have a different theoretical framework to that based on principal components; see
Westerlund and Urbain (2015) for a detailed analysis. Greenaway-McGrevy et al. (2012) extends Pesaran’s
estimator by constructing factor proxies from principal components based on the whole panel data set, whereas
the PCDID approach and extracts factor proxies from data on control units only. This important difference
explains the different asymptotic properties of our estimator from theirs.
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Athey et al. (2018)) are used to impute the counterfactual outcomes of treated units in post-

intervention periods; the treatment effect is then estimated as the difference between these

counterfactual outcomes and observed outcomes. Athey et al. (2018) show that the original

SC method (Abadie et al. (2010)), vertical regression (SC methods) and horizontal regression

(unconfoundedness methods) all belong to the same class of matrix completion methods based

on matrix factorization (i.e., low-rank matrices) with different restrictions/regularizations.

Gobillon and Magnac (2016) and the generalized SC estimator (GSC) of Xu (2017) also

consider this step-wise approach, by first applying Bai’s estimator on the control panel and

pre-intervention data of treated units to form counterfactual outcomes of treated units in

post-intervention periods. Unlike the above approaches, PCDID exploits the data structure

in the form of two rectangular-shaped matrices. It first constructs control functions (factor

proxies) from the control panel exclusively. Then, it runs a factor-augmented regression using

all (pre- and post-intervention) data of treated units, with the control functions as additional

covariates. We show that PCDID is at least as efficient as GSC, and the difference in efficiency

is large when the control functions are correlated with the intervention status variable and

when post-intervention periods take up a large proportion of the sample periods.

We note that all our results are derived under the specification assumption of interactive

effects, i.e., the unobservables can be factorized as described in Athey et al. (2018). Inter-

active effects impose a structure on inferring how the unparallel trends behave, based on

observed variations in outcomes across units and time. They are less general than many

other structures for the unobservables. In fact, Callaway and Sant’Anna (2018) show that, in

a fully nonparametric DID setting, the parallel trend assumption is untestable but a stronger,

augmented version of this assumption is testable (see also Section 4.4). Interactive effects are

more general than two-way fixed effects but it comes with costs; namely, large-T asymptotics

are typically required, and the asymptotic distributions and valid inference procedures are

non-trivial under weak assumptions on time trends.2 Whether interactive effects are reason-

able and important depend on the specific application.3 For instance, in the welfare caseload

2Quasi-differencing methods have been developed for fixed-T models assuming that the factors are unknown
(e.g., Holtz-Eakin et al. (1988), Ahn et al. (2001), Ahn et al. (2013)). These methods require stronger
assumptions on idiosyncratic errors (e.g., iid) or require exclusion restrictions.

3Such models have deep roots in economics; early analysis include Goldberger (1972), Jöreskog and Gold-
berger (1975), MaCurdy (1982), Holtz-Eakin et al. (1988) and Ahn et al. (2001) with many applications in
micro- and macroeconomics, e.g., Chamberlain and Rothschild (1983), Altug and Miller (1990), Townsend
(1994), Cawley et al. (1997), Carneiro et al. (2003).
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example, each state’s pre-existing welfare program differs in generosity and structure and

the potential recipient populations are different. This implies that variations in trends that

represent macroeconomic conditions or national sentiment on welfare policy (e.g., changes

in welfare stigma) will have heterogeneous effects on welfare participation in different states,

resulting in more elastic responses in some states than others.4

The paper is organized as follows. Section 2 describes the basic framework. Section 3

discusses the full model. Section 4 discusses the PCDID estimators and the parallel trend

test. Section 5 discusses extensions to micro-level data. Section 6 reports results from Monte

Carlo simulations. Sections 7 and 8 discuss the empirical analysis. Section 9 concludes.

Supplementary materials are included in a separate appendix.

2 Basic Framework

We first illustrate the basic framework using potential outcomes. There are N units and T

periods. Let yit(1) and yit(0) be the potential outcomes of unit i in period t with and without

treatment, respectively. The treatment effect (TE) is denoted by ∆it := yit(1) − yit(0).

Let Dit = 1 if unit i receives treatment in period t, Dit = 0 otherwise. The observed

outcome is yit = Dityit(1) + (1 − Dit)yit(0) (we cannot observe both yit(1) and yit(0)).

Denote the set of never-treated units as C (called “control units”; there are NC such units),

and the rest of units as E (called “treated units”; there are NE such units). Suppose once

a unit receives treatment, it remains so thereafter, i.e., Dit = 1 implies Di,t+k = 1 for all

k > 0. Let a treated unit i ∈ E have T0i pre-intervention periods and T1i post-intervention

periods, i.e., its first treated period is T0i + 1. We can then express Dit as a product of

two indicator functions: Dit = 1{i∈E}1{t>T0i}. The observed outcome can be rewritten as

yit = ∆it1{i∈E}1{t>T0i} + yit(0).

We now impose a key functional form specification on potential outcome: yit(0) = ςi +

µ
′
ift + ε̃it, where ςi, µi, ft, and ε̃it are all individually unobserved (see the next section for

covariates). The term µ
′
ift is known as a factor structure or interactive effects, which contains

4Similarly, labor market conditions may react differently to time-varying aggregate forces (e.g., structural
or technological change) in states that are economic/population centers. See also Meyer (1995) and Blundell
and Dias (2009) for a critique on DID.
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an `× 1 vector of factor loadings µi and time-varying factors ft. The observed outcome is:

yit = ∆it1{i∈E}1{t>T0i} + ςi + µ′ift + ε̃it, (1)

The factor structure is used in various literatures such as the SC and matrix completion

literatures (e.g., Xu (2017), Ferman and Pinto (2018), Ben-Michael et al. (2018), Athey et al.

(2018), Chernozhukov et al. (2018), Arkhangelsky et al. (2019)). In the latter literatures,

µ
′
ift is seen as a low-rank (less complex) matrix which, together with idiosyncratic noise ε̃it,

generates yit(0).

Equation (1) reduces to the two-way fixed effects (2wfe) model when factor loadings are

homogeneous across units: µi = µ0 for all i. The factor structure is then µ
′
0ft, which can be

re-expressed as a scalar time fixed effect τt, yielding yit = ∆it1{i∈E}1{t>T0i} + ςi + τt + ε̃it.

In this case, regardless of the specification of ft, the trend τt can be eliminated in a 2wfe

regression (when ∆it ≡ ∆0). Recent work on this model have also shown that, when ∆it is

heterogeneous, a standard 2wfe regression yields an estimate that may no longer represent a

useful causal parameter of interest, but instead a weighted average of treatment effects where

some of the weights can be negative (e.g., Borusyak and Jaravel (2017), Abraham and Sun

(2018), Athey and Imbens (2018), de Chaisemartin and D’Haultfœuille (2018), Goodman-

Bacon (2018)).

We assume factor loadings are heterogeneous, which permits trends to be potentially un-

parallel across units, albeit parsimoniously via the factor structure. We allow for endogeneity

of Dit. Some examples include correlation between: 1{i∈E} and µi (loadings differ between

control and treated units), 1{t>T0i} and ft (e.g., factors increase over time), T0i and µi (policy

intervention date correlated with loadings).5 We also examine what we call “weak parallel

trend (PTW)” under the functional form specification in (1):

PTW : E(µi|i ∈ E) = E(µi|i ∈ C), (2)

where the average factor loadings are the same between control and treated units. Section

4.4 provides a formal analysis of PTW when covariates are present, and discusses its rela-

5As in the 2wfe literature, 1{i∈E} and T0i may also be correlated with ςi. In addition, µi may be correlated
with ςi.
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tionship with the parallel trend assumption in a fully nonparametric framework (Callaway

and Sant’Anna (2018)).6 Nevertheless, whether PTW holds or not, it can be shown that

the 2wfe regression is not sufficient to eliminate the nuisance terms related to the trends.

These nuisance terms may create serious issues depending on the specification of ft (e.g.,

nonstationarity).7 Several representative numerical examples are discussed in Section 6.1.

Unlike synthetic-control type estimators, PCDID estimators are regression-based. It is

therefore important to show that the PCDID regression coefficients converge to meaningful

causal parameters of interest. Our key results show that the key causal parameters identified

and estimated are ITET and ATET, defined as

ITET : ∆̄i := E(∆it|t > T0i) for fixed i ∈ E, (3)

ATET : ¯̄∆ := E(∆̄i|i ∈ E). (4)

The basic building block is the ITET ∆̄i, which is the treatment effect of a unit i ∈ E

averaged over post-intervention periods. The ATET ¯̄∆ is the average of the ITET across

units i ∈ E. Under weak regularity conditions, the basic PCDID estimator converges to ∆̄i

when NC , T →∞ (Theorem 1), whereas the simple mean-group PCDID estimator (PCDID-

MG) converges to ¯̄∆ when NC , NE , T → ∞ (Theorem 3). Moreover, the t-statistic from

these estimators converges to a standard normal distribution and does not depend on the

specification of ft.

There are many alternative definitions of causal parameters, some of which are more

natural under certain settings. For example, Callaway and Sant’Anna (2018) consider DID

with multiple time periods in a fully nonparametric setting. They introduce group-time

average treatment effects (in our notations, ATT (g, t) := E(∆it|T0i + 1 = g)), which is

6In a nonparametric framework, parallel trend holds when, given each t > T0, the potential outcome
yit(0) satisfies conditions akin to E(yit(0) − yi,t−1(0)|i ∈ E) = E(yit(0) − yi,t−1(0)|i ∈ C); see Callaway and
Sant’Anna (2018) for details. Given t and t − 1, the factor structure implies E(yit(0) − yi,t−1(0)|i ∈ E) =

E(µ
′
i|i ∈ E)(ft − ft−1) and E(yit(0)− yi,t−1(0)|i ∈ C) = E(µ

′
i|i ∈ C)(ft − ft−1), hence the interest in PTW.

7This can be illustrated by decomposing the simple DID estimator DIDy := (ȳE,post− ȳE,pre)− (ȳC,post−
ȳC,pre) with self-explanatory notations, e.g., ȳE,post = 1

NET1

∑
i∈E

∑
t>T0

yit, and assuming homogeneous
∆it = ∆0 and T0i = T0. Without covariates, DIDy is equivalent to a 2wfe regression. By simple arithmetic,
DIDy = ∆0 + (µ̄E − µ̄C)

(
f̄post − f̄pre

)
+ (ε̄E,post − ε̄E,pre) − (ε̄C,post − ε̄C,pre). Consider the multiplicative

term (µ̄E − µ̄C)
(
f̄post − f̄pre

)
. If ft follows a driftless random walk process (nonstationary) ft = ft−1 + ξt,

where ξt is an iid noise with mean zero, then f̄post − f̄pre does not converge to any constants as T → ∞;
specifically, f̄post = Op(

√
T1) and f̄pre = Op(

√
T0), both growing without bound as T increases. When PTW

does not hold, the multiplicative term is divergent as NC , NE , T →∞. When PTW holds, the limit depends
on the convergence (and divergence) rate of µ̄E − µ̄C versus f̄post − f̄pre.
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identified under the assumption that the potential outcome yit(0) satisfies a parallel trend

assumption for all t ≥ g given observed covariates (note that this assumption is violated in

our context because the factor structure generates potentially unparallel trends). They show

how this definition can be used to examine general dynamic treatment effects and aggregated

into various summary measures of causal effects in the related literature. Reflecting the

nature of our estimation method, our causal parameters consider aggregation over the time

dimension first (ITET) before the cross-sectional dimension (ATET), an approach that has

been considered by some studies, e.g., Goodman-Bacon (2018). As in most regression-based

approaches, we need to impose some restrictions on treatment effect heterogeneity (see Section

4). For instance, ∆it can be arbitrarily correlated with 1{i∈E}, 1{t>T0i}, ςi and µi, but some

important treatment effect dynamics are ruled out, e.g., ∆it cannot be driven directly by ft.

Although some of the modeling assumptions that we introduce are rather technical, the

key intuition that underlies our method is analogous to the control function approach in the

microeconometric literature. We use data from control units (i ∈ C) to form ` ≥ 1 control

functions that capture the unobserved factor structure, µ
′
ift, which creates the endogeneity

problem as illustrated earlier. Then, in a factor-augmented regression for i ∈ E, the endo-

geneity is corrected by including the control functions as extra covariates in the regression.

3 The Model

We consider an extension of equation (1), assuming the potential outcome yit(0) is a linear

function of covariates:

yit = ∆it1{i∈E}1{t>T0i} + β′ixit + ςi + µ′ift + ε̃it, (5)
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where the k × 1 vector xit stores the time-varying covariates with unit-specific parameters

βi.
8 The TE is assumed to take the following decomposition

∆it = ∆̄i + ∆̃it, (6)

where ∆̄i := E(∆it|t > T0i) is the ITET of unit i, a key estimand in this paper. The term

∆̃it represents the deviation of ∆it from the ITET, and it is the demeaned, time-varying

idiosyncratic component of ∆it for t > T0i; by construction, E(∆̃it|t > T0i) = 0 for each

i ∈ E. Substituting ∆it = ∆̄i + ∆̃it into (5) yields a reduced-form model, which is the main

model that we examine:

yit = ∆̄i1{i∈E}1{t>T0i} + β′ixit + ςi + µ′ift + εit, (7)

where εit := ∆̃it1{i∈E}1{t>T0i}+ ε̃it is the idiosyncratic error in the reduced-form model. The

composite term ∆̃it1{i∈E}1{t>T0i} equals ∆̃it when i ∈ E and t > T0i, and it equals zero

otherwise. It does not contain ∆̃it for any i ∈ C or t ≤ T0i. The decomposition in equation

(6) implies that the composite term has zero mean. To identify ITET and ATET, the errors

εit need to satisfy further assumptions to be stated formally below. The first key assumption

of our model is:

Assumption E (predeterminedness, treatment and intervention statuses):

(i) E(εit|∆̄i, 1{i∈E}, 1{t>T0i}, βi, ςi, µi, ft, xit) = 0 for each i and t.

(ii) 0 < E(1{i∈E}) < 1 for each i.

(iii) for each i ∈ E, T1i/T
p−→ κi as T, T1i →∞, where 0 < κi < 1.

Assumption E(i) is a predeterminedness condition on idiosyncratic errors in the reduced-

form model. It exerts orthogonality between εit and the conditioning components ∆̄i, 1{i∈E},

1{t>T0i}, βi ςi, µi, ft, xit, but it does not preclude the conditioning components from being

correlated with one another; see the examples of endogeneity in Section 2.9 By the definition

8As in Wooldridge (2005) and Pesaran (2006), βi is unit-specific and allowed to be correlated with the co-
variates xit (see also Assumption E(i)). While Wooldridge shows that a fixed-effect estimator may consistently
estimate the population average of the βi, he does not consider a factor structure, a key feature in Pesaran
(2006) and our model. As in the 2wfe literature, time-invariant covariates (e.g., demographic characteristics
that do not vary over time) are subsumed into fixed effect ςi. We do not attempt to estimate the parameters
of these covariates.

9We do not impose the time-homogeneity condition on period-specific disturbances (µift + εit in our
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of εit (= ε̃it+∆̃it), E(i) imposes restrictions on treatment effect dynamics. Generally speaking,

given each i ∈ E, the idiosyncratic TE component ∆̃it cannot exhibit time-series correlation

with ft and xit over t > T0i, e.g., TE dynamics cannot be driven by time-varying factors and

covariates directly. Assumption E(ii) is the same as Gobillon and Magnac (2016). It allows for

the presence of control (i.e., never-treated) units, ruling out more extreme forms of staggered

adoption in which all units receive treatment eventually; the literature has shown that, in such

cases, the DID-2wfe estimator may represent uninterpretable weighted averages of treatment

effects (see Section 2). Assumption E(iii) assumes the proportions of pre-intervention and

post-intervention periods do not vanish to zero in the limit.

Next, we discuss the assumptions on factors and factor loadings. Denote F := [f1, . . . , fT ]′

and Xi :=

[
1 , ..., 1

xi1 , ..., xiT

]′
, and let Gi := (F,Xi). Denote µC := [µNE+1, . . . , µN ]′. As a

convention, the norm of a matrix A is given by ‖A‖ = [trace(A′A)]1/2, and “a.s.” stands for

“almost surely”.

Assumption F (factors and covariates): Let Γ := diag(T r1 , . . . , T r` , T 0.5, . . . , T 0.5) where

r1, . . . , r` ≥ 0.5. For each i, the following conditions are satisfied:

(i) For all T , E
∥∥Γ−1G′iGiΓ

−1
∥∥2 ≤ c for some constant c > 0.

(ii) plimT→∞ Γ−1G′iGiΓ
−1 is positive definite a.s..

Assumption FLC (factor loadings of control units): The following conditions are

satisfied:

(i) For all i ∈ C, E ‖µi‖2 ≤ c for some constant c > 0.

(ii) plimNC→∞
1
NC
µ′CµC is positive definite.

Assumption F(i) accommodates a wide range of factor dynamics (deterministic and ran-

dom, stationary and nonstationary) with possibly heterogeneous normalization orders.10 The

context) as in the semi-/non-parametric panel data models of Chernozhukov et al. (2013). This also highlights
the importance of imposing a (factor) structure on the disturbances. Nonetheless, the unobserved µi and ft
involve minimal assumptions; see Assumptions F and FLC .

10The normalization order reflects the degree of complexity of the factor dynamics. It is defined as the
maximum value of r such that the partial sum

∑T
t=1 f

2
t is O(T 2r) if the factor ft is deterministic, and is

Op(T
2r) if it is random. If ft is deterministic, r is related to the maximal polynomial order d by d = (2r−1)/2.

E.g., linear trends (d = 1; r = 1.5) and quadratic trends (d = 2; r = 2.5). If ft is random, r is linked to the
integration order d by r = 0.5 for d ≤ 0.5, and r = d for d > 0.5. E.g., stationary ARMA process (d = 0;
r = 0.5), stationary long memory process (0 < d < 0.5; r = 0.5), and unit root process (d = 1; r = 1). Factors
with structural breaks are accommodated as long as the integration order is well-defined. Since it is assumed
that r ≥ 0.5, weak factors are ruled out in our model (Onatski (2012)).
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factors may contain a unit root (e.g., Bai (2004)), display long-range dependence (e.g., Erge-

men and Velasco (2017), Ergemen (2019)), or exhibit structural breaks (e.g., Chen et al.

(2014)). Assumption F(ii) ensures sufficient variability in factors and covariates and assumes

linear independence, ruling out multicollinearity. Assumption FLC(i) is a standard moment

condition on the factor loadings of control units. Assumption FLC(ii) ensures sufficient vari-

ability and assumes linear independence in factor loadings among control units as the number

of control units grow large. Both Assumptions F and FLC(ii) are crucial for asymptotic iden-

tification of the linear factor space (of dimension `). Given the assumptions, the model given

by (5)-(7) rules out the possibility that some treated units are exposed to factors that do not

affect control unit outcomes. The factors and factor loadings may be deterministic or random

– in the former case, the probability limits in the assumptions reduce to deterministic limits.

We want to highlight that identifying ITET and ATET requires identification of µ′ift but

not µi and ft separately. This is evident from (5). Although µi and ft are only separately

identified up to a rotation matrix, we are not interested in, nor required to, identify and

estimate them separately. Because µ′ift = µ′iRR
−1ft for all invertible rotation matrix R, it

follows that both ITET and ATET are uniquely determined regardless of the choice of R.

4 Estimation Procedure and Key Results

4.1 Construction of Factor Proxies

The PCDID approach uses the following procedure to construct factor proxies, which serve

as control functions in factor-augmented regression:

1. For each i ∈ C, perform a linear projection of yit on xit using data from t = 1, . . . , T .

Obtain the residuals ûit and form the NC × T residual matrix ûC .11

2. Apply PCA on the NC × NC sample covariance matrix S := ûC û
′
C/T . With a pre-

specified p, obtain p factor proxies as the first p principal components of S. Specifically,

first construct the NC × p eigenvector matrix W with columns being the p eigenvectors

associated with the p largest eigenvalues of S. Then obtain the T × p factor proxy

11This can be done by running a time-series regression (with intercept) of yit on xit. Other projections can
also be used if we assume βi = β0 for all i; for example, run a fixed-effect panel regression of yit on xit using
the control panel, and then obtain residuals (net of the fixed effects).
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matrix F̂ :=
û′CW
NC

.

The factor proxies (columns of F̂ ) can be viewed as weighted averages of the residuals

from step 1 over the control panel. The sets of weights are determined by PCA such that the

p linear combinations of the residuals jointly explain the most time-variation of control unit

outcomes after partialling out the covariates. The residuals are, by construction of projection,

orthogonal to the covariates. As long as the covariates are not linear combinations of the

factors in model (7) (as implied by Assumption F(ii)), the residuals will preserve the rank

and other information about the factor space. Note that the covariates and factors can be

orthogonal or correlated. For instance, in Appendix 7, we consider a model in which the

covariates are a linear function of factors plus idiosyncratic errors: Xi = FΠi + Vi, which is

contained as a special case studied by Pesaran (2006) and Bai (2009). The PCDID procedure

remains valid for this example.

The total number of factors ` is assumed finite and unknown to users. This is an as-

sumption commonly adopted in the interactive effects model literature (e.g., Bai (2003), Bai

(2009), Pesaran (2006)). Moon and Weidner (2015) gives the theoretical result that, in these

models, the least squares estimator of the regression coefficient is consistent for the true pa-

rameter as long as the number of factors used in estimation is at least `. Our framework

fits into theirs and has similar properties.12 In practice, there are statistical methods that

provide guidance on the number of factors p in finite samples, e.g., growth ratio (GR) test

of Ahn and Horenstein (2013). Section 6.1 considers the performance of PCDID when the

number of factors is chosen by the GR test.13 We also consider conservative versions of the

GR test, motivated by Moon and Weidner (2015)’s result that overestimation of the number

of factors is less problematic than underestimation.

12In our model, the DID regressor is an indicator variable and, in the absence of other covariates, the PCs
extracted beyond the `-th one will come from reduced-form idiosyncratic errors εit. Although εit contains
an idiosyncratic component ∆̃it, it is, by construction of the decomposition of ∆it, orthogonal to the DID
regressor. Asymptotic irrelevance of the extra PCs would hold as a special case of Moon and Weidner (2015).

13When the complexity of factor dynamics differ vastly across factors, we may rely on a systematic procedure
that detects and extracts factors of different dynamical complexity in a recursive manner. Appendix 8 presents
a procedure that works for an unknown number of factors and heterogeneous normalization orders that are
integer-valued.
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4.2 ITET Estimation

We now discuss the intuition behind the identification and estimation of ITET ∆̄i := E(∆it|t >

T0i), which is our casual parameter of interest for a given treated unit i ∈ E. The factor

proxies F̂ span the same linear space as the true factors F in the limit as the control panel

grows in both the time and cross-sectional dimensions.14 This large-sample result justifies

the use of F̂ as an approximation for F , and motivates the following factor-augmented time

series regression (aka PCDID regression) for treated unit i ∈ E using data from t = 1, .., T :

yit = b0i + δi1{t>T0i} + a′if̂t + b′1ixit + eit, (8)

where the p× 1 vector f̂t is the transpose of the tth row of F̂ .

We now present the asymptotic theory of estimating ITET ∆̄i. We rewrite the PCDID

regression (8) in vector form. Let 1post,i be the T × 1 vector consisting of T0i zeros followed

by T1i ones. For treated unit i ∈ E,

yi = δi1post,i + F̂ ai +Xibi + ei, (9)

where yi = [yi1, . . . , yiT ]′, ei = [ei1, . . . , eiT ]′, bi = [b0i, b
′
1i]
′
, and F̂ := û′CW/NC , the T × `

factor proxy matrix. The PCDID estimator of ∆̄i is δ̂i, the least squares estimator of δi:

δ̂i = (1′post,iM[F̂ ,Xi]
1post,i)

−11′post,iM[F̂ ,Xi]
yi, (10)

where MA = I −A(A′A)−1A′ for a given matrix A.

In the following, we list and discuss the key assumptions (Assumption AIi and ES) for

the asymptotic analysis of PCDID estimation. Define G̃i = {1post,i, Gi} = {1post,i, F,Xi}.

Assumption AIi (asymptotic identification, PCDID estimator): For each i ∈ E,

(i) ρi := plimT→∞
1
T 1′post,iMGi1post,i exists and is strictly positive a.s..

(ii) ξ2
i := plimT→∞E

(∥∥∥ 1√
T

1′post,iMGiεi

∥∥∥2
∣∣∣∣ G̃i) exists and is strictly positive a.s..

Assumption ES (strict exogeneity in time): For each i, E(εit|G̃i) = 0 a.s. for all t.

14More precisely, we show that estimation error of the sample cross moments (over t) of F̂ and other model
components (e.g., covariates, idiosyncratic errors) vanishes as NC , T →∞. See lemma A4(d)-(g) for technical
details.
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The key assumption for asymptotic identification of ∆̄i is Assumption AIi(i). This

assumption rules out multi-collinearity of the intervention status 1post,i with Xi and F in

the limit. This is a relatively weak assumption; multi-collinearity occurs when Xi or F is a

step function that jumps at T0i + 1 but constant otherwise, which is not common in practice.

Gobillon and Magnac (2016) imposes an analogous condition under finite T in the absence

of covariates, but that is insufficient for asymptotic identification of ∆̄i in our model.15

Assumption AIi(ii) ensures that δ̂i has a non-degenerate distribution after normalization.

Assumption ES strengthens Assumption E(i) to a strict exogeneity condition on the

time series of factors, intervention status and covariates. This is crucial for the conditioning

argument that leads to our asymptotic normality result.

More technical assumptions (Assumptions IE, M, Di) are detailed in Appendix 1

due to space limitation. These are regularity conditions that are relatively standard in the

interactive effects and time series literatures. We briefly summarize them below and highlight

the key properties and restrictions. Assumption IE accommodates heteroskedasticity and

weak dependence (e.g., cross-sectional and serial correlations) in the idiosyncratic errors εit

(= ε̃it + ∆̃it). It assumes the higher-order moments are bounded, which rules out unbounded

treatment effect dynamics. Assumption M exerts control on the dependence among various

model components (idiosyncratic errors, factors, factor loadings, covariates and their cross-

products). For analytical convenience, covariates and factors are assumed to be orthogonal

(Assumption MX(iii)), although this is not necessary for the PCDID approach to deliver

valid results; see Section 4.1 and Appendix 7. Assumption Di governs the dynamical

properties of regressors, factors and idiosyncratic errors by allowing them to be mixing and

heteroskedastic over time. This enables us to apply the functional central limit theorem of

DeJong and Davidson (2000).16

Theorem 1 states the consistency and asymptotic normality results related to δ̂i:

Theorem 1 Suppose Assumptions E, F, FLC , AIi, IE and M hold. Then, as T,NC → ∞
15Requiring that 1post,i and F are not collinear for all finite T is not enough, because (i) the estimation

error of F̂ does not vanish in finite samples, and (ii) this is not equivalent to non-collinearity in the limit. A
counterexample is given by ft = c0 + c11{t>T0i}+ut where ut is iid N(0, T−1). Then, for all finite T , 1{t>T0i}
and ft satisfy the non-collinear condition in equation (15) of Gobillon and Magnac (2016), but Assumption
AIi(i) is clearly violated as T →∞.

16While fractionally integrated processes are ruled out in Assumption Di, there exist more general central
limit theorems that accommodate factors with fractional normalization order (e.g., Davidson and DeJong
(2000)). To avoid further complicating our analysis, we do not proceed with such level of generality.

14



jointly and
√
T

NC
→ 0, we have for each i ∈ E:

(a) δ̂i
p−→ ∆̄i.

(b)
√
Tσ−1

T i (δ̂i − ∆̄i)
d−→ N(0, 1) if additionally Assumptions ES and Di hold, where

σ2
T i := V ar[

√
T (δ̂i − ∆̄i)|G̃i].

The consistency and asymptotic normality result is robust to a wide range of factor

dynamics, including nonstationary processes. This may seem surprising given that the DID

estimator is potentially inconsistent when the factors contain a unit root (see Section 2). The

intuition behind the result is that the outcomes and factors form a cointegrating relationship

in our model. Since the intervention dummy 1post,i is a bounded time series, its coefficient

δi can be estimated consistently by least squares method at the
√
T -rate regardless of the

factor dynamics.

The factor proxies contain not only F but also idiosyncratic errors of control units. The

“measurement error” thus introduced creates an endogeneity issue when the idiosyncratic

errors of treated and control units are correlated. The asymptotic condition
√
T/NC → 0 is

necessary to remove the asymptotic bias due to the measurement error.

An important implication of Theorem 1(b) is that the limiting distribution of the stu-

dentized statistic remains to be N(0, 1) under a wide range of factors (stationary and non-

stationary) allowed by Assumption F.17 Inference can be carried out using the studentized

form of the PCDID estimate and standard critical values. To compute the t-statistic, the

population standard deviation σT i may be replaced by a suitable sample analog that reflects

the error dependence structure, e.g., the Newey-West HAC standard error is nonparametric

and is widely used in the time series literature. An alternative approach is bootstrapping

the t-statistic.18 More details about the bootstrap implementation are given in Appendix 6.

The finite sample performance of the inference procedures is studied in Section 6.2.

Remark: The PCDID method resembles SC, unconfoundedness and matrix completion

approaches in that they allow for unparallel trends via factor models. PCDID uses all periods

17This is a non-trivial result. For example, Chernozhukov et al. (2018) state that the key assumption
underlying their inference procedure is stationarity of the data.

18Although we are unable to provide formal proofs, the asymptotic normality result provides support for
bootstrapping the t-statistic. By contrast, the limiting distribution of the non-studentized statistic may vary
discontinuously with the serial dependence properties of the factors (e.g., stationary, near unit-root and unit-
root processes). Hence we do not recommend bootstrapping the PCDID estimate directly.
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of data from treated units in a factor-augmented regression to estimate its target parameter

(e.g., equation (8)). The factor proxies are constructed from data on control units (i ∈ C)

only. The other approaches first estimate the missing potential outcome (ŷit(0)) of treated

units after intervention (i ∈ E and t > T0i) using data from treated units before intervention

(i ∈ E and t ≤ T0i) and control units (i ∈ C); then, they compute ∆̂it := yit(1)−ŷit(0).19 The

regression-based approach of PCDID suggests that assumptions on treatment effect dynamics

are needed to ensure that the estimator converges to a well-defined causal parameter of

interest (in this case, ITET). Xu (2017)’s GSC estimator is particularly relevant to ours, as

it: (1) estimates factors and factor loadings using the control observations; (2) uses these

estimates and the pre-intervention periods of treated units to estimate the factor loadings

of treated units, and then (3) use all the above estimates to predict ŷit(0) of treated units

after intervention. Appendix 3.1 provides a full comparison of identification and efficiency

of PCDID and GSC. We show that, given the estimands are aligned, both approaches are

numerically different (even in the absence of covariates), GSC uses stronger assumption on

identification, PCDID is at least as efficient as GSC, and the former is more efficient when

the factor structure is correlated with Dit. The intuition is that GSC discards data in the

post-intervention subsample which contain useful information about the correlation between

factors and intervention dummy (see #2 above). This leads to efficiency loss, which magnifies

as T1i
T becomes higher. Their finite-sample performance is compared in Section 6.

4.3 ATET Estimation

We now discuss the identification and estimation of ATET ¯̄∆ := E(∆̄i|i ∈ E), the key esti-

mand in this section.20 As discussed in Section 2, this estimand is built on the ITET ∆̄i. To

facilitate the ensuing discussion, we break down the treatment effect ∆it using decomposition

19Vertical regressions (SC methods), horizontal regression (unconfoundedness methods), and regularized
matrix completion methods have been used to estimate ŷit(0). Doubly weighted methods with both vertical
and horizontal regressions have recently been considered, e.g., Arkhangelsky et al. (2019). Their method
numerically solves for vertical and horizontal weights with non-negativity constraints; hence it can be viewed
as an extension of Abadie et al. (2010) where vertical nonnegative weights are involved. Gobillon and Magnac
(2016) derive support conditions implied by nonnegative weights in Abadie et al. (2010). Athey et al. (2018)
show that vertical and horizontal regressions belong to the same class of matrix completion methods based on
matrix factorization (i.e., low-rank matrices) with different restrictions/regularizations.

20Although we only focus on the ATET, other estimands are available, such as the conditional moments
and quantiles of ITET among i ∈ E. These estimands can help unveil the distributional features of ITET.
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(6) and the definition of ATET, obtaining

∆it = ∆̄i + ∆̃it = ¯̄∆ + υi + ∆̃it, (11)

where υi := ∆̄i− ¯̄∆ is the unit-specific deviation of the ITET from the ATET. By construction,

E(υi|i ∈ E) = 0. We consider the following two cases:

(a) Homogeneous ITET over treated units: υi = 0 for all i ∈ E; and

(b) Heterogeneous ITET over treated units: υi varies over i ∈ E.

Case (a) assumes that ∆̄i := E(∆it|t > T0i) are identical for all i ∈ E. This assumption is

weaker than full homogeneity of ∆it (i.e., ∆it = ∆0), but stronger than case (b). We will

consider two types of estimators, the simple mean-group estimator and the pooled estimator.

We will show that in case (a), both estimators identify the ATET under similar assumptions.

However, to identify ATET in case (b), the pooled estimator requires stronger assumptions

than the simple mean-group estimator. Both estimators have a faster asymptotic convergence

rate in case (a) than in case (b). The pooled estimator is analogous to the least square

estimator in 2wfe regression, and is included for completeness of our theory. Readers who

are not interested in a thorough comparison may skip the section on the pooled estimator.

4.3.1 Simple Mean-group Estimator

The simple mean-group estimator (PCDID-MG) is defined as the simple average of the ITET

estimates:21

δ̂mg =
1

NE

∑
i∈E

δ̂i. (12)

The additional assumptions for deriving the large-sample properties of the PCDID-MG esti-

mator are listed below. Define G̃ := {G̃i}i∈E .

Assumption FL (factor loadings): Assumption FLC holds. In addition,

(i) For all i ∈ E, E ‖µi‖2 ≤ c for some constant c > 0.

21A more general estimator is the weighted mean-group estimator, defined as δ̂mg,(ω) =
∑
i∈E ωiδ̂i for a

given set of weights ω = (ω1, ω2, . . . , ωNE )′ on the treated group with
∑
i∈E ωi = 1. It encompasses both the

simple mean-group and pooled estimators as special cases.
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(ii) plimNE→∞
1
NE
µ′EµE is positive definite.

Assumption AImg (asymptotic identification, simple mean-group estimator):

(i) plimNE ,T→∞ infi∈E
1
T 1′post,iMGi1post,i exists and is strictly positive a.s..

(ii) ζ2 := plimNE ,T→∞E

(∥∥∥ 1√
NET

∑
i∈E 1′post,iMGiεi

∥∥∥2
∣∣∣∣ G̃) exists and is strictly positive a.s..

Assumption ESS (strict exogeneity in panel): E(εit|G̃) = 0 a.s. for all i ∈ E and t.

Assumption D (panel dependence): Assumption Di holds for all i ∈ E. In addition, the

following conditions are satisfied:

(i) εit are independent over i ∈ E.

(ii) ζ2
i := limT→∞ V ar(T

−1/21′post,iMGiεi|G̃) satisfies
maxi∈E ζ

2
i∑

i∈E ζ
2
i

= Op

(
1
NE

)
as NE →∞.

Assumption RTmg (treatment effects, simple mean-group estimator): Let υi :=

∆̄i − ¯̄∆. The following conditions are satisfied:

(i) For some p > 2, there exists 0 < c <∞ such that E |υi|p ≤ c for all i ∈ E.

(ii) υi is a mixing process with mixing coefficient φ of size −p/2(p− 1) for p ≥ 2, or α of size

−p/(p− 2), p > 2.

(iii) limNE→∞ V ar(N
−1/2
E

∑
i∈E υi) exists and is strictly positive.

We highlight the key restrictions below. To account for multiple treated units, Assump-

tions FL, AImg, ESS and D involve stronger (but still relatively standard) regularity

conditions than their previous counterparts (Assumptions FLC , ES and Di in Theorem 1).

This also applies to the technical assumption MM (relative to Assumption M in Theorem 1)

in Appendix 1. The key asymptotic identification assumption, AImg(i), requires that every

single δ̂i be well defined.

Assumptions ESS and D are only needed for deriving asymptotic normality related to

δ̂mg under homogeneous ITET (case (a)). Assumption ESS requires that the regressors

are strictly exogeneous in the panel setting. This is necessary for pursuing a conditioning

argument that yields asymptotic normality. Assumption D(i) restricts the idiosyncratic

errors to be independent over treated units. Assumption D(ii) is an asymptotic negligibility

condition on the cross-sectional variation of the treatment panel. While stronger than weak

dependence (Assumption IE), the restrictions enable us to invoke the joint central limit
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theorem of Phillips and Moon (1999) and obtain asymptotic normality. It is possible to relax

the cross-sectional independence at the expense of more technical assumptions.

By contrast, under heterogeneous ITET (case (b)), we need another assumption, RTmg,

to derive consistency and asymptotic normality. It is a set of weak regularity conditions

that place control on the cross-sectional variation and higher-order moments of the term υi

(:= ∆̄i − ¯̄∆). No parametric assumptions are involved. Importantly, neither RTmg nor the

other assumptions preclude ∆̄i (or ∆it) from being cross-sectionally correlated with 1{i∈E},

T0i, xit, ςi and µi (see Section 3). This relaxes Gobillon and Magnac (2016)’s assumption

that covariates are uncorrelated with treatment effects for the treated, for example.

The asymptotic result for PCDID-MG is presented below.

Theorem 2 (simple mean-group estimator) Suppose Assumptions E, F, FL, AImg, IE

and MM hold. As T,NE , NC →∞ jointly and T
NC
→ 0, we have the following results:

(a) (homogeneous ITET) Suppose υi := ∆̄i − ¯̄∆ ≡ 0. Then,

(i) δ̂mg
p−→ ¯̄∆.

(ii)
√
NET ς̄

−1
NE ,T

(δ̂mg− ¯̄∆)
d−→ N(0, 1) if additionally Assumptions ESS and D hold, where

ς̄2
NE ,T

:= V ar[
√
NET (δ̂mg − ¯̄∆)|G̃].

(b) (heterogeneous ITET) Suppose υi satisfies Assumption RTmg. Then,

(i) δ̂mg
p−→ ¯̄∆.

(ii)
√
NE

¯̃ς−1
NE ,T

(δ̂mg − ¯̄∆)
d−→ N(0, 1), where ¯̃ς2

NE ,T
:= V ar[

√
NE(δ̂mg − ¯̄∆)].

A number of remarks are in order. First, the asymptotic efficiency of the PCDID-MG es-

timator depends on the extent of treatment effect heterogeneity in the model. PCDID-MG is
√
NE-consistent under heterogeneous ITET, and achieves a faster

√
NET rate of convergence

under homogeneous ITET.22 The intuition behind this difference is that, under heterogeneous

ITET, υi dominates the idiosyncratic errors εit in the limit. Second, compared to ITET esti-

mation, a stronger asymptotic condition T/NC → 0 is required to remove the asymptotic bias

due to the estimation error of factor proxies. This is necessary when idiosyncratic errors in

the treated and control panels are correlated. Third, the consistency and asymptotic normal-

ity results in Theorem 2(a) are comparable to the interactive effects estimator of Bai (2009)

22In addition, it can be easily shown using the same technique that when the treatment effect is fully
homogeneous (i.e., ∆it = ∆0), the rate of convergence is also

√
NET .
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(Theorem 2), in which the analysis is confined to the case of homogeneous slope parameters

(corresponding to full TE homogeneity (∆it = ∆0) in our context) and stationary factors.

As in Theorem 1, the limiting distribution of the studentized PCDID-MG statistic remains

to beN(0, 1) under a wide range of factors (stationary and nonstationary), which greatly facil-

itates inference procedures. In particular, under heterogeneous ITET, the idiosyncratic errors

are dominated by the variation in υi in the limit (see previous paragraph). This justifies a non-

parametric variance estimator as in Pesaran (2006): v̂ar(δ̂mg) = 1
NE(NE−1)

∑
i∈E(δ̂i − δ̂mg)2,

which provides a convenient way to form the t-statistic. More details regarding inference can

be found in Appendix 6 and Section 6.2.

4.3.2 Pooled Estimator

We consider the following factor-augmented panel regression using data from the treated

panel: for i ∈ E and t = 1, ..T ,

yit = b0i + δ1{t>T0i} + a′if̂t + b′1ixit + eit. (13)

The pooled estimator is the least squares estimator of δ, given by:

δ̂pl =

(∑
i∈E

1′post,iM[F̂ ,Xi]
1post,i

)−1∑
i∈E

1′post,iM[F̂ ,Xi]
yi. (14)

We first list below the assumptions that are different from those for PCDID-MG:

Assumption AIpl (asymptotic identification, pooled estimator): Same as Assumption

AImg, except replacing AImg(i) by:

(i) ρ := plimNE ,T→∞
1

NET

∑
i∈E 1′post,iMGi1post,i exists and is strictly positive a.s..

Assumption RTpl (treatment effects, pooled estimator): LetRT i := 1
T 1′post,iMGi1post,i,

MSRT := {RT i}i∈E and υi := ∆̄i − ¯̄∆. The following conditions are satisfied:

(i) For each i ∈ E, E(υi|MSRT ) = 0 a.s..

(ii) For some p > 2, there exists 0 < c <∞ such that E(|υi|p |MSRT ) ≤ c for all i ∈ E and

T .

(iii) Conditional on MSRT , υi is a mixing process with mixing coefficient φ of size −p/2(p−1)

for p ≥ 2, or α of size −p/(p− 2), p > 2.
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(iv) plimNE ,T→∞ V ar(N
−1/2
E

∑
i∈E RT iυi|MSRT ) exists and is strictly positive a.s..

Assumption AIpl is the key identification condition for δ̂pl under homogeneous ITET.

It is weaker than AImg due to the different manner that the estimator pools information from

the treated units, as is evident from the summations in formula (14). Unlike PCDID-MG, δ̂pl

does not require δ̂i to be well-defined for all i ∈ E, i.e., it allows time-series multicollinearity to

occur in a finite number of treated units as long as there is sufficient variation in intervention

status in the treated panel.

Assumption RTpl is the extra key identification condition for δ̂pl under heterogeneous

ITET. It is stronger than Assumption RTmg due to the presence of a conditioning variable

RT i, which represents unit i’s residual variance of the intervention status 1post,i after it is

projected on Xi and F . In the absence of covariates and factors, RT i is the variance of

demeaned 1post,i, equalling T0i(T−T0i)
T 2 , which is quadratic in T0i and maximized when T0i = T

2

(i.e., variance is largest when the intervention date is T
2 ). RTpl(i) implies that units with

T0i farther away from T
2 have similar ITET as units with T0i closer to T

2 . This assumption is

crucial in ensuring the pooled estimator identifies the ATET, consisting of ITETs with equal

weights across i ∈ E. Otherwise, δ̂pl identifies a weighted function of ITETs.23 A similar

condition can be found in Goodman-Bacon (2018) for DID models. Note that when T0i = T0

(homogeneous intervention date) or T0i is randomly assigned as in an experiment, RTpl is

satisfied.

The asymptotic results below are parallel to those for PCDID-MG:

Theorem 3 (pooled estimator) Suppose Assumptions E, F, FL, AIpl, IE and MM hold.

As T,NE , NC →∞ jointly and T
NC
→ 0, we have the following results:

(a) (homogeneous ITET) Suppose υi := ∆̄i − ¯̄∆ ≡ 0. Then,

(i) δ̂pl
p−→ ¯̄∆.

(ii)
√
NET σ̄

−1
NE ,T

(δ̂pl− ¯̄∆)
d−→ N(0, 1) if additionally Assumptions ESS and D hold, where

σ̄2
NE ,T

:= V ar[
√
NET (δ̂pl − ¯̄∆)|G̃].

23The pooled estimator can be expressed as δ̂pl =
∑
i∈E ωiδ̂i = ¯̄∆ +

∑
i∈E ωiυi + op(1), where ωi =

RTi/
∑
j∈E RTj . It follows that δ̂pl is consistent if RTi and υi are uncorrelated in the limit. By contrast, it

is clear from the decomposition δ̂mg = N−1
E

∑
i∈E δ̂i = ¯̄∆ +N−1

E

∑
i∈E υi + op(1) that the simple mean-group

estimator is consistent under milder conditions on υi without involving RTi (Assumption RTmg).
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(b) (heterogeneous ITET) Suppose υi satisfies Assumption RTpl. Then,

(i) δ̂pl
p−→ ¯̄∆.

(ii)
√
NE

¯̃σ−1
NE ,T

(δ̂pl − ¯̄∆)
d−→ N(0, 1), where ¯̃σ2

NE ,T
:= V ar[

√
NE(δ̂pl − ¯̄∆)|MSRT ].

4.3.3 Efficiency Comparison of Estimators

Theroems 2 and 3 indicate that the simple mean-group and pooled PCDID estimators share

the same asymptotic rate of convergence, but they do not provide further details about their

asymptotic variances. Under the simple setting in which the idiosyncratic errors are iid, it is

possible to carry out a more refined efficiency analysis that would shed light on the preferred

estimator to use (provided all the assumptions are satisfied).24

The asymptotic result below shows that: (a) under homogeneous ITET, the pooled es-

timator is more efficient than the simple mean-group estimator; (b) under heterogeneous

ITET, the reverse is true. Here, σ2 and ς2 denote the asymptotic variances of the pooled and

simple mean-group estimators, respectively, when ITET are homogeneous. Similarly, σ̃2 and

ς̃2 denote the associated quantities under the heterogeneous ITET case.

Theorem 4 (asymptotic efficiency) Suppose Assumptions E, F, FL, IE, D, AIpl, AImg

and MM hold. For each i ∈ E, define ρi := plimT→∞RT i, where RT i = 1′post,iMGi1post,i/T .

The following results are valid a.s.:

(a) (homogeneous ITET) Suppose εit are iid over i and t with mean 0 and variance σ2
ε .

Then σ2 ≤ ς2 a.s.. Equality holds iff ρi are identical over i ∈ E.

(b) (heterogeneous ITET) Suppose υi are iid with mean 0 and variance σ2
υ, and that υi

are independent of RTj for all i, j ∈ E. Then ς̃2 ≤ σ̃2. Equality holds iff ρi are identical over

i ∈ E.

24Note that the optimality result of Theorem 4 is sensitive to the error dependence structure, which affects
the asymptotic variance of the estimators. Nonetheless, the argument leading to this result is constructive
in the search for the asymptotically efficient estimator under more general error dependence structure. More
generally, the weighted mean-group estimator achieves asymptotic efficiency when the weights are chosen to
be proportional to the reciprocal of the (conditional) variance of the associated ITET estimator.
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4.4 Parallel Trend Test under the Factor Structure

We develop a test of what we call “weak parallel trends (PTW)” under the functional form

specification in equation (5):

PTW: E(µi|i ∈ C) = E(µi|i ∈ E) =: µ0 for some finite and non-zero vector µ0,

which posits that the expected factor loadings are the same between control and treated

units. To motivate the test, we first note that any `× 1 factor loading of treated unit j can

be uniquely represented by:

µj = αjE(µi|i ∈ C) + vj , (15)

where αj is a scalar and vj is an `× 1 vector.25 In other words, the factor loading vector of

treated unit j is proportional to the mean factor loading vector over control group, except

for the deviation vj .

Next, we rewrite the reduced-form model (7) for j ∈ E as:

yjt = ςj + β′jxjt + ∆̄j1{t>T0j} + αjE(µ′i|i ∈ C)ft + v′jft + εjt.

The linear combination E(µ
′
i|i ∈ C)ft is a time-varying scalar variable that captures the

cross-sectional average of the factor structure among control units. Since E(µ
′
i|i ∈ C)ft =

E(yit − ςi − β′ixit|i ∈ C) by (7) for i ∈ C and Assumption E(i), it is approximated by the

cross-sectional average ūCt := 1
NC

∑
i∈C ûit, where ûit is the control panel residual from the

linear projection of yit on xit (with intercept); see step 1 of the PCDID procedure in Section

4.1. This motivates a factor-augmented time-series regression for each j ∈ E:

yjt = b0j + b′1jxjt + δj1{t>T0j} + aj ūCt + ejt. (16)

from which we obtain the OLS estimator âj of aj . A single factor proxy ūCt in equation (16)

is adequate as control for E(µ′i|i ∈ C)ft although there may be multiple factors in the model

(unlike PCDID-MG in Section 4.3.1).

25To ensure uniqueness, vj must satisfy normalization restrictions, e.g., the sum of the elements of vj is zero
and that vj 6= γjE(µi|i ∈ C) for any non-zero scalars γj . See Appendix 4.1 for details.
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We define the Alpha statistic as the simple mean-group estimator

âmg :=
1

NE

∑
j∈E

âj .

From (15), we see that α := E(αj |j ∈ E) = 1 and E(vj |j ∈ E) = 0 (a zero vector) under

PTW. The converse is also true.26 The asymptotic result that âmg estimates α = 1 under

PTW forms the basis of Alpha test for weak parallel trends.

The Alpha test performance (including test size and power) is not affected by the specific

normalization applied to the factors and factor loadings. This follows from the rotational

invariance of the factor structure µ′ift (i.e., for any `× ` invertible matrix R, we have µ′ift =

µ′iRR
−1ft). This holds for all i ∈ C ∪E as long as a common normalization is applied to all

treated and control units (see also the end of Section 3).

To prepare for the asymptotic analysis, we list the assumptions below.

Assumption AIα (asymptotic identification, alpha test): Let r be the normalization

order of Fµ0 such that ‖Fµ0‖2 /T 2r = Op(1) as T →∞. The following conditions hold:

(i) plimNE ,T→∞ infi∈E
1
T 2rµ

′
0F
′M[1post,i,Xi]Fµ0 exists and is strictly positive a.s..

(ii) plimNE ,T→∞E

(∥∥∥ 1√
NET r

∑
i∈E µ

′
0F
′M[1post,i,Xi]F (µi − µ0)

∥∥∥2
∣∣∣∣ G̃) exists and is strictly

positive a.s..

Assumption FLM (mixing factor loadings): The following conditions are satisfied:

(i) For some p > 1, there exists 0 < c <∞ such that E(‖µi‖p) ≤ c for all i ∈ C ∪ E.

(ii) {µi : i ∈ C} and {µi : i ∈ E} are mixing sequences with mixing coefficients φ of size

−p/(2p− 1) for p ≥ 1, or α of size −p/(p− 1) for p > 1.

Assumption FLM2 (conditional mixing factor loadings, treated units): The follow-

ing conditions are satisfied:

(ii) For each i ∈ E, E(µi|G̃) = µ0 a.s..

(ii) For some p > 2, there exists 0 < c <∞ such that E(‖µi‖p |G̃) ≤ c for all i ∈ E.

(iii) Conditional on G̃, {µi : i ∈ E} is a mixing sequence with mixing coefficients φ of size

−p/2(p− 1) for p ≥ 2, or α of size −p/(p− 2) for p > 2.

26Suppose α = 1 and E(vj |j ∈ E) = 0. It follows from (15) that E(µ′j |j ∈ E)ft = E(µ′i|i ∈ C)ft for all t, or
in vector form: F [E(µj |j ∈ E)−E(µi|i ∈ C)] = 0. That F has full column rank ` (Assumption F(ii)) implies
E(µj |j ∈ E) = E(µi|i ∈ C) = µ0 where µ0 6= 0, and hence PTW is satisfied.
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Assumption AIα(i) rules out multicollinearity and ensures the Alpha statistic is well-

defined. Assumption AIα(ii) ensures that the Alpha statistic is nondegenerate after suit-

able normalization. To obtain consistency of the Alpha statistic under PTW, Assumption

FLM is required to control the cross-sectional dependence of factor loadings over treated

and control units. Coupled with conditional mixing and moment conditions on the factor

loadings of treated units in Assumption FLM2, we achieve asymptotic normality. The

asymptotic result of Alpha test is stated formally below.

Theorem 5 (Alpha test) Suppose Assumptions E, F, FLM, AIα, IE and MM hold. Then,

under Assumption PTW, we have the following results as T,NE , NC →∞ jointly and T
NC
→

0:

(a) âmg
p−→ 1.

(b)
√
NEϕ̄

−1
NE ,T

(âmg − 1)
d−→ N(0, 1) if additionally Assumption FLM2 holds, where

ϕ̄2
NE ,T

:= V ar[
√
NE(âmg − 1)|G̃].

The above theorem shows that, under the null hypothesis of PTW, the Alpha statistic

is consistent for unity, and the normalized statistic has an asymptotic standard normal dis-

tribution. As in previous theorems, the consistency and asymptotic normality result and

the asymptotic
√
NE-rate are preserved under a wide range of factor specifications (station-

ary and nonstationary). As in PCDID-MG, a nonparametric variance estimator is available:

v̂ar(âmg) = 1
NE(NE−1)

∑
i∈E(âi − âmg)2, which provides a convenient way to form the t-

statistic, âmg−1√
v̂ar(âmg)

(more details regarding inference can be found in Appendix 6 and Section

6.2). It readily follows from the asymptotic normality result that the power of Alpha test

approaches one in the limit under local alternatives, e.g., α = 1 + O(1/
√
NE) as NE → ∞,

in which the “average factor” for the treated group, E(µ′j |j ∈ E)ft remains proportional to

that for the control group, E(µ′i|i ∈ C)ft, but the proportionality constant is different from

(but converges to) one.27

The Alpha test is directly built on the PCDID estimation approach, which allows for

potentially unparallel trends via the factor structure of the interactive effects model; therefore,

27The Alpha test is powerful against more general alternatives with nonparallel trends. Suppose E(µ′j |j ∈
E) = [1 + 1/

√
NE , 1]′ and E(µ′i|i ∈ C) = [1, 1]′. This creates a time-varying gap between the “average

factors” for the treated and control groups, leading to asymptotic bias (when factors are stationary and/or
deterministic) or explosion (when stochastic trends are present) of âmg. Appendix 4.1 contains more details.
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a rejection may imply an incorrect model specification. In a fully nonparametric setting,

Callaway and Sant’Anna (2018) show that the parallel trend assumption (PTA) in DID

analysis is, in general, untestable. Importantly, they also show that a stronger, augmented

version of this assumption is testable. In our notations, their augmented PTA assumes that

the potential outcome yit(0) satisfies conditions akin to E(yit(0) − yi,t−1(0)|X, i ∈ E) =

E(yit(0) − yi,t−1(0)|X, i ∈ C) for each t = 2, .., T , whereas the PTA assumes this for each

t > T0 only. Our PTW is testable in the sense that under the factor structure, it can be

viewed as a special case of the augmented PTA (see also footnote 6).28

We also attempted an alternative test approach based on a comparison between 2wfe

and PCDID-MG estimators. The intuition is given as follows. Assume fully homogeneous

TE (∆it ≡ ∆0), homogeneous intervention dates (T0i ≡ T0), iid idiosyncratic errors (εit ∼

iid(0, σ2
ε )), and the absence of covariates. Under the null hypothesis of homogeneous factor

loadings, i.e., µi ≡ µ0 for all i = 1, . . . , N , we have “strong” parallel trends in which the 2wfe

estimator is consistent for ∆0 regardless of factor specification (see Section 2). Under this

null hypothesis, the PCDID-MG estimator is consistent for ∆0 but less efficient than 2wfe.29

Proposition H in Appendix 4.2, which assumes the null and other restrictions above, reports

the finite-sample variances of 2wfe and PCDID-MG estimators and shows that the Hausman

equality holds, i.e., V ar(δ̂mg − δ̂2wfe) = V ar(δ̂mg) − V ar(δ̂2wfe) > 0. This motivates a

feasible Durbin-Wu-Hausman test statistic t2Haus := (δ̂mg−δ̂DID)2

V̂ ar(δ̂mg)−V̂ ar(δ̂DID)
, which has a limiting

chi-square distribution with one degree of freedom (provided the regularity conditions in

such tests hold). This approach is quite restrictive for two reasons. First, under treatment

effect heterogeneity, the estimand of 2wfe may be different from that of PCDID, making the

estimates incomparable. Second, the approach is only powerful against those departures from

the null in which the 2wfe estimator is biased and inconsistent. Unfortunately, the behavior

of 2wfe is sensitive to the factor structure specification (see the nuisance terms in Section 2).

By focussing on PCDID, the Alpha test circumvents these limitations.

28Given t and t−1, we have E(yit(0)−yi,t−1(0)|i ∈ E)−E(yit(0)−yi,t−1(0)|i ∈ C) = E(β
′
i(xit−xi,t−1)|i ∈

E) − E(β
′
i(xit − xi,t−1)|i ∈ C) + E(µ

′
i|i ∈ E)(ft − ft−1) − E(µ

′
i|i ∈ C)(ft − ft−1) = E(β

′
i(xit − xi,t−1)|i ∈

E)−E(β
′
i(xit−xi,t−1)|i ∈ C). This term is nonzero but it is parametric in x and can be identified (e.g., using

pre-intervention data). Importantly, this result holds for every t = 2, .., T , hence the link to augmented PTA.
29However, when factor loadings are heterogeneous, PCDID-MG is not necessarily less efficient than 2wfe

(provided that both estimators are consistent for ∆0). This is because PCDID takes the factor structure into
account (see also Section 2). Indeed, the simulations in Section 6.1 find that PCDID has a lower empirical SD
than 2wfe (in scenerios where both estimators are valid).
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5 Extension to Micro-Level Data

The existing DID literature on micro-level data assumes that the data consist of groups

(clusters) (e.g., Bertrand et al. (2004), Donald and Lang (2007), Cameron et al. (2008),

Conley and Taber (2011), Mackinnon and Webb (2017)). The workhorse in this literature

is a 2wfe model resembling yigt = ∆igt1{g∈E }1{t>T0g} + β′gxigt + ςg + τt + ε̃igt, where yigt

is the observed outcome of unit i in group g at time t, the indicator functions 1{g∈E } and

1{t>T0g} depend on group g, and ςg and τt are group and time fixed effects (parallel trends),

respectively. The error term ε̃igt is assumed independent across groups but can exhibit within-

group correlation. Moulton (1990) and subsequent work (e.g., Carter et al. (2017)) showed

that the asymptotic properties of estimators depend on the number of groups.

To fix notation, denote the set of treated and control groups in script form, E and C .

There are NE treated groups and NC control groups. There are N = NE +NC units, with a

total of NE units in the treated groups and NC units in the control groups. The number of

units in group g is denoted by Ng. There are T time periods. For treated group g ∈ E , there

are T0g pre-intervention periods and T1g post-intervention periods.

Note that ε̃igt above cannot be independent across groups if it has an interactive effects

structure. Relatively few studies in the interactive effects or SC literature have examined

this micro-level context. This motivates a micro-level model with interactive effects yigt =

∆igt1{g∈E }1{t>T0g} + β′igxigt + ςig + µ′igft + ε̃igt. Similar to Section 3, the TE is assumed to

take the decomposition ∆igt = ∆̄i + ∆̃igt, where ∆̄i := E(∆igt|t > T0g) is the ITET of unit

i in group g (drop subscript g for notational simplicity). This yields a reduced-form model

that we examine:

yigt = ∆̄i1{g∈E }1{t>T0g} + β′igxigt + ςig + µ′igft + εigt, (17)

where εigt := ∆̃igt1{g∈E }1{t>T0g}+ ε̃igt. Theorems 1,2 and 3 are applicable to this model given

the underlying assumptions are satisfied. In such a case, the asymptotic properties of PCDID

estimation do not depend on the number of groups nor the number of units in each group. For

example, PCDID remains valid when there are many control groups (NC →∞) or few control

groups (NC ≥ 1) as long as NC → ∞; the case of few control groups has been tricky in the
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existing literature.30 Assumption FLC allows factor loadings to be arbitrarily clustered, and

Assumption IE allows idiosyncratic errors to have weak cross-sectional dependence as well

as general heteroskedasticity and serial correlation. However, stronger forms of clustering

are potentially problematic. For example, in an error-components model εigt = ε̌gt + ε̌igt

where the group-specific component ε̌gt is independent of the unit-specific component ε̌igt,

the original PCDID will be invalid when NC → ∞, but it remains valid when NC is fixed

and finite but NC →∞ (see Corollary 4 in Appendix 5).31

In what follows, we consider an aggregated PCDID estimator that is applicable to more

general forms of micro-level data. This estimator utilizes the group structure, and we consider

its asymptotic properties in the conventional setting of many control groups (NC →∞). As

an illustration, we will focus on the baseline case of ITET estimation. The estimand is

∆̄i := E(∆igt|t > T0g) given g and i ∈ g. The spirit is the same for ATET estimation

with aggregated mean-group and pooled estimators, where we focus on the estimand ¯̄∆ :=

E(∆̄i|i ∈ E) (see Corollaries 2 and 3 in Appendix 5). We first introduce a group structure

assumption:

Assumption G (group structure): The micro-level model with interactive effects has at

least one treated group and one control group, i.e., NE ≥ 1 and NC ≥ 1. The factor loading

µig and idiosyncratic error εigt are independent across groups.

We consider the aggregated PCDID estimator for ∆̄i, which is denoted by δ̂AGGi . This

estimator uses the same procedure as in Section 4, except that we perform PCA on the ag-

gregated control panel {¯̂ugt}g=1,...,NC
t=1,...,T , which consists of NC × T observations, where ¯̂ugt :=

30Existing approaches require many control groups, or at least a moderately large number of control and
treated groups. Recent methods such as Conley and Taber (2011) are applicable to the case of many control
groups and few treated groups, allowing very short T . Under micro-level data, their estimator requires the
number of units in a group to grow uniformly at the same rate as the number of groups. Relaxing Conley
and Taber’s assumption that the error is iid across groups, Ferman and Pinto (2019) extend their work
and propose an estimator (allowing very short T ) for aggregate-level data, which permit specific forms of
heteroskedastic errors across groups. They assume that the heteroskedasticity in the aggregate-level data is
implicitly generated by micro-level data in which the number of units differs across groups. Canay et al. (2018)
consider wild bootstrap with a small number of large groups. They require the distribution of covariates to
be homogeneous across groups.

31Suppose we designate the group-specific component as part of the interactive effects structure. Express
εigt for i ∈ C as εigt = [µ′ig e′g][f

′
t ε̌1t ε̌2t . . . ε̌NC t]

′ + ε̌igt, where eg is a NC × 1 vector with the value of
1 in the g-th element and zero in all other elements. As NC → ∞, this “enlarged” interactive effects model
violates the assumption that the number of factors is fixed. Note that this is no longer an issue when NC is
fixed and finite.
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N−1
g

∑
i∈g ûigt is the cross-sectional within-group average of the first-stage residuals ûigt ob-

tained from linear projections in Section 4.1, step 1 for each i ∈ C. The main result is:

Corollary 1 (PCDID-AGG): Suppose Assumptions G, EG, F, FLGC , AIi, IEG and MG

hold in the micro-level model with interactive effects. Then, as T,NC →∞ jointly, we have

for each i ∈ E:

(a) δ̂AGGi
p−→ ∆̄i.

(b)
√
T σ̆−1

T i (δ̂AGGi − ∆̄i)
d−→ N(0, 1) if additionally Assumptions ES and Di hold, where

σ̆2
T i := V ar[

√
T (δ̂AGGi − ∆̄i)|G̃i].

The overall intuition is the same as in Section 4. Assumption EG is essentially the same

as Assumption E; Assumptions FLGC , IEG and MG list standard regularity conditions

on components in the aggregated control panel from which factor proxies are constructed (see

Appendix 5).32 No assumptions are imposed on Ng (number of units in group g) and, within

each control group, relatively arbitrary forms of clustering in factor loadings and idiosyncratic

errors are allowed.33 Due to group-level independence (Assumption G), we do not need the

condition
√
T

NC
→ 0 to bound the cross-sectional correlation between the estimation error of

factor proxies and idiosyncratic errors of the treated unit. This assumption is stronger than

necessary for Corollaries 1-3 and can be relaxed.

6 Small Sample Properties of Estimators via Simulations

6.1 Baseline specifications and results

All DGPs follow the general form yit = ∆it1{i∈E}1{t>T0i} + β
′
ixit + ςi + µ

′
ift + ε̃it. We first

discuss the DGPs for ITET estimation, and then the DGPs for ATET estimation. The

DGPs for ITET estimation set NE = 1, T0i = T
2 , ∆it = 3, ςi = 0 and xit = 0 (relaxed

below). The idiosyncratic error exhibits serial correlation as well as heteroscedasticity across

32The method can be readily applied to repeated cross-sectional data. Provided that extra regularity
conditions for cross-sectional data are satisfied, an aggregated control panel can be formed, wherein each
observation is constructed from all units observed in that particular g and t. Under repeated cross-sectional
data, it is more convenient to assume that βig is homogeneous or group-specific, e.g., pooled regressions of
yigt on xigt can be used to obtain first-stage residuals.

33Assumption IEG, which is weaker than Assumption IE, accommodates weak dependence of ε̄gt :=

N−1
g

∑Ng

i=1 εigt across control groups, across control groups and treated units, and across time, but unlike
IE, it does not necessarily require weak dependence of εigt across units within a control group. Assumption
FLG states that the aggregated panel preserves key variations in factor loadings that identify the factor space.
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i; specifically, ε̃it = ρεε̃i,t−1 + νithi where ρε = 0.1, νit ∼ N(0, 0.01(1− ρ2
ε )) is iid across i and

t, and hi ∼ unif(0.5, 1.5) is iid across i. Three interactive effect scenarios are considered:34

1. Stationary factors: For each of the three factors j = 1, 2, 3, fjt = φj + ηj1{t>T
2
} +

ρjfjt−1 + ujt with i.i.d. ujt ∼ N(0, σ2
uj), φ1 = φ2 = φ3 = 0, η1 = η2 = η3 = 0, ρ1 = 0.5,

ρ2 = 0.7, ρ3 = 0.9, σ2
u1 = 0.0675, σ2

u2 = 0.0459 and σ2
u3 = 0.0171. Hence all three

factors are AR(1) and have variance 0.09.

2. Stationary factors with break: same as #1 except that η2 = 1.2. Hence factor 2 is

AR(1) except for a jump at t = T
2 + 1. Factor 2 is positively correlated with 1{t>T0i}

but not collinear because it is time-varying for all t (Assumption AI(i) is satisfied).

3. Nonstationary factors with drift: same as #1 except that φ1 = 0.1, ρ1 = ρ2 = ρ3 = 1,

σu1 = 0.3, σu2 = 0.5, and σu3 = 0.1. Hence all three factors are I(1), and factor 1 drifts

upward by 0.1 per period.

In all scenarios, the factor loading of unit i for factor j is distributed as µij ∼ N(mCj , σ
2
µC

)

if i ∈ C, and µij ∼ N(mEj , σ
2
µE

) if i ∈ E. We set (mC1,mC2,mC3) = (1, 0.9, 0.8),

(mE1,mE2,mE3) = (1.2, 1.4, 1.6), σµC = σµE = 0.3 so that the average factor loadings

are higher among treated units than control units (µi is positively correlated with 1{i∈E}).

Yet in Scenario 1, µ
′
ift remains uncorrelated with 1{i∈E}1{t>T0i} because ft is uncorrelated

with 1{t>T0i}. In scenario 2, µ
′
ift is positively correlated with 1{i∈E}1{t>T0i} due to factor 2.

In scenario 3, µ
′
ift tends to be larger among treated units and in later time periods (due to

factor 1), but its correlation with 1{i∈E}1{t>T0i} is undefined due to unit roots in ft.

We compare seven estimators: (i) PCDID, (ii) DID with two-way FE (“DID-2wfe”), (iii)

DID with FE and unit-specific cubic time trend (“DID-trend”; e.g., Wooldridge (2005)), (iv)

Bai (2009), (v) GSC (Xu (2017)), (vi) stepwise GM (Gobillon and Magnac (2016)), (vii)

nuclear norm matrix completion (“MC-NNM”; Athey et al. (2018)). Details of the last three

estimators are in Appendix 3.35 PCDID, BAI, GSC and GM assume there are three factors,

34Existing studies have typically considered factors in simpler forms, e.g., iid factor or deterministic sinusoid
functions (Bai (2009), Gobillon and Magnac (2016)). For space reasons, we do not report scenarios that involve
deterministic trends; such cases are trivial and are encompassed by PCDID as a special case. We also do not
report scenarios that involve a mix of nonstationary and stationary factors because the results look similar to
the scenario with nonstationary factors only.

35DID-2wfe performs regression yit = δ1{i∈E}1{t>T0i} + b0i + τt + eit on the full sample. DID-trend also

performs regression on the full sample: yit = δ1{i∈E}1{t>T0}+ b0i+ b11{t>T0}+
∑3
m=1 aimt

m+ eit if T0i = T0;

yit = δ1{i∈E}1{t>T0i} + b0i +
∑3
m=1 aimt

m + eit under staggered adoption. In Bai (2009), the cth iteration
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whereas MC-NNM computes the rank (or number of factors) automatically. We consider 10

different (N,T ) combinations, and compute the bias and standard deviation (SD) of each

estimator based on 1000 replications.

Table I reports the ITET estimation results. Overall, PCDID yields the best performance

in terms of bias and SD. Other methods have relatively uneven performance across scenarios

and sample size. DID-2wfe performs worst, as expected, followed by DID-trend. MC-NNM

outperforms DID methods in scenario A, which is consistent with Athey et al. (2018). It

is biased heavily upward in B and C, even though the estimated rank is close to the true

number of factors when sample size is large. Both GSC and GM have a high SD when T is

small. When T is large, their performance are similar to PCDID in A, but still worse in B

and C. Compared to PCDID, BAI has worse bias overall but slightly better SD in B. The

average number of iterations required for convergence is nontrivial, ranging from 8 to 120

depending on scenario and sample size, and non-convergence is quite common.36

In the DGPs for ATET estimation, we set NE = NC = N
2 . In addition, we set ∆it =

3 + ∆̃i + 0.25(µi1− 1.2) + 5
T [|T0i− T

2 | −E(|T0i− T
2 |)] + ρ∆∆i,t−1 + u∆,it, where ∆̃i ∼ N(0, 1),

ρ∆ = 0.1 and u∆,it ∼ N(0, 0.01(1 − ρ2
∆)). Therefore, the treatment effect varies cross-

sectionally and over time, and it is correlated with both the unobserved loading of the first

factor µi1 and the policy intervention date (T0i+1). The treatment effect is smallest when T0i

equals T
2 , and it is larger when T0i is closer to the beginning or the end of the sample period.

We compare the simple mean-group estimator (PCDID-MG) with the other estimators.

Table II reports the ATET estimation results when the policy intervention date is homo-

geneous (T0i = T
2 ). The relative advantage of PCDID is larger compared to ITET estimation

– PCDID-MG outperforms the other estimators in all scenarios and sample sizes. The next-

best performers are GSC and GM, both having a large SD when T is small. Somewhat

contains two estimation sub-procedures: (i) based on the panel of residuals yit− δ̂(c−1)1{i∈E}1{t>T0i}− b̂0
(c−1)

where (δ̂(c−1),b̂0
(c−1)

) are estimates from the (c-1)th iteration, use PCA to estimate the interactive effects

structure µ̂
′
ift

(c)

, and (ii) subtract µ̂
′
ift

(c)

from yit, and obtain (δ̂(c),b̂0
(c)

) from the regression yit − µ̂′
ift

(c)

=
δ1{i∈E}1{t>T0i} + b0 + eit on the full sample. Similar iterative procedures are found in Ahn et al. (2001)
and Moon and Weidner (2015); because the numerical properties are similar in our DGPs, we focus on Bai’s
procedure.

36There has been limited attention on the numerical convergence properties of Bai (2009). The choice of
initial values, maximum/actual number of iterations and convergence criterion vary widely across studies. We
draw the initial value of δ from N(2.7, 0.09) and the initial value of intercept b0 is zero. We stop iterating
when the Euclidean distance between the estimates in the cth and (c+1)th iterations is smaller than 10−3, or
when the number of iterations exceeds 500. We flag the result if all 1000 replications attain convergence.
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surprisingly, numerical convergence in BAI becomes strenuous in all scenarios.37 DID-2wfe,

DID-trend and MC-NNM are satisfactory in scenario A only.

Table III reports the ATET results under staggered adoption, which draws T0i from

a uniform discrete distribution: T0i ∼ Unif{dT4 e, b
3T
4 c}. PCDID-MG remains the best

performer. GSC and GM have very large SDs when T is small, as some treated units have

short pre-intervention periods under staggered adoption; when T0i is equal to or smaller

than the number of PCs/factors, under-identification occurs and unit i is dropped, yielding a

negative bias.38 BAI improves due to staggered adoption, although some bias remain. DID-

2wfe has bias, even in scenario A, which is consistent with Goodman-Bacon (2018) that it

assigns different weights to treated units with middle intervention dates versus those with

early or late dates. MC-NNM has similar performance to DID-2wfe. DID-trend has better

performance due to staggered adoption, although it is still dominated by PCDID-MG.

We examine the performance of PCDID-MG when the number of factor proxies is cho-

sen by the growth ratio (GR) test in Ahn and Horenstein (2013).39 Consistent with their

findings, the GR test underestimates the number of factors when the sample size is small.

Nevertheless, this worsens PCDID only slightly, even in scenarios B and C (see Appendix

Table A1, compared with Table II). As in Moon and Weidner (2015), the limiting distri-

bution of PCDID is not affected by the number of factor proxies as long as this number is

not underestimated. Therefore, overestimation of number of factors is less problematic than

underestimation. To examine this, we consider (1) a conservative version of the GR test that

may overestimate the number of factors,40 and (2) setting the number of factor proxies to be

5. Both result in very small deterioration of PCDID performance.

We also examine the performance of PCDID-MG when exogenous or endogenous co-

variates are present (see Section 4.1 for the estimation algorithm). The DGP assumes

37We also tried a tighter convergence criterion (10−4) and higher maximum iterations (2,000), but the results
remain similar.

38For each treated unit, both GSC and GM use T0i periods to estimate the unit-specific intercept and the
p unit-specific factor loadings. There are insufficient degrees of freedom if T0i < 1 + p.

39They develop two tests, the eigenvalue ratio (ER) test and the GR test. Both are easy to compute. In
the ER test, the estimated number of factors is obtained by maximizing the ratio of two adjacent eigenvalues
(from the sample covariance matrix of control units) arranged in descending order. The GR test is a smoothed
version of the ER test. See Appendix 8 for details. In our simulations, the GR test tends to perform better.

40Ahn and Horenstein (2013) note a one-factor bias problem in these tests, i.e., in finite samples, the
estimated number of factors is often one. In our conservative approach, whenever this occurs, we reset the
estimated number of factors to be equal to half of the maximum possible number of factors in the model
( kmax

2
). In all simulations, we set kmax = 6.
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ςi ∼ N(1 + 1{i∈E}0.5, 0.09), xit = 1{i∈E}0.3 + ρxµi3f3t + ux,it where ux,it ∼ N(0, 1), and

the slope βi = 1 + 1{i∈E}0.2. Therefore, ςi, xit, and βi are positively correlated with 1{i∈E}.

We consider ρx = 0 and ρx = 0.3; in the latter case, xit is correlated with the interactive

effects of the third factor (µi3f3t). PCDID performs well in both cases (see Appendix Table

A1). The results are similar when x is exogenous or endogenous (to the factor structure),

lending support to the robustness of our approach.

6.2 Inference on ITET/ATET and parallel trend test

We examine the finite-sample performance of PCDID inference procedures for ITET and

ATET. The DGPs are the same as in Table I and II, respectively (except we set ρε = 0 in

the DGP for ITET inference). The null hypothesis is set at the DGPs’ true value (δ0 = 3).

We use 1000 replications and a nominal size of 5%. We compare four procedures. The first

two are based on the full sample only, while the other two involve 199 bootstrap samples per

replication: (1) TrueF: assume factors are observed in PCDID estimation (infeasible) and

compute t-statistic, reject if |t| ≥ 1.96. (2) Asym: use factor proxies in PCDID estimation

and compute t-statistic, reject if |t| ≥ 1.96. (3) b-t: same as Asym, but reject if t ≤ c0.025

or t ≥ c0.975 where c0.025, c0.975 are percentiles of the bootstrap distribution of t-statistics.

(4) b-se: same as Asym, but the standard error in the t-statistic formula is obtained from

bootstrap samples.

Comparing Asym with TrueF will give the relative performance when factors are estimated

instead of known (e.g., Gonçalves and Perron (2014)). Because Asym is asymptotically

valid (see Theorems 1,2,3), comparing b-t/b-se with Asym will show whether bootstrapping

yields reasonable results relative to this baseline approach. For ITET inference, a mix of

wild and stationary bootstrap is used; for ATET inference, wild bootstrap is used.41 See

Appendix 6 for details on bootstrap sample construction. In TrueF, Asym and b-t, we

compute t-statistics based on analytical standard errors. For ITET inference, it is δ̂i−δ0
se(δ̂i)

where se(δ̂i) is obtained from the classical standard error formula based on the time-series

regression for unit i.42 For ATET inference, it is δ̂mg−δ0
se(δ̂mg)

with the nonparametric estimator

41Stationary bootstrap is performed on residuals; it does not require parametric assumptions but requires
a tuning parameter. We set the tuning parameter at 1

T
so that the “contiguous” block length increases with

T . See Politis and Romano (1994) for details.
42As mentioned above, the DGP for ITET inference sets ρε = 0; see Gonçalves and Perron (2014) for a

similar setup. The formula can be replaced by the Newey-West HAC estimator if ρε 6= 0.

33



se(δ̂mg) =
√

1
NE(NE−1)

∑
i∈E(δ̂i − δ̂mg)2 (see discussion after theorem 3).

Table IV reports the simulation results. In ITET inference (left panel), TrueF has a

rejection rate close to the nominal size of 5%, as expected. Asym’s rejection rate is similar to

TrueF’s, especially when the sample is large; however, it tends to overreject when N << T .

B-t performs similarly to Asym, and has better performance when N << T . B-se has a lower

rejection rate (i.e., more conservative) compared to b-t. In ATET inference (right panel), the

inference procedures perform better. TrueF, Asym, b-t and b-se all yield similar results in

general, with rejection rates close to 5% when the sample is large, and Asym and b-t having

less severe overrejection when N << T .

We then examine the performance of the parallel trend alpha test. The DGP assumes the

following factor scenarios: (i) one AR(1) factor (φ = 0, η = 0, ρ = 0.5, σ2
u = 0.0675); (ii) one

AR(1) factor with break (same as (i) except η = 2); (iii) one I(1) factor with drift (φ = 0.1,

η = 0, ρ = 1, σu = 0.3). In addition, it assumes mC = mE = 1 (PTW holds) and σµC =

σµE = 0.1. The DGP is otherwise the same as in Table II. We use 1000 replications and a

nominal size of 5%. We consider TrueF, Asym and b-t procedures, which compute t-statistics

based on analytical standard errors: âmg−1
se(âmg) where se(âmg) =

√
1

NE(NE−1)

∑
i∈E(âi − âmg)2

and âmg := 1
NE

∑
i∈E âi.

Table V reports the rejection rates of the alpha test. In light of the asymptotic ratio

in Theorem 5, the sample size combinations focus on increasing NC while keeping T fixed

at various levels. As expected, TrueF has a rejection rate close to 5%. Asym’s rejection

rate converges to 5% when NC becomes large relative to T ; however, it overrejects when

NC << T . B-t performs similarly to Asym, and has better performance when NC << T .

We also examine the power and rotational invariance of the alpha test. The DGP is the

same as in Table V, except mC = 2 and mE ∈ [1.8, 2.2]. Note that the alpha test is based

on identification of the relative instead of absolute levels of mC and mE . Due to this feature

and test consistency of t-tests, its asymptotic rejection rate equals the nominal size when

mE
mC

= 2
2 = 1, and equals 100% otherwise. This is confirmed in the simulations; Appendix

Figure A2 also compares the rejection rates of TrueF, Asym and b-t procedures under various

values of mE
mC

, and show that they are similar when the sample is large.
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6.3 Micro-level data

The DGPs largely follow the baseline in Section 6.1. The general form is yigt = ∆igt1{g∈E }1{t>T0g}+

ςig + µ
′
igft + ε̃igt where i, g, t represent unit, group, and time, respectively. We set ςig = 0,

T0g = T
2 = 25 and the same ft specifications as in the baseline. We assume mutually indepen-

dent group and unit error components: µig = µ̌g+ µ̌ig and ε̃igt = ε̌gt+ ε̌igt, and set the within-

cluster correlation of factor loading rµ and idiosyncratic error rε at (rµ, rε) = (0.2, 0.2).43

In the DGPs for ITET estimation/inference, we set ∆igt = 3; in those for ATET, we set

∆igt = 3 + ∆̃ig + 0.25(µig1 − 1.2) where ∆̃ig ∼ N(0, 1).

In Table VI, the results on the left are based on DGPs for ITET estimation/inference

with one treated group/unit only (NE = NE = 1). The results on the right are based on

DGPs for ATET estimation/inference with one treated group consisting of 25 units (NE = 1,

NE = 25). We consider four sample structures in the controls: (A) Multiple control groups

(NC = 5, 10, 25, 50), each consisting of 25 units. (B) One control group (NC = 1) consisting

of 5, 10, 25, 50 units. (C) Multiple control groups (NC = 10, 50), each consisting of different

numbers of units (average=25).44 (D) Multiple control groups (NC = 10, 50), each consisting

of 35 units. We use the aggregated PCDID/PCDID-MG (mean-group across i ∈ E) estimator

in Panels A, C and D, and use the original estimator in Panel B. All reported outcomes –

empirical bias and SD, as well as the rejection rates of the TrueF, Asym, b-t and b-se inference

procedures, are defined in the same way as in Tables I, II and IV. The results are similar to

those tables, providing support for the use of PCDID in various forms of micro-level data.45

43The factor loadings follow µ̌g ∼ iidN((1, 0.9, 0.8)
′
, σ2
µg
I) for g ∈ C and µ̌g ∼ iidN((1.2, 1.4, 1.6)

′
, σ2
µg
I)

for g ∈ E , µ̌ig ∼ iidN((0, 0, 0)
′
, σ2
µig
I), and σ2

µg
+ σ2

µig
= 0.09. The idiosyncratic errors follow ε̌gt =

0.1ε̌g,t−1 + ν̌gthg, where ν̌gt ∼ iidN(0, σ2
ν̌g ), ε̌igt = 0.1ε̌ig,t−1 + ν̌igthig where ν̌igt ∼ iidN(0, σ2

ν̌ig ), and

hg, hig ∼ iidU(0.5, 1.5), σ2
ν̌g + σ2

ν̌ig = 0.0099. rµ := σ2
µg
/(σ2

µg
+ σ2

µig
) and rε := σ2

ν̌gt/(σ
2
ν̌gt + σ2

ν̌igt), re-
spectively. Note that even when (rµ, rε) = (0, 0), there is still cross-sectional dependence due to the factor
structure. The literature’s benchmark is closer to rε = 0.1, which is sufficient to cause a severe downward bias
of OLS standard errors (e.g., Moulton (1990), Ferman and Pinto (2019)).

44When NC = 10, each control group has 20,21,...24,26,..,30 units, respectively. When NC = 50, each
control group has 13,13,14,14,...,37,37, respectively.

45Existing methods, which allow for short T , emphasize the impact on estimator performance from the
number of units in a group (Ng) and its heterogeneity, or from small NC (e.g., Donald and Lang (2007),
Cameron et al. (2008), Conley and Taber (2011), Carter et al. (2017), Mackinnon and Webb (2017)).
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7 Placebo Designs

The “placebo law” approach by Bertrand, Duflo and Mullainathan (2004) (henceforth BDM)

has been used as a benchmark in subsequent studies, e.g., Cameron et al. (2008) and Mackin-

non and Webb (2017), to evaluate the performance of hypothesis tests related to DID-2wfe.

We use it to compare the overall performance of DID-2wfe and PCDID estimators. As in

BDM, the data come from the Current Population Survey (CPS) between 1979 and 1999

with the benchmark model being yigt = ∆Igt + β
′
xigt + ςg + τt + uigt, where yigt is the log

earnings of individual i (women aged 25-50) in state g and year t, Igt is a dummy variable

equaling one if the placebo law is in place in state g and year t (explained below), xigt is a

set of individual characteristics including age and education, ςg is the state fixed effect, τt is

the year fixed effect, and uigt is the disturbance term.

As Mackinnon and Webb (2017) argue, there is limited loss of power by aggregating the

data to a state-year panel because the key variable, Igt, does not vary at the individual level.

Nevertheless, we present results from both aggregate data (1,071 observations) and micro-level

data (549,735 observations). Following BDM, the dependent variable in the aggregate data is

the state-by-year average log earnings after partialing out the individual characteristics.46 We

consider 1000 replications. Following BDM, each replication draws a year at random between

1985-95 (T0 ∼ Unif{1985, 1995}); then, select a subset of states at random and designate

them as treated states (g ∈ E ). Thus the policy variable is Igt := 1{g ∈ E }1{t > T0}.

We consider two scenarios. Scenario A serves as the original benchmark, by selecting 10

states at random from the pool of 51 states. Because randomization on Igt is carried out

unconditionally (which is rarely true empirically), the DID-2wfe estimator for ∆ will, trivially,

yield an empirical mean close to zero; in fact, a between-group estimator is already sufficient.

As BDM pointed out, DID-2wfe is appropriate when the interventions are as good as random,

conditional on time and group fixed effects. Motivated by this, we add Scenario B, which

selects 10 states at random from the pool of the largest 25 states as defined by the state’s

population in 1990. The spirit remains the same if we construct the pool differently;47 for

46BDM constructs this variable by regressing yigt on xigt, obtain the residuals ν̂igt, and compute the simple

average of the residuals across all i within the same g and t, i.e., ¯̂νgt = 1
Ngt

∑Ngt

i=1 ν̂igt. They then regress

this variable ¯̂νgt on Igt allowing for fixed effects ςg and τt. To allow for direct comparison, in the micro-level
data we use ν̂igt as the dependent variable. Our data are extracted from the archive of Mackinnon and Webb
(2017).

47For example, select 10 states at random from the pool of Eastern and Midwest states.
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DID-2wfe to be valid, the difference between pool and non-pool states ought to be adequately

captured by state fixed effects (i.e., parallel trends). We can view Scenario B as carrying out

randomization on Igt conditional on state fixed effects. This is true if, plausibly, no systematic

relationship exists between changes in average earnings and changes in the state population.

Table VII reports the results. We first discuss aggregate data (left side of the table). In

scenario A, both DID-2wfe and PCDID yield an empirical mean close to zero, as expected.

Interestingly, the empirical SD of DID-2wfe is larger than that of PCDID (see also Table

II), which suggests an efficiency gain by accounting for the factor structure. To facilitate

comparison, we present rejection rates from bootstrap b-p and b-se procedures in DID-2wfe

and PCDID (see also Appendix 6).48 Consistent with earlier studies, the rejection rate for

DID-2wfe is close to the nominal size of 5%. For PCDID, the test under-rejects when 1 or

3 PCs are used and it converges to the nominal size when 5 or 7 PCs are used, hinting at

the complexity of the unobserved trends. The results are different in scenario B. DID-2wfe is

biased upwards with an empirical mean of 0.020. This magnitude is non-trivial; for example,

Cameron et al. (2008) investigate the power of their tests against the alternative hypothesis

that δ0 = 0.02. PCDID has an empirical mean of close to zero. The bias in DID-2wfe causes

the test to over-reject the null hypothesis. For PCDID, the rejection rates exhibit a similar

pattern to scenario A.

The right side of the table considers micro-level data. In scenario A, the results are

similar to those when aggregate data are used. Despite the huge increase in sample size,

DID-2wfe has a small efficiency gain only (empirical SD drops to 0.173 from 0.193), while

there is no efficiency gain for PCDID. In scenario B, DID-2wfe is still biased upward with

an empirical mean of 0.008 – the bias becomes smaller possibly because the estimate is

implicitly weighted by state population, which is the selection criterion of our pool. In a

different context of studying the effects of divorce law reforms using an aggregate state-year

panel, Kim and Oka (2014) also find that DID-2wfe estimates are sensitive to the weighting

scheme. For PCDID, the results are qualitatively similar to that in scenario A. Overall,

PCDID demonstrates superior performance to DID-2wfe as far as robustness is concerned.

48Our wild bootstrap for DID-2wfe is similar to Cameron et al. (2008) and Mackinnon and Webb (2017).
The b-se procedure for DID-2wfe corresponds to the “wild cluster bootstrap-se” method in Cameron et al.
(2008). Because the analytical standard errors are different, we do not compare b-t procedures between DID-
2wfe and PCDID. The B-p procedure is otherwise the same as b-t except it uses the original instead of t
statistic. Note that b-p and b-se are both valid when the outcome is stationary – a plausible assumption in
this application.
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8 Effect of Waiver Programs on Welfare Caseloads

DID regressions have been widely used for examining the effects of various welfare reforms

on labor market outcomes (see e.g., Chan and Moffitt (2018) for a recent survey). In this

illustration, we examine the effects of waiver programs on caseloads in the Aid to Families

with Dependent Children (AFDC) program. Providing cash assistance to low-income female-

headed families, AFDC had been one of the largest means-tested transfer programs in the

US. In the 1990s, many states sought waivers from the federal government, which allowed

them to deviate from federal AFDC rules. The majority of the states had a waiver in place

when AFDC was replaced by the Temporary Assistance for Needy Families (TANF) program

in 1997.

Our analysis builds on Ziliak et al. (2000), who found mixed evidence regarding the

effects of waivers. Their model is similar in spirit to a DID regression with state fixed effects

and state-specific cubic time trends, based on a first-differenced monthly panel of state-

level caseloads and heteroscedasticity-robust standard errors. Our focus is to apply both

PCDID and DID regressions (taking into account of clustering) and compare the results.

Our data set covers 50 states plus the District of Columbia for 117 months from Oct1986

to Jun1996.49 Because PCDID is robust to the presence of nonstationarity trends, we do

not first-difference the data. As in Ziliak et al. (2000), we use the waiver approval date

to define policy intervention. Specifically, we define T0i as the approval date of state i’s

work requirement waiver or time limit waiver, whichever is earlier.50 The policy intervention

exhibits staggered adoption with T0i as early as mid-1992 (see Figure A4). There are 20

control states, which have neither of the waivers by the end of the sample period.

We perform PCDID estimation separately in four different samples, all of which have

T = 117 periods: (1) Control plus all treated states (NC , NE) = (20, 31); (2) Control plus 10

Southern treated states (NC , NE) = (20, 10); (3) Control plus 21 non-Southern treated states

(NC , NE) = (20, 21); (4) Control plus Wyoming (NC , NE) = (20, 1). Summary statistics

49The data came from Quarterly Public Assistance Statistics published by the Office of Family Assistance
of the U.S. Department of Health and Human Services. We would like to thank James Ziliak for generously
providing the data for analysis.

50We follow the definitions of variables in Ziliak et al. (2000). Work requirements and time limits are the
key components of welfare reform and they unambiguously reduce welfare participation. For simplicity, we
do not consider earnings disregards and parental responsibility waivers, which yield mixed evidence in the
literature, e.g. see Chan (2013) and Chan and Moffitt (2018) for details.
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indicate that the average characteristics of treated and control states are generally similar,

while individual states, e.g., Wyoming, can be quite different from the average (see Table

A2). The Southern states are defined as states in the South Census region (18 in total); we

will examine whether the policy had larger effects in the South, where the welfare system

was relatively stringent.

We apply PCDID to the model yit = ∆it1{i∈E}1{t>T0i}+β
′
ixit+ ςi+µ

′
ift+ ε̃it, where yit is

the log of per-capita welfare caseload in state i at time t, ∆it is the treatment effect, T0i is the

waiver approval date, xit is a vector of six time-varying covariates including the maximum

combined real AFDC/Food Stamp benefits for a family of three, state unemployment rate,

state log employment-to-population ratio, and calendar quarter dummies; ςi is the state

fixed effect, µ
′
ift is the interactive effects structure, and ε̃it is the idiosyncratic error. We use

PCDID (δ̂i) for ITET (∆̄i := E(∆it|t > T0i)) estimation in sample 4, and PCDID-MG (δ̂mg :=

1
NE

∑
i∈E δ̂i) for ATET ( ¯̄∆ := E(∆̄i|i ∈ E)) estimation in samples 1,2,3. The estimation and

inference algorithms are the same as in Section 4.51 We report analytical standard errors

(Asym), bootstrapped standard errors (b-se), and p-values from bootstrapped t-statistics

(b-t); note that b-se tends to be more conservative than the other two (see Section 5). For

comparison, we also use sample 1 to estimate: (1) DID-2wfe regression yit = δ1{i∈E}1{t>T0i}+

b
′
1xit+ b0i+ τt+ eit; (2) DID regression with state-specific time trends yit = δ1{i∈E}1{t>T0i}+

b
′
1xit + b0i +

∑M
m=1 aimt

m + eit where M = 3 (cubic) or M = 4 (quartic) (e.g., Wooldridge

(2005)). For DID regressions, we report cluster wild bootstrapped standard errors, as in

Section 6.

Table VIII reports the estimates from PCDID (panels A, B) and DID regressions (panel

C). Panel A reports the preferred specification of PCDID with 4 PCs (GR test discussed

below). In sample 1 (all treated states), the PCDID-MG coefficient on policy intervention is

-0.017, implying that waivers reduced per-capita welfare caseload by 1.7% on average.52 It is

statistically significant at the 5% level by Asym and b-t, and 10% level by b-se. The effects

are larger in the South – in sample 2 (Southern treated states), the coefficient is -0.024 and

51We include some covariates that are potentially endogenous to the factor structure, e.g., unemployment
rate. PCDID is robust to such covariates (see Section 4.1, Table A1 and Appendix 7). We perform fixed effect
estimation of yit on xit in the control panel (2,340 observations) to obtain residuals, which are then used for
constructing factor proxies f̂t by PCA.

52Among the other covariates, the PCDID-MG coefficient on unemployment rate is positive and statistically
significant at the 1% level; the welfare maximum benefit has a statistically significant positive coefficient in
some specifications; the employment-to-population ratio is statistically insignificant.
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statistically significant at the 1% (Asym and b-t) or 5% (b-se) level, whereas in sample 3

(non-Southern treated states), the coefficient is -0.013 and statistically insignificant at the

10% level. Waivers reduced Wyoming’s per-capita caseload by 11.4% on average – in sample

4 (Wyoming), the PCDID coefficient is -0.114 and statistically significant at the 1% (Asym

and b-t) or 5% (b-se) level.53

Table VIII and Figure 1 also report the fraction of the change in per-capita caseload in

treated states between Jan93 (t=76) and Jun96 (t=117) that can be explained by the policy

intervention. Specifically, we compute 1− ȳcfE,117−ȳ
cf
E,76

ȳpredE,117−ȳ
pred
E,76

where ȳcfE,t denotes the counterfactual

average per-capita caseload in treated states at period t assuming no reform at all (i.e., set

T0i = ∞ ∀i) and ȳpredE,t denotes the predicted caseload when T0i is the same as in the data.

Among all treated states, the waivers explained 6.88% of the drop in caseloads between Jan93

and Jun96. Among southern treated states, this proportion is 10.41%. In Wyoming, this

proportion is 24.86%. Figure 1 plots the actual and predicted caseloads. The model fits the

treated state caseloads well, even though the factor proxies are extracted from control states

only. Caseloads peaked slightly earlier among treated states than control states. In samples

1, 2 and 3, the trajectories appear similar between control and treated states; the t-statistic

from the Alpha test is not statistically significant from zero, therefore the null of weak parallel

trend cannot be rejected. In sample 4, Wyoming had an abrupt drop in caseload at the policy

intervention date and the model predicts a smoother reduction if the policy was absent.

Our 4-PC specification is conservative, given that overestimation of number of factors is

less problematic than underestimation (see Section 4.1). The original GR test and a recursive

version of the test yield two and three factors, respectively.54 Panel B of Table VIII reports

the 3-PC specification as a robustness check, with similar results. The coefficients stabilize

when 3 or more PCs are used. Our plots of PCs/factor proxies also show that the underlying

trends, which are highly nonlinear, are largely captured by the first 4 PCs (see Figure A5).

Panel C of Table VIII reports the DID regressions using sample 1. The policy coefficient is

close to zero and statistically insignificant when state-specific cubic or quartic trends are used.

These parametric specifications are restrictive relative to PCDID. The 2wfe regression yields

a policy coefficient of -0.054, implying that waivers explained 24% of the drop in caseloads

53In sample 4, the analytical standard errors in Asym and b-t are obtained from the Newey-West HAC
estimator with 3 lags.

54See Appendix 8 for details. We set jmax = 0 (original test), jmax = 1 (recursive version) and kmax = 10.
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between Jan93 and Jun96. This estimate is implausibly large and it is similar to the 1-PC

PCDID specification (-0.056, not shown in table).

9 Conclusions

In this paper, we developed a class of factor-augmented regression estimators (PCDID) for

treatment effect estimation. PCDID was similar in spirit to the control function approach

and it used factor proxies constructed from control units to control for unobserved trends,

assuming that the unobservables followed an interactive effects structure. The estimation pro-

cedure was relatively straightforward. After defining the key causal parameters of interest,

ITET and ATET, we showed that the basic PCDID estimator targeted the ITET, whereas

the simple mean-group (PCDID-MG) and pooled estimators targeted the ATET. We showed

consistency and asymptotic normality of these estimators under minimal assumptions on the

trend specification. We also showed that, when treatment effects were more heterogeneous

(i.e., ITET was heterogeneous across treated units), PCDID-MG required weaker identifi-

cation conditions than the pooled estimator and, given that both estimators satisfied their

identification conditions, PCDID-MG was more efficient. We provided inference procedures

based on the asymptotic normality results. We developed a parallel trend test (assuming an

interactive effects structure), called the “Alpha” test, based on the PCDID approach. We

also introduced aggregated PCDID estimators (PCDID-AGG) for micro/group-level data.

In Monte Carlo simulations, we considered scenarios of unparallel trends and nonstation-

ary trends. We compared PCDID with DID-2wfe, DID with unit-specific cubic trends (e.g.,

Wooldridge (2005)), Bai (2009)’s iterative estimator, Xu (2017)’s GSC estimator, Gobillon

and Magnac (2016)’s stepwise estimator, and Athey et al. (2018)’s MC-NNM estimator in

ITET and ATET estimation, with and without staggered adoption. We found that PCDID

had better finite sample performance in terms of bias and empirical SD, and it was robust

across various scenarios. We examined PCDID’s performance when the number of factors

was unknown (using various auxiliary procedures to determine the number of factors), and

when the covariates were correlated with the factor structure. We compared various infer-

ence procedures (analytical and bootstrap) for PCDID in finite samples, examined the size

and power of the Alpha test, and examined estimation and inference based on PCDID in

micro-level data.
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In a placebo exercise, we showed that PCDID could be more efficient than DID-2wfe in

scenarios where both approaches were valid, and it was less biased than DID-2wfe otherwise.

In the welfare caseload analysis, we found that waivers programs (work requirements and time

limits) reduced welfare caseload per capita by an average of 1.7% among all treated states,

explaining 6.88% of the overall reduction in caseload between 1993Q1 and 1996Q2. We found

that the effects were larger among Southern states (-2.4%), explaining 10.41% of the reduction

between 93Q1-96Q2. The above estimates were based on the PCDID-MG estimator. In

Wyoming, using the basic PCDID estimator, we found that waivers reduced welfare caseload

per capita by an average of 11.4%, explaining 24.86% of the reduction between 93Q1-96Q2.

All the above estimates were statistically significant at the 5% or 1% levels based on our

preferred inference procedures. We plotted actual and predicted caseloads as well as the

factor proxies over time. We found that the Alpha test did not reject the null of PTW.

We examined the sensitivity of estimates to the number of factor proxies, and considered

auxiliary procedures to determine the number of factors. We found that DID-2wfe tended to

overestimate the effects, whereas DID with state-specific time polynomials failed to find any

statistically significant effects.
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NE+NC T Bias SD Bias SD Bias SD Bias SD

Avg 

#Iter Bias SD Bias SD Bias SD

Avg 

Rank

Panel A: Stationary factors

51 10 0.00 0.15 0.00 0.47 -0.01 0.33 -0.02 0.19 23 0.01 0.59 0.01 0.57 0.01 0.33 1.7

51 20 0.00 0.09 -0.01 0.46 -0.02 0.31 -0.01 0.07 13
b

0.00 0.14 0.00 0.10 -0.01 0.26 1.5

51 50 0.00 0.05 -0.02 0.41 0.00 0.36 -0.02 0.19 11 0.00 0.06 0.00 0.04 -0.01 0.13 3.0

6 100 0.00 0.09 0.00 0.27 0.02 0.37 -0.10 0.24 40 0.00 0.09 0.00 0.08 0.01 0.18 1.1

11 100 0.00 0.05 0.00 0.28 0.03 0.37 -0.05 0.22 26 0.00 0.05 0.00 0.04 0.00 0.16 1.3

26 100 0.00 0.03 0.00 0.27 0.02 0.36 -0.03 0.23 13 0.00 0.03 0.00 0.02 0.00 0.14 1.7

6 10 0.01 0.24 0.02 0.48 0.01 0.34 -0.17 0.39 81 0.01 0.55 0.01 0.55 0.01 0.34 2.2

11 20 0.00 0.13 -0.02 0.47 0.00 0.33 -0.07 0.29 42 0.00 0.17 0.00 0.16 -0.01 0.28 1.5

26 50 -0.01 0.05 -0.02 0.42 -0.01 0.37 -0.03 0.23 15 -0.01 0.06 0.00 0.04 0.00 0.15 2.6

51 100 0.00 0.03 0.00 0.27 0.02 0.34 -0.01 0.18 8 0.00 0.03 0.00 0.02 0.00 0.11 2.8

Panel B: Stationary factors with break

51 10 -0.01 0.23 1.27 0.87 0.43 0.42 -0.02 0.20 49
b

-0.01 2.25 -0.01 2.25 2.00 1.19 1.9

51 20 0.00 0.16 1.56 1.08 0.59 0.49 -0.02 0.15 49
b

-0.01 0.68 -0.01 0.68 2.63 1.22 2.0

51 50 0.00 0.12 1.77 1.19 1.05 0.77 -0.02 0.11 64
b

0.01 0.36 0.01 0.36 3.22 1.18 2.3

6 100 0.06 0.34 1.85 1.28 1.43 1.04 -0.10 0.23 105 0.09 0.68 0.09 0.67 4.25 1.20 1.6

11 100 0.02 0.18 1.94 1.27 1.49 1.01 -0.06 0.14 97
b

0.05 0.39 0.05 0.39 4.07 1.21 1.7

26 100 0.01 0.12 2.00 1.20 1.52 0.97 -0.03 0.11 84
b

0.01 0.27 0.01 0.27 3.99 1.21 1.7

6 10 0.03 0.32 1.23 0.96 0.42 0.43 -0.09 0.42 120 0.05 2.65 0.05 2.65 2.16 1.20 2.7

11 20 0.01 0.20 1.53 1.08 0.59 0.50 -0.02 0.21 76 0.07 0.82 0.07 0.82 2.78 1.19 2.2

26 50 0.00 0.14 1.89 1.17 1.11 0.74 -0.03 0.13 69
b

0.02 0.38 0.02 0.38 3.44 1.17 2.3

51 100 0.01 0.11 1.96 1.21 1.50 0.95 -0.03 0.10 78
b

0.01 0.24 0.01 0.24 3.41 1.10 2.9

Panel C: Nonstationary factors with drift

51 10 0.01 0.17 0.13 0.66 -0.03 0.45 0.00 0.17 34 0.03 0.66 0.03 0.66 0.17 0.80 2.2

51 20 -0.01 0.11 0.18 0.93 -0.04 0.49 -0.01 0.11 29
b

0.00 0.22 0.00 0.22 0.27 1.09 2.1

51 50 0.00 0.07 0.53 1.53 0.02 0.67 -0.01 0.07 31
b

0.00 0.15 0.00 0.15 0.70 1.39 2.5

6 100 -0.01 0.19 0.98 2.44 -0.03 0.99 -0.03 0.14 67
b

-0.03 0.33 -0.03 0.33 2.94 3.50 2.4

11 100 -0.01 0.09 0.98 2.43 -0.02 0.98 -0.01 0.08 46
b

-0.02 0.21 -0.02 0.20 2.01 2.74 2.4

26 100 0.00 0.06 0.87 2.39 -0.02 0.99 -0.01 0.06 35
b

-0.01 0.13 -0.01 0.13 1.40 2.08 2.4

6 10 -0.02 0.22 0.13 0.63 0.00 0.44 -0.12 0.42 94 0.01 1.23 0.01 1.23 0.29 1.07 2.6

11 20 -0.01 0.15 0.20 0.94 -0.04 0.48 -0.04 0.26 50 -0.01 0.26 -0.01 0.25 0.32 1.16 2.4

26 50 -0.01 0.09 0.51 1.52 0.00 0.72 -0.01 0.07 34
b

-0.02 0.17 -0.02 0.17 0.74 1.49 2.5

51 100 0.00 0.05 0.95 2.41 -0.01 1.02 -0.01 0.05 32
b

-0.01 0.12 -0.01 0.11 1.31 1.98 2.4
a
 See Section 6.1 for details of DGPs and estimators. PCDID: basic PCDID estimator. DID-2wfe: Two way fixed effects estimator. DID-trend: DID with unit-specific cubic trend. BAI: Bai (2009)'s iterative estimator. GSC: 

Xu (2017)'s generalized synthetic control estimator. GM: Gobillon and Magnac (2016)'s stepwise estimator. MC-NNM: Athey et al. (2018)'s nuclear norm matrix completion estimator. SD: empirical standard deviation of 

estimator. Avg #Iter: average number of iterations used. Avg Rank: Average matrix rank computed. Panels A, B and C refer to DGPs 1, 2 and 3 in Section 6.1. Number of replications=1000. In all specifications, NE=1 and 

T0=T1=T/2. PCDID, BAI, GSC and GM assume 3 factors.
b
 Numerical convergence is attained in all replications. See Section 6.1 for numerical convergence criteria.

TABLE I: SMALL SAMPLE PROPERTIES OF ESTIMATORS, ITET ESTIMATION
a

PCDID DID-2wfe DID-trend BAI GSC GM MC-NNM



NE+NC T Bias SD Bias SD Bias SD Bias SD

Avg 

#Iter Bias SD Bias SD Bias SD

Avg 

Rank

Panel A: Stationary factors

100 10 -0.01 0.15 0.00 0.44 -0.01 0.27 -0.34 0.49 82 0.00 0.26 0.00 0.26 0.00 0.48 1.5

100 20 0.00 0.15 -0.02 0.45 -0.01 0.27 -0.36 0.57 113 0.00 0.15 0.00 0.15 -0.02 0.41 1.1

100 50 0.00 0.15 -0.02 0.40 -0.01 0.34 -0.35 0.52 97 0.00 0.15 0.00 0.15 -0.04 0.25 1.7

10 100 0.01 0.45 0.01 0.51 0.02 0.56 -0.36 0.69 179 0.01 0.45 0.01 0.45 0.01 0.48 1.1

20 100 0.02 0.32 0.01 0.41 0.04 0.45 -0.36 0.66 142 0.02 0.32 0.02 0.32 0.02 0.38 1.1

50 100 0.00 0.21 0.00 0.32 0.02 0.37 -0.34 0.57 107 0.00 0.21 0.00 0.21 -0.01 0.27 1.1

10 10 0.02 0.48 0.02 0.62 0.01 0.53 -0.32 0.62 181 0.02 0.62 0.02 0.62 0.02 0.64 2.2

20 20 0.01 0.35 -0.02 0.55 -0.01 0.42 -0.34 0.66 169 0.01 0.36 0.01 0.36 -0.01 0.46 1.6

50 50 0.01 0.19 0.00 0.42 0.01 0.36 -0.33 0.57 116 0.01 0.20 0.01 0.20 -0.03 0.26 2.4

100 100 0.01 0.14 0.01 0.28 0.03 0.34 -0.37 0.47 72 0.01 0.14 0.01 0.14 -0.01 0.23 1.1

Panel B: Stationary factors with break

100 10 0.00 0.16 1.24 0.46 0.41 0.27 -0.34 0.69 203 0.03 1.13 0.03 1.13 2.61 0.95 2.2

100 20 0.00 0.15 1.54 0.50 0.59 0.29 -0.35 0.76 238 0.02 0.27 0.02 0.27 3.37 0.69 2.2

100 50 0.00 0.15 1.80 0.44 1.06 0.36 -0.26 0.70 263 0.01 0.18 0.01 0.18 3.82 0.51 2.3

10 100 0.07 0.52 1.86 0.89 1.42 0.78 -0.24 0.66 203 0.13 0.69 0.13 0.69 4.62 0.74 2.0

20 100 0.04 0.33 1.91 0.63 1.47 0.58 -0.20 0.57 196 0.06 0.41 0.06 0.41 4.40 0.59 2.3

50 100 0.00 0.21 1.90 0.47 1.45 0.45 -0.20 0.51 186 0.02 0.24 0.02 0.24 4.15 0.47 2.2

10 10 0.06 0.50 1.28 0.76 0.45 0.55 -0.29 0.74 223 0.15 2.61 0.15 2.61 2.69 1.10 2.7

20 20 0.02 0.37 1.53 0.70 0.59 0.45 -0.32 0.76 235 0.07 0.63 0.07 0.63 3.54 0.80 2.1

50 50 0.02 0.21 1.81 0.53 1.07 0.40 -0.23 0.68 245 0.03 0.27 0.03 0.27 4.05 0.54 2.2

100 100 0.01 0.14 1.91 0.37 1.46 0.38 -0.19 0.48 176 0.01 0.16 0.01 0.16 3.39 0.39 3.0

Panel C: Nonstationary factors with drift

100 10 -0.01 0.15 0.12 0.54 -0.02 0.38 -0.27 0.64 143 -0.03 0.41 -0.03 0.41 0.54 1.68 2.1

100 20 0.00 0.15 0.18 0.75 -0.03 0.43 -0.21 0.94 239 0.00 0.16 0.00 0.16 0.78 1.99 2.5

100 50 0.00 0.15 0.51 1.12 0.02 0.57 -0.17 1.30 342 0.00 0.15 0.00 0.15 1.98 2.60 3.1

10 100 -0.01 0.48 0.92 1.90 0.00 0.98 -0.23 1.36 299 -0.02 0.53 -0.02 0.53 5.34 4.80 2.7

20 100 0.01 0.32 0.98 1.82 0.00 0.91 -0.22 1.42 335 0.00 0.35 0.00 0.35 5.01 4.52 3.0

50 100 0.00 0.21 0.95 1.66 -0.01 0.84 -0.23 1.48 359 -0.01 0.22 -0.01 0.22 4.82 4.33 2.9

10 10 0.00 0.49 0.15 0.75 0.01 0.60 -0.28 0.74 212 0.00 0.67 0.00 0.67 0.59 1.85 2.7

20 20 -0.01 0.35 0.19 0.81 -0.03 0.54 -0.23 0.96 249 0.00 0.38 0.00 0.38 0.86 2.17 2.7

50 50 0.01 0.20 0.53 1.14 0.03 0.59 -0.22 1.27 332 0.00 0.21 0.00 0.21 2.28 2.91 3.1

100 100 0.01 0.14 0.98 1.60 -0.01 0.83 -0.22 1.42 361 0.01 0.15 0.01 0.15 3.96 3.70 3.1
a
 See Section 6.1 for details of DGPs and estimators. PCDID: PCDID simple mean-group (PCDID-MG) estimator. DID-2wfe: Two way fixed effects estimator. DID-trend: DID with unit-specific cubic trend. BAI: Bai 

(2009)'s iterative estimator. GSC: Xu (2017)'s generalized synthetic control estimator. GM: Gobillon and Magnac (2016)'s stepwise estimator. MC-NNM: Athey et al. (2018)'s nuclear norm matrix completion estimator. SD: 

empirical standard deviation of estimator. Avg #Iter: average number of iterations used. Avg Rank: Average matrix rank computed. Panels A, B and C refer to DGPs 1, 2 and 3 in Section 6.1. Number of replications=1000. 

In all specifications, NE=Nc=N/2 and T0=T1=T/2. PCDID, BAI, GSC and GM assume 3 factors. In BAI, numerical convergence is attained in some replications only. See Section 6.1 for numerical convergence criteria.

TABLE II: SMALL SAMPLE PROPERTIES OF ESTIMATORS, ATET ESTIMATION
a

PCDID DID-2wfe DID trend BAI GSC GM MC-NNM



NE+NC T Bias SD Bias SD Bias SD Bias SD

Avg 

#Iter Bias SD Bias SD Bias SD

Avg 

Rank

Panel A: Stationary factors

100 10 -0.01 0.17 0.02 0.36 -0.04 0.20 -0.01 0.21 156 -0.10 4.20 -0.19 3.47 0.00 0.45 1.3

100 20 0.00 0.16 0.01 0.37 -0.01 0.20 -0.03 0.18 147 0.00 0.18 0.00 0.17 -0.02 0.38 1.1

100 50 0.00 0.16 0.01 0.33 -0.01 0.21 -0.04 0.17 99 0.00 0.16 0.00 0.16 -0.03 0.24 1.6

10 100 0.01 0.48 0.03 0.52 0.01 0.60 -0.04 0.62 93 0.01 0.48 0.01 0.48 0.01 0.50 1.2

20 100 0.01 0.34 0.03 0.39 0.01 0.43 -0.02 0.43 77 0.01 0.34 0.01 0.34 0.01 0.37 1.7

50 100 0.00 0.22 0.02 0.29 -0.01 0.28 -0.04 0.25 74
b

0.00 0.22 0.00 0.22 -0.01 0.27 1.0

10 10 0.01 0.52 0.04 0.60 0.00 0.60 -0.10 0.71 138 0.10 2.95 -0.03 2.81 0.02 0.61 2.1

20 20 0.00 0.37 0.02 0.50 -0.01 0.45 -0.04 0.46 140 0.00 0.38 0.00 0.38 0.00 0.46 1.4

50 50 0.01 0.20 0.02 0.36 -0.01 0.27 -0.05 0.23 99 0.01 0.21 0.01 0.21 -0.02 0.25 2.3

100 100 0.00 0.15 0.03 0.24 -0.01 0.19 -0.04 0.17 73
b

0.00 0.15 0.00 0.15 -0.01 0.22 1.1

Panel B: Stationary factors with break

100 10 -0.01 0.17 0.94 0.38 -0.06 0.26 -0.04 0.20 116 -0.88 32.94 -0.35 27.60 2.08 0.70 2.1

100 20 0.00 0.16 1.12 0.41 -0.03 0.28 -0.06 0.17 121 0.00 0.26 0.00 0.26 2.58 0.53 2.1

100 50 0.00 0.16 1.28 0.36 0.04 0.33 -0.10 0.18 89 0.01 0.18 0.01 0.18 2.31 0.40 2.8

10 100 0.03 0.49 1.33 0.77 0.09 1.14 -0.07 0.63 91 0.08 0.56 0.08 0.56 3.25 0.86 1.9

20 100 0.02 0.34 1.33 0.53 0.05 0.81 -0.08 0.44 77 0.04 0.37 0.04 0.37 2.96 0.63 2.2

50 100 0.00 0.22 1.31 0.39 0.03 0.53 -0.10 0.27 71
b

0.01 0.23 0.01 0.23 2.38 0.44 2.8

10 10 0.04 0.52 1.01 0.71 -0.01 0.77 -0.12 0.70 141 -0.47 17.08 -0.01 14.11 2.15 0.93 3.1

20 20 0.01 0.37 1.13 0.62 -0.01 0.61 -0.04 0.44 126 0.06 0.55 0.06 0.55 2.70 0.69 2.3

50 50 0.01 0.21 1.29 0.44 0.04 0.45 -0.10 0.24 94 0.02 0.23 0.02 0.23 2.73 0.47 2.3

100 100 0.01 0.15 1.30 0.31 0.02 0.36 -0.11 0.17 69
b

0.01 0.16 0.01 0.16 2.49 0.33 2.1

Panel C: Nonstationary factors with drift

100 10 -0.01 0.17 0.12 0.43 -0.04 0.23 -0.03 0.22 109 0.15 0.68 0.18 0.82 0.39 1.24 1.8

100 20 0.00 0.16 0.17 0.58 -0.02 0.26 -0.03 0.18 86 0.00 0.19 0.00 0.19 0.53 1.36 2.4

100 50 0.00 0.15 0.42 0.87 -0.02 0.32 -0.03 0.18 63 0.00 0.16 0.00 0.16 1.41 1.80 2.7

10 100 -0.01 0.50 0.78 1.58 -0.04 1.31 -0.02 0.59 95 -0.03 0.55 -0.03 0.55 3.80 3.44 2.7

20 100 0.01 0.34 0.82 1.47 -0.02 0.94 -0.01 0.38 72 0.00 0.36 0.00 0.36 3.21 2.96 3.2

50 100 0.00 0.22 0.78 1.29 -0.05 0.63 -0.02 0.24 56 -0.01 0.23 -0.01 0.23 2.69 2.43 3.1

10 10 0.00 0.52 0.15 0.69 -0.02 0.65 -0.08 0.72 136 0.17 2.39 0.21 2.17 0.42 1.36 2.8

20 20 -0.01 0.37 0.18 0.69 -0.02 0.54 -0.01 0.44 106 -0.01 0.41 -0.01 0.41 0.64 1.65 2.3

50 50 0.01 0.21 0.44 0.90 0.00 0.48 -0.02 0.23 67 0.00 0.22 0.00 0.22 1.50 1.92 2.8

100 100 0.00 0.15 0.80 1.24 -0.03 0.46 -0.02 0.17 49 0.00 0.15 0.00 0.15 2.24 2.06 3.1
a
 All DGPs and estimators are the same as in Table II (ATET estimation), except that T0 is drawn from a discrete uniform distribution: T0 ~ Unif{┌T/4┐,└3T/4┘}. See Section 6.1 for details. PCDID: PCDID simple mean-

group (PCDID-MG) estimator. DID-2wfe: Two way fixed effects estimator. DID-trend: DID with unit-specific cubic trend. BAI: Bai (2009)'s iterative estimator. GSC: Xu (2017)'s generalized synthetic control estimator. 

GM: Gobillon and Magnac (2016)'s stepwise estimator. MC-NNM: Athey et al. (2018)'s nuclear norm matrix completion estimator. Number of replications=1000. In all specifications, NE=Nc=N/2 and T1=T-T0. PCDID, 

BAI, GSC and GM assume 3 factors.
b
 Numerical convergence is attained in all replications. See Section 6.1 for numerical convergence criteria.

TABLE III: SMALL SAMPLE PROPERTIES OF ESTIMATORS, ATET ESTIMATION (STAGGERED ADOPTION)
a

PCDID DID-2wfe DID trend BAI GSC GM MC-NNM



NE+NC T TrueF Asym b-t b-se NE+NC T TrueF Asym b-t b-se

Panel A: Stationary factors

51 10 4.4 5.5 3.5 3.7 100 10 5.4 6.5 5.3 6.5

51 20 4.2 6.2 6.1 4.5 100 20 5.0 5.3 5.2 5.6

51 50 4.1 5.0 6.9 3.3 100 50 5.7 5.9 6.6 5.6

6 100 4.6 22.6 10.6 3.8 10 100 5.1 5.4 7.3 3.5

11 100 5.4 14.3 6.8 1.0 20 100 3.9 3.9 4.9 4.3

26 100 4.8 6.3 3.5 1.1 50 100 5.1 5.3 5.4 4.9

6 10 4.8 8.8 6.6 6.4 10 10 5.6 6.5 10.4 5.2

11 20 4.8 9.5 7.3 4.6 20 20 5.5 6.7 7.9 8.9

26 50 5.0 7.8 7.0 3.3 50 50 4.8 4.7 4.9 5.6

51 100 5.1 4.7 4.7 3.1 100 100 4.5 4.8 4.5 4.9

Panel B: Stationary factors with break

51 10 4.9 5.9 4.7 5.5 100 10 5.5 7.6 5.3 5.4

51 20 6.2 7.2 7.0 5.4 100 20 5.0 6.4 4.8 5.0

51 50 5.1 4.9 5.3 3.6 100 50 6.0 6.0 4.9 4.8

6 100 5.0 32.4 13.6 9.7 10 100 5.2 7.2 7.8 2.3

11 100 5.8 13.9 6.5 2.9 20 100 4.9 5.9 5.5 3.9

26 100 6.7 8.1 7.0 3.5 50 100 5.2 5.3 5.1 5.1

6 10 4.7 5.3 4.2 3.6 10 10 5.9 7.6 9.4 4.0

11 20 4.0 7.1 6.4 3.2 20 20 6.2 7.9 7.7 7.0

26 50 5.8 6.3 7.2 4.5 50 50 4.6 5.2 4.3 4.1

51 100 4.9 5.0 5.1 3.7 100 100 4.7 5.5 5.2 4.7

Panel C: Nonstationary factors with drift

51 10 4.1 6.0 4.5 5.7 100 10 5.4 6.6 5.9 7.3

51 20 4.8 5.6 6.5 5.3 100 20 4.7 6.2 5.8 5.9

51 50 6.6 6.2 6.7 5.5 100 50 5.8 5.7 5.2 5.3

6 100 3.6 26.6 7.9 3.3 10 100 5.0 6.2 7.8 2.4

11 100 5.3 15.0 9.8 3.6 20 100 4.0 4.0 4.8 4.0

26 100 4.8 5.9 7.2 2.5 50 100 4.8 5.1 5.4 5.0

6 10 5.3 6.8 5.5 3.7 10 10 5.6 6.9 9.5 5.1

11 20 3.2 8.4 6.4 4.3 20 20 6.5 7.6 8.1 7.9

26 50 4.8 6.6 8.0 4.6 50 50 5.0 5.4 4.8 5.7

51 100 4.8 4.9 5.9 3.8 100 100 4.6 4.6 4.9 4.6
a
 See Section 6.2 for details of inference procedures. All DGPs are the same as in Table I and II, respectively (except setting ρϵ=0 in the DGPs for ITET inference). The 

null hypothesis is set at the DGPs' true value. TrueF: assume factors are observed in PCDID estimation (infeasible) and compute t-statistic, reject if |t|>=1.96. Asym: use 

3 factor proxies in PCDID estimation and compute t-statistic, reject if |t|>=1.96. b-t: same as Asym, but reject if t<=c0.025 or t>=c0.975 where c0.025, c0.975 are percentiles of 

the bootstrap distribution of t-statistics. b-se: same as Asym, but the standard error in the t-statistics formula is obtained from bootstrap samples. See Section 6.2 for 

analytical standard errrors used in TrueF, Asym and b-t. See Appendix 6 for details on bootstrap sample construction. Number of replications=1000. Bootstrap 

repetitions = 199. T0=T1=T/2. In ITET inference, NE=1; in ATET inference, NE=NC=N/2. The nominal size is 5%.

TABLE IV: PCDID INFERENCE PROCEDURES, REJECTION RATE (%)
a

DGPs for ITET estimation (Table I) DGPs for ATET estimation (Table II)

Basic PCDID estimator, ITET inference (H0: ITET=3) PCDID-MG estimator, ATET inference (H0: ATET=3)



NC T TrueF asym b-t TrueF asym b-t TrueF asym b-t

Panel A: N E =5

5 10 4.6 12.3 7.3 6.3 12.0 6.7 5.1 9.6 5.1

10 10 4.6 8.2 5.2 4.6 8.2 6.2 4.6 8.6 5.9

25 10 5.3 6.0 4.4 4.8 6.0 4.4 3.9 5.5 4.1

50 10 3.7 5.5 5.8 5.4 6.1 6.1 4.9 5.5 5.2

5 20 5.3 10.9 6.4 5.3 12.1 7.7 4.3 12.5 8.0

10 20 4.7 8.9 6.5 5.7 8.4 5.3 3.8 7.8 5.0

25 20 4.3 5.2 4.0 4.5 5.5 3.8 5.2 6.6 5.3

50 20 4.4 4.9 5.2 5.3 5.7 3.8 4.1 4.9 4.3

5 50 4.6 13.5 7.6 3.8 11.5 7.3 5.0 12.3 7.3

10 50 4.8 8.3 5.2 3.4 5.9 4.0 4.8 7.6 5.2

25 50 3.9 4.9 4.2 4.6 5.9 4.9 4.9 5.9 4.6

50 50 4.6 5.4 3.9 5.7 6.0 5.3 5.0 5.0 4.8

Panel B: N E =10

5 10 4.9 20.8 10.7 5.6 20.6 11.0 4.7 21.0 11.0

10 10 4.8 12.7 6.3 4.6 12.8 6.9 4.5 11.6 6.4

25 10 5.0 8.4 5.8 5.0 8.6 6.5 6.1 8.3 6.0

50 10 5.6 6.4 5.6 5.7 6.9 5.7 5.6 7.2 5.6

5 20 4.5 22.2 11.7 5.2 20.5 10.6 5.0 21.2 11.3

10 20 4.8 13.5 6.9 3.7 14.4 7.4 5.0 13.1 7.4

25 20 6.1 9.4 6.0 5.4 8.8 6.2 6.0 7.9 6.2

50 20 6.1 6.6 5.1 3.0 5.6 5.5 3.4 4.9 4.4

5 50 4.2 23.6 12.6 4.3 22.2 12.6 4.7 21.6 11.2

10 50 4.7 15.7 8.7 4.6 14.8 8.1 4.7 13.7 7.8

25 50 4.4 7.5 4.6 4.7 7.9 5.7 5.0 8.6 5.8

50 50 4.4 7.0 5.2 4.7 6.3 5.2 5.0 6.7 5.1
a
 See Section 6.2 for details of DGPs and inference procedures. All DGPs assume weak parallel trend (PTW) holds, with mC=mE=1. DGP1: one AR(1) 

factor. DGP2: one AR(1) factor with break. DGP3: one I(1) factor with drift. The DGPs are otherwise the same as in Table II (ATET estimation). TrueF: 

assume the factor is observed in PCDID estimation (infeasible) and compute t-statistic, reject if |t|>=1.96. Asym: use a factor proxy in PCDID estimation 

and compute t-statistic, reject if |t|>=1.96. b-t: same as Asym, but reject if t<=c0.025 or t>=c0.975 where c0.025, c0.975 are percentiles of the bootstrap 

distribution of t-statistics. See Section 6.2 for analytical standard errrors used in TrueF, Asym and b-t. See Appendix 6 for details on bootstrap sample 

construction. Number of replications=1000. Bootstrap repetitions = 199. T0=T1=T/2. The nominal size is 5%.

TABLE V: PARALLEL TREND ALPHA TEST, REJECTION RATE (%)
a

DGP1: Stationary 

Factor

DGP2: Stationary 

Factor with break

DGP3: Nonstationary Factor 

with drift



Bias SD TrueF Asym b-t b-se Bias SD TrueF Asym b-t b-se

Panel A: Multiple control groups (Nc =5,10,25,50), each has 25 units:

DGP1: Stationary factors

Nc =5 0.00 0.11 5.0 24.7 13.1 6.8 0.00 0.23 5.8 8.6 8.0 8.9

10 0.00 0.07 5.1 13.3 7.7 3.4 0.00 0.21 5.5 6.2 6.0 6.2

25 0.00 0.05 5.0 7.1 6.5 3.8 0.01 0.21 5.4 6.0 6.1 6.2

50 0.00 0.05 4.9 6.4 6.4 5.5 0.00 0.19 4.6 4.5 5.1 4.7

DGP2: Stationary factors with break

Nc =5 0.02 0.26 5.1 18.5 9.1 5.8 0.04 0.29 6.5 15.3 10.4 10.2

10 0.00 0.17 4.8 9.2 5.7 2.9 0.01 0.23 6.7 9.4 6.6 6.5

25 0.00 0.12 4.3 5.3 5.7 3.3 0.01 0.22 5.9 7.6 7.2 5.8

50 0.00 0.12 5.8 6.3 8.0 6.0 0.00 0.20 5.4 5.7 6.1 5.7

DGP3: Nonstationary factors with drift

Nc =5 -0.03 0.17 4.4 20.6 8.4 4.1 -0.02 0.26 6.1 12.0 6.5 7.2

10 -0.02 0.11 5.2 15.2 9.3 5.2 -0.01 0.22 5.8 6.6 6.2 6.5

25 0.00 0.08 5.2 6.4 7.7 5.7 0.00 0.21 6.2 6.5 6.0 6.2

50 0.00 0.07 5.5 5.4 6.8 5.4 0.00 0.20 5.0 5.0 5.5 5.2

Panel B: One control group (Nc =1) with 5, 10, 25, 50 units:

DGP1: Stationary factors

#units=5 0.01 0.14 5.0 24.4 12.0 5.1 -0.01 0.24 4.7 8.8 7.1 8.0

10 0.00 0.09 4.3 15.4 9.1 3.8 -0.02 0.21 5.3 6.4 5.7 6.9

25 -0.01 0.06 4.4 6.8 5.9 3.2 0.01 0.20 5.5 5.2 5.1 5.4

50 0.00 0.05 5.4 7.0 7.3 5.9 0.00 0.21 6.1 6.7 7.3 7.5

DGP2: Stationary factors with break

#units=5 0.08 0.32 4.8 19.4 7.7 4.5 0.07 0.35 5.6 22.2 10.0 10.3

10 0.03 0.19 5.3 8.7 4.9 1.8 0.01 0.26 5.1 11.8 6.4 6.7

25 0.01 0.15 6.2 7.0 8.3 5.6 0.03 0.23 5.7 8.4 7.7 7.4

50 0.01 0.14 5.4 5.4 6.3 5.1 0.01 0.24 7.5 8.7 8.8 8.6

DGP3: Nonstationary factors with drift

#units=5 -0.02 0.20 5.2 20.5 8.0 3.6 -0.03 0.26 4.9 11.4 5.6 6.2

10 -0.01 0.13 4.6 10.9 7.0 4.0 -0.02 0.23 5.3 8.6 6.8 7.5

25 -0.01 0.09 4.0 7.2 8.0 6.0 0.01 0.21 5.2 5.7 5.7 5.6

50 0.00 0.08 7.1 6.4 7.9 6.6 0.01 0.22 6.4 7.5 7.8 7.6

Panel C: Multiple control groups (Nc =10, 50), unbalanced number of units (average=25):

Nc =10 0.00 0.07 5.1 13.4 6.7 3.4 0.00 0.21 5.5 6.4 6.4 6.7

50 0.00 0.05 4.9 6.7 6.6 5.4 0.00 0.20 4.6 4.7 5.0 4.9

Nc =10 0.01 0.16 4.8 9.0 5.9 2.6 0.01 0.23 6.7 8.8 6.7 7.0

50 0.00 0.12 5.8 5.6 7.1 5.9 0.00 0.20 5.4 5.6 5.9 5.8

Nc =10 -0.02 0.11 5.2 14.9 10.3 6.1 -0.01 0.22 5.8 6.7 6.3 6.4

50 0.00 0.07 5.5 5.4 7.8 6.0 0.00 0.20 5.0 5.2 5.3 5.4

Panel D: Multiple control groups (Nc =10, 50), each has 35 units:

Nc =10 0.00 0.07 4.6 13.2 8.0 3.5 0.00 0.21 4.2 5.1 5.2 5.9

50 0.00 0.05 5.6 6.1 5.8 5.0 0.01 0.20 5.2 5.6 5.8 5.6

Nc =10 0.01 0.16 3.7 8.9 5.3 3.5 0.00 0.23 5.5 7.0 4.8 5.1

50 0.00 0.11 4.7 5.2 5.2 4.7 0.01 0.21 6.4 5.7 6.0 5.6

Nc =10 -0.01 0.11 4.4 12.2 8.7 4.8 -0.01 0.22 4.2 5.3 5.3 5.2

50 -0.01 0.07 5.5 5.2 6.7 5.8 0.01 0.21 5.2 5.6 5.5 5.4
a
 See Section 6.3 for details of DGPs and estimation/inference procedures. The DGPs on the left (ITET) have 1 treated group with 1 treated unit. The DGPs on the right 

(ATET) have 1 treated group with 25 treated units. In Panels C and D, rows 1 and 2 are based on DGP1, rows 3 and 4 are based on  DGP2, rows 5 and 6 are based on 

DGP3.
b
 Panels A, C and D use the basic PCDID-AGG estimator (ITET) and PCDID-MG-AGG estimator (ATET). Panel B uses the basic PCDID estimator (ITET) and PCDID-

MG estimator (ATET). SD: empirical standard deviation of estimator. 
c
 In inference procedures, the null hypothesis is set at the DGPs' true value and rejection rates (%) are reported. TrueF: assume factors are observed in PCDID estimation 

(infeasible) and compute t-statistic, reject if |t|>=1.96. Asym: use 3 factor proxies in PCDID estimation and compute t-statistic, reject if |t|>=1.96. b-t: same as Asym, but 

reject if t<=c0.025 or t>=c0.975 where c0.025, c0.975 are percentiles of the bootstrap distribution of t-statistics. b-se: same as Asym, but the standard error in the t-statistics 

formula is obtained from bootstrap samples. See Section 6.2 for analytical standard errrors used in TrueF, Asym and b-t. See Appendix 6 for details on bootstrap sample 

construction. Number of replications=1000. Bootstrap repetitions = 199. T0=T1=T/2=25. The nominal size is 5%. 

TABLE VI: PCDID ESTIMATION AND INFERENCE  IN MICRO-LEVEL DATA
a,b,c

DGPs for ITET estimation and inference (H0: ITET=3) DGPs for ATET estimation and inference (H0: ATET=3)



1PC 3PC 5PC 7PC 1PC 3PC 5PC 7PC

Scenario A: The treated states come from the pool of all states

Empirical mean and SD of estimators:

  Mean -0.0004 -0.0008 -0.0011 -0.0004 -0.0001 0.0003 -0.0002 -0.0002 -0.0001 -0.0001

  SD 0.0193 0.0167 0.0138 0.0163 0.0178 0.0173 0.0173 0.0147 0.0164 0.0181

Inference procedures (H 0 : ATET=0), rejection rate (%):

  b-p 5.4
b

2.3 2.2 5.1 4.9 4.7
b

1.8 2.1 4.2 4.8

  b-se 3.8
b

2.1 1.8 4.7 5.4 3.7
b

1.4 1.4 3.4 4.9

Scenario B: The treated states come from the pool of the largest 25 states

Empirical mean and SD of estimators:

  Mean 0.0200 0.0011 0.0006 0.0012 0.0013 0.0080 0.0012 0.0005 0.0011 0.0013

  SD 0.0130 0.0160 0.0129 0.0149 0.0165 0.0139 0.0156 0.0129 0.0134 0.0151

Inference procedures (H 0 : ATET=0), rejection rate (%):

  b-p 15.2
b

2.2 1.8 4.6 4.7 6.7
b

2.5 1.8 2.4 4.0

  b-se 13.3
b

1.7 1.6 3.8 4.3 5.4
b

1.8 1.3 2.2 3.0
a
 See Section 7 for details of the placebo design. Number of replications=1000. In each replication, there are 10 treated states and 41 control states. PC: number of factor 

proxies used. b-p: reject if the estimate<=c0.025 or >=c0.975 where c0.025, c0.975 are percentiles of the bootstrap distribution of the estimator. It is assumed that the outcomes 

are stationary. b-se: compute t-statistic where the standard error is obtained from bootstrap samples, reject if |t|>=1.96.  Bootstrap repetitions = 199. See Appendix 6 for 

details on bootstrap sample construction.
b
 Wild cluster bootstrap imposing H0 (no effect) is used. See Appendix 6 for details.

TABLE VII: RESULTS FROM PLACEBO DESIGN
a

Aggregated State-Year Panel (# obs=1071) Micro-Level Data (#obs=549,735)

PCDID-MG PCDID-MG-AGGDID-

2wfe

DID-

2wfe



Quartic Cubic

Policy intervention dummy -0.017 -0.024 -0.013 -0.114 -0.018 -0.021 -0.016 -0.138 -0.007 -0.008 -0.054

   asym-se (0.007) (0.007) (0.010) (0.029) (0.008) (0.009) (0.011) (0.039)

   b-se (0.009) (0.012) (0.011) (0.051) (0.010) (0.014) (0.011) (0.053) (0.010) (0.013) (0.032)

   b-t-pval {0.030} {0.000} {0.241} {0.010} {0.050} {0.040} {0.161} {0.010}

Max monthly welfare ben. ($100) 0.014 0.046 -0.001 -0.010 0.035 0.092 0.008 0.014 -0.003 -0.003 0.020

   asym-se (0.008) (0.019) (0.004) (0.020) (0.016) (0.044) (0.004) (0.017)

   b-se (0.016) (0.033) (0.009) (0.027) (0.016) (0.046) (0.008) (0.027) (0.002) (0.002) (0.014)

   b-t-pval {0.121} {0.000} {0.834} {0.754} {0.010} {0.020} {0.221} {0.673}

State unemployment rate (%) 0.021 0.016 0.023 -0.030 0.029 0.022 0.032 -0.017 0.007 0.011 0.023

   asym-se (0.004) (0.006) (0.004) (0.008) (0.005) (0.008) (0.006) (0.009)

   b-se (0.007) (0.007) (0.008) (0.014) (0.007) (0.010) (0.009) (0.013) (0.002) (0.003) (0.008)

   b-t-pval {0.000} {0.000} {0.000} {0.020} {0.000} {0.010} {0.000} {0.261}

Ln(state empl. to popn ratio) 0.058 0.070 0.052 -0.622 -0.128 -0.291 -0.050 -0.754 -0.338 -0.198 -1.346

   asym-se (0.129) (0.236) (0.157) (0.357) (0.134) (0.306) (0.138) (0.352)

   b-se (0.164) (0.241) (0.167) (0.502) (0.170) (0.282) (0.169) (0.549) (0.087) (0.110) (0.450)

   b-t-pval {0.724} {0.744} {0.764} {0.231} {0.412} {0.281} {0.704} {0.161}

Percent of predicted change in 

caseload explained by reform (Jan93-

Jun96)

6.88% 10.41% 5.11% 24.86% 6.89% 8.89% 5.90% 30.18% 2.88% 3.29% 24.00%

Alpha statistic (raw) 0.992 1.189 0.898 - 0.992 1.189 0.898 - - - -

    asym-se (0.138) (0.183) (0.183) - (0.138) (0.183) (0.183) - - - -

    b-t-pval {0.824} {0.362} {0.864} - {0.824} {0.362} {0.864} - - - -

#factors, GR test (original, recursive) 2, 3 2, 3 2, 3 2, 3 2, 3 2, 3 2, 3 2, 3 - - -

Number of treated states 31 10 21 1 31 10 21 1 31 31 31

TABLE VIII: EFFECTS OF WELFARE WAIVERS ON WELFARE CASELOADS
a

Wyoming 

(ITET)
d

Unit-specific time 

polynomial Two-way 

fixed effect

a
 The sample period is from Oct86 to Jun96. There are 20 control states. Policy intervention dummy: =1 if a work requirement or time limit waiver is approved/implemented in the state, =0 

otherwise. Max monthly welfare ben.: maximum combined real AFDC/Food Stamp benefits for a family of three (in $100). Except the 2wfe specifications, covariates include calendar quarter 

dummies. GR test: growth-ratio test in Ahn and Horenstein (2013); see Appendix 8 for details.
b
 Standard errors from the asymptotic formula (asym-se) and bootstrapping the coefficient (b-se) are reported in parentheses. P-values from bootstrapping the t-statistic (b-t-pval) are reported in 

curly brackets. See Appendix 6 for details of bootstrap sample construction. Bootstrap repetitions=199.
c
 Wild cluster bootstrapped standard errors are in parentheses. See Appendix 6 for details. Bootstrap repetitions=199. 

d
 For ITET, the asymptotic standard error is obtained from the Newey-West HAC estimator with T

1/4
 ~= 3 lags.

Panel A: PCDID (#PC=4)
b

Panel B: PCDID (#PC=3)
b

Panel C: DID regressions
c

ALL

 treated 

states

Southern 

treated 

states

Non-

southern 

treated 

states

Wyoming 

(ITET)
d

ALL

 treated 

states

Southern 

treated 

states

Non-

southern 

treated 

states



NE+NC T Bias SD

#PC

mean

#PC

sd

#PC

max Bias SD

#PC

mean

#PC

sd

#PC

max Bias SD Bias SD Bias SD

Panel A: Stationary factors

100 10 -0.01 0.19 1.6 0.7 3 -0.01 0.16 2.7 0.5 3 -0.01 0.16 -0.01 0.16 -0.01 0.16

100 20 0.00 0.18 1.9 0.9 3 0.00 0.15 2.8 0.4 3 0.00 0.15 0.00 0.15 0.00 0.15

100 50 0.00 0.16 2.3 0.9 3 0.00 0.15 3.0 0.1 3 0.00 0.15 0.00 0.15 0.00 0.15

10 100 0.01 0.46 1.1 0.4 3 0.01 0.45 2.9 0.3 3 0.01 0.45 0.01 0.45 0.01 0.45

20 100 0.01 0.34 1.2 0.6 3 0.02 0.32 2.9 0.3 3 0.02 0.32 0.02 0.32 0.02 0.32

50 100 0.00 0.22 1.9 1.0 3 0.00 0.21 3.0 0.1 3 0.00 0.21 0.00 0.21 0.00 0.21

10 10 0.02 0.49 1.3 0.5 3 0.02 0.48 2.8 0.4 3 0.01 0.50 0.02 0.50 0.03 0.50

20 20 0.00 0.37 1.4 0.7 6 0.00 0.35 2.8 0.4 6 0.01 0.35 0.01 0.35 0.00 0.35

50 50 0.01 0.22 1.8 1.0 3 0.01 0.20 2.9 0.2 3 0.01 0.20 0.01 0.19 0.01 0.20

100 100 0.01 0.14 2.7 0.7 3 0.01 0.14 3.0 0.0 3 0.01 0.14 0.01 0.14 0.01 0.14

Panel B: Stationary factors with break

100 10 0.01 0.20 1.9 0.8 3 -0.01 0.18 2.6 0.5 3 -0.01 0.18 -0.01 0.21 -0.01 0.22

100 20 0.02 0.21 2.0 0.9 3 0.01 0.17 2.8 0.4 3 0.00 0.16 0.00 0.19 0.00 0.21

100 50 0.02 0.20 2.2 1.0 3 0.01 0.15 3.0 0.2 3 0.00 0.15 0.00 0.15 0.01 0.16

10 100 0.04 0.71 1.1 0.2 2 0.07 0.52 2.9 0.2 3 0.06 0.51 0.10 0.53 0.12 0.55

20 100 -0.02 0.51 1.2 0.5 3 0.04 0.34 2.9 0.3 3 0.04 0.33 0.05 0.34 0.06 0.35

50 100 -0.03 0.32 1.7 0.9 3 0.00 0.21 3.0 0.1 3 0.00 0.21 0.00 0.21 0.01 0.22

10 10 0.12 0.55 1.4 0.6 3 0.06 0.51 2.7 0.5 3 0.05 0.56 0.16 0.63 0.17 0.64

20 20 0.06 0.43 1.5 0.7 3 0.02 0.37 2.7 0.4 3 0.01 0.37 0.04 0.40 0.05 0.41

50 50 0.02 0.29 1.8 0.9 3 0.02 0.21 2.9 0.3 3 0.02 0.20 0.02 0.21 0.02 0.22

100 100 0.00 0.18 2.5 0.9 3 0.01 0.14 3.0 0.1 3 0.01 0.14 0.01 0.14 0.01 0.15

Panel C: Nonstationary factors with drift

100 10 -0.04 0.18 1.8 0.7 3 -0.01 0.16 2.5 0.5 3 -0.01 0.16 -0.01 0.17 -0.02 0.17

100 20 -0.01 0.17 2.3 0.7 3 0.00 0.16 2.6 0.5 3 0.00 0.15 0.00 0.16 0.00 0.17

100 50 -0.01 0.16 2.7 0.5 3 -0.01 0.16 2.7 0.5 3 0.00 0.15 0.00 0.15 0.00 0.17

10 100 -0.13 0.69 1.8 0.7 3 -0.02 0.50 2.5 0.5 3 -0.01 0.48 -0.02 0.51 -0.01 0.55

20 100 -0.01 0.38 2.4 0.7 3 0.01 0.34 2.6 0.5 3 0.01 0.32 0.01 0.34 0.02 0.38

50 100 0.00 0.23 2.7 0.5 3 0.00 0.22 2.8 0.4 3 0.00 0.21 0.00 0.21 0.01 0.25

10 10 -0.04 0.50 1.4 0.6 3 -0.01 0.49 2.6 0.5 3 0.00 0.51 -0.01 0.52 -0.01 0.52

20 20 -0.04 0.38 1.8 0.7 3 -0.01 0.35 2.5 0.5 3 0.00 0.35 -0.01 0.36 -0.01 0.36

50 50 0.00 0.22 2.5 0.6 3 0.01 0.21 2.6 0.5 3 0.01 0.20 0.01 0.21 0.01 0.22

100 100 0.01 0.15 2.9 0.4 3 0.01 0.15 2.9 0.3 3 0.01 0.14 0.01 0.14 0.01 0.18
a
 See Section 6.1 for details of DGPs and estimator. All DGPs are the same as in Table II (ATET), except that in "exogenous covariate" and "endogenous covariate", ϛi, βi, and xit follow different DGPs. Exogenous 

covariate: x is not correlated with the factor structure. Endogenous covariate: x is correlated with the factor structure. Decide #PC by GR test: use the growth ratio test in Ahn and Horestein (2013) to determine the 

number of factor proxies. Decide #PC by GR test (conservative): if the GR test yield 1 factor, adjust it to kmax/2 = 3 factors. Use 5 PCs: use 5 factor proxies. #PC mean: average number of factor proxies. #PC sd: 

empircal standard deviation of the number of factor proxies. #PC max: maximum number of factor proxies. Number of replications=1000. In all specifications, NE=Nc=N/2 and T0=T1=T/2.

Decide #PC by GR test Decide #PC by GR test (conservative)

Appendix Table A1: PCDID-MG estimator, sensitivity to number of factors and covariates
a

Use 5PCs Exogenous covariate Endogenous covariate



(a) Stationary factor. (b) Stationary factor with break. (c) Non-stationary factor with drift.

Appendix Figure A1. -- power of parallel trend Alpha test.

Note: See Section 6.2 for details of DGPs and inference procedures. TrueF: assume the factor is observed in PCDID estimation (infeasible) and compute t-statistic, 

reject if |t|>=1.96. Asym: use a factor proxy in PCDID estimation and compute t-statistic, reject if |t|>=1.96. b-t: same as Asym, but reject if t<=c0.025 or t>=c0.975 where 

c0.025, c0.975 are percentiles of the bootstrap distribution of t-statistics. See Section 6.2 for analytical standard errrors used in TrueF, Asym and b-t. See Appendix 6 for 

details on bootstrap sample construction. Number of replications=1000. Bootstrap repetitions = 199. Average factor loading of control units is set to be E(μC)=2 in all 

scenarios. Average factor loading of treated units is set between 1.8 and 2.2. The DGPs are otherwise the same as in Table V. T0=T1=25, NC=50, NE=10.
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Characteristics Mean SD Mean SD

Population ('000) 4259.37 4530.29 5067.02 5651.37

Welfare caseload ('000) 63.53 83.04 78.77 113.40

Ln(caseload per capita) -4.32 0.42 -4.39 0.37

Max combined real AFDC/Food Stamps 

benefits for family of 3 (in $100)
4.67 1.47 5.00 0.72

Unemployment rate (%) 6.93 2.00 6.18 2.35

Employment to population ratio (%) 45.61 3.19 46.63 3.49

Among treated states:

Characteristics Mean SD Mean SD

Population ('000) 5365.22 4386.88 4925.02 6259.49 476.9

Welfare caseload ('000) 63.15 38.59 86.21 135.77 4.16

Ln(caseload per capita) -4.37 0.28 -4.41 0.41 -4.74

Max combined real AFDC/Food Stamps 

benefits for family of 3 (in $100)
5.12 0.48 4.93 0.81 4.88

Unemployment rate (%) 7.16 3.00 5.72 1.88 8.80

Employment to population ratio (%) 44.72 4.12 47.55 2.81 47.95

(c) PC5 and PC6. (d) PC7 and PC8.

Appendix Figure A3. -- Factor proxies from the control panel (number of observations = 2340).

10 Southern

 treated states

a
 Control states consist of Alabama*, Alaska, Arkansas*, Colorado, DC*, Florida*, Idaho, Kansas, Kentucky*, Maine, Maryland*, Minnesota, Nevada, 

New Hampshire, New Mexico, New York, Pennsylvania, Rhode Island, South Carolina*, Tennessee*. States in the south are noted by an asterisk.

Appendix Figure A2. -- Number of states with an approved waiver program.

(a) PC1 and PC2. (b) PC3 and PC4.

 ALL Treated states (N=31)Control states (N=20)

Appendix Table A2: Characteristics of control and treated states, Oct86
a

Wyoming 

(1 state)

Mean

21 Nonsouthern 

treated states
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The PCDID Approach: Difference-in-Differences when Trends are
Potentially Unparallel and Stochastic
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1 Main Text Results

1.1 Preliminaries

Key notations:

• Treatment effect (TE): ∆it.

• ITET for treated unit i: ∆̄i := E(∆it|t > T0i).

• ATET: ¯̄∆ := E(∆̄i|i ∈ E).

• Idiosyncratic part of TE: ∆̃it := ∆it − ∆̄i = ∆it − ¯̄∆− υi (where υi := ∆̄i − ¯̄∆).

• Vector of intervention dummies for treated unit i: 1post,i = [0, . . . , 0, 1, . . . , 1]′ (T0i zeros followed
by T1i ones).

• Vector of composite idiosyncratic errors: εi = ε̃i + ∆̃i1{i∈E}1post,i.

• Variable sets: Gi = {F,Xi}, G̃i = {1post,i, Gi}, Ĝi = {F̂ ,Xi}, G̃ := {G̃i}i∈E .

• Mean-squared residuals of regressing 1post,i on 1, F and Xi: RTi := 1
T 1′post,iMGi1post,i =

1
T [1′post,i1post,i − 1′post,iGi(G

′
iGi)

−1G′i1post,i].

• Set of all mean-squared residuals in treated group: MSRT := {RTi}i∈E .

• Residual vector from linear projection of yi on Xi: ûi := MXiyi.

• Sample mean of ûi over control group: ūC := 1
NC

∑
i∈C ûi.

Table of estimators/statistics and their conditional variance:
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Estimator/statistic Conditional variance

PCDID δ̂i :=
1′post,iMĜi

yi

1′post,iMĜi
1post,i

σ2
Ti := V ar[

√
T (δ̂i − ∆̄i)|G̃i]

mean gp δ̂mg := 1
NE

∑
i∈E δ̂i

ς̄2NE ,T := V ar[
√
NET (δ̂mg − ¯̄∆)|G̃] (homo ITET)

¯̃ς2NE ,T := V ar[
√
NE(δ̂mg − ¯̄∆)] (hetero ITET)

pooled δ̂pl :=
∑
i∈E 1′post,iMĜi

yi∑
i∈E 1′post,iMĜi

1post,i

σ̄2
NE ,T

:= V ar[
√
NET (δ̂pl − ¯̄∆)|G̃] (homo ITET)

¯̃σ2
NE ,T

:= V ar[
√
NE(δ̂pl − ¯̄∆)|MSRT ] (hetero ITET)

Alpha test
âmg := 1

NE

∑
i∈E âi,

âi =
ū′CM[1post,i,Xi]

yi

ū′CM[1post,i,Xi]
ūC

ϕ̄2
NE ,T

:= V ar[
√
NE(âmg − 1)|G̃]

Here are a few notations on the characterization of probabilistic statements and stochastic order.
The phrase “a.s.” stands for “almost surely” or “with probability one,” while “w.p.a.1” stands for
“with probability approaching one.”

For sequences of random variables Un and Vn, we say that Un = Op(Vn) as n→∞ if, for any ε > 0,
there exists C = C(ε) < ∞ and N = N(ε) > 0 such that for all n > N , P (|Un/Vn| < C) > 1 − ε.
This is sometimes expressed in short form as |Un/Vn| ≤ C w.p.a.1 as n → ∞ for some C < ∞,
or in words as “Un/Vn is bounded in probability”. We say that Un = op(Vn) as n → ∞ if, for any
ε > 0 and δ > 0, there exists N = N(ε, δ) > 0 such that for all n > N , P (|Un/Vn| < δ) > 1 − ε. In
words, this is the same as saying “Un/Vn converges in probability to zero.” The big-O and small-o
notations are sometimes applied to represent the relationship between vector/matrix sequences, with
the understanding that the relationship is valid elementwise.

As a convention on matrices and vectors, the norm of a matrix/vector A is given by ‖A‖ =
[trace(A′A)]1/2. For any matrix/vector A of full column rank, we denote the projection matrix as
PA = A(A′A)−1A′ and the annihilator matrix as MA = I − PA.

1.2 Assumptions

1.2.1 Exogeneity, Treatment and Intervention Dummies

Assumption E (predeterminedness, treatment and intervention dummies):
(i) E(εit|∆̄i, 1{i∈E}, 1{t>T0i}, βi, ςi, µi, ft, xit) = 0 for each i and t.
(ii) 0 < E(1{i∈E}) < 1 for each i.

(iii) for each i ∈ E, T1i/T
p−→ κi as T, T1i →∞, where 0 < κi < 1.

Assumption ES (strict exogeneity in time): For each i, E(εit|G̃i) = 0 a.s. for all t.

Assumption ESS (strict exogeneity in panel): E(εit|G̃) = 0 a.s. for all i ∈ E and t.

Remark : Assumption ES strengthens Assumption E(i) to a strict exogeneity condition on the time
series of factors, intervention status and covariates. This is crucial for the conditioning argument that
leads to the asymptotic normality of PCDID estimator. Assumption ESS requires that the regressors
are strictly exogeneous in the panel setting. This is necessary for deriving the asymptotic normality
of the pooled and mean-group estimators. Assumption ESS implies Assumption ES by the law of
iterated expectations.

1.2.2 Factors and Factor Loadings

Denote F := [f1, . . . , fT ]′ the T × ` matrix of factors with normalization orders r1, . . . , r` ≥ 0.5.

For unit i, let Xi :=

[
1 , . . . , 1
xi1 , . . . , xiT

]′
be the T × k matrix of stationary covariates, and let

Gi := (F,Xi), a T × (` + k) matrix. Define µE := [µ1, . . . , µNE ]′ and µC := [µNE+1, . . . , µN ]′,
the NE × ` and NC × ` matrices of factor loadings for the treated and control groups, respectively.
Define Υ := diag(T r1 , . . . , T r`), an ` × ` diagonal matrix for normalizing the factors, and Γ :=
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diag(T r1 , . . . , T r` , T 0.5, . . . , T 0.5), an (`+ k)× (`+ k) diagonal matrix for normalizing the factors and
covariates.

Assumption F (factors and covariates): Let Γ := diag(T r1 , . . . , T r` , T 0.5, . . . , T 0.5) where r1, . . . , r` ≥
0.5. For each i, the following conditions are satisfied:

(i) For all T , E
∥∥Γ−1G′iGiΓ

−1
∥∥2 ≤ c for some constant c > 0.

(ii) plimT→∞ Γ−1G′iGiΓ
−1 is positive definite a.s..

Assumption FLC (factor loadings of control units):

(i) For all i ∈ C, E ‖µi‖2 ≤ c for some constant c > 0.
(ii) plimNC→∞

1
NC

µ′CµC is positive definite.

Assumption FL (factor loadings): Assumption FLC holds. In addition,

(i) For all i ∈ E, E ‖µi‖2 ≤ c for some constant c > 0.
(ii) plimNE→∞

1
NE

µ′EµE is positive definite.

Assumption FLM (mixing factor loadings): The following conditions are satisfied:
(i) For some p > 1, there exists 0 < c <∞ such that E(‖µi‖p) ≤ c for all i ∈ C ∪ E.
(ii) {µi : i ∈ C} and {µi : i ∈ E} are mixing sequences with mixing coefficients φ of size −p/(2p− 1)
for p ≥ 1, or α of size −p/(p− 1) for p > 1.

Assumption FLM2 (conditional mixing factor loadings, treated units): The following con-
ditions are satisfied:
(ii) For each i ∈ E, E(µi|G̃) = µ0 a.s..
(ii) For some p > 2, there exists 0 < c <∞ such that E(‖µi‖p |G̃) ≤ c for all i ∈ E.
(iii) Conditional on G̃, {µi : i ∈ E} is a mixing sequence with mixing coefficients φ of size −p/2(p−1)
for p ≥ 2, or α of size −p/(p− 2) for p > 2.

Remark : Assumptions F, FLC and FL are customized versions of those in the standard interactive-
effects model literature (e.g., Assumptions A and B of Bai (2003), Assumption B of Bai (2009)). We
customize the assumptions to allow for a broader range of factor dynamics (Assumption F) and to
accommodate the specific data feature in program evaluation (Assumptions FLC and FL).

Remark : The weak form of parallel trend hypothesis allows for heterogeneous factor loadings. To
obtain consistency of the Alpha statistic under the weak parallel trend hypothesis, Assumption FLM
is required to control the cross-sectional dependence of factor loadings over treated and control units.
Coupled with the conditional mixing and moment conditions on the factor loadings of treated units
in Assumption FLM2, we achieve asymptotic normality.

1.2.3 Asymptotic Identification

Assumption AIi (asymptotic identification, PCDID estimator): For each i ∈ E,
(i) ρi := plimT→∞

1
T 1′post,iMGi1post,i exists and is strictly positive a.s..

(ii) ξ2
i := plimT→∞E

(∥∥∥ 1√
T

1′post,iMGiεi

∥∥∥2
∣∣∣∣ G̃i) exists and is strictly positive a.s..

Assumption AImg (asymptotic identification, simple mean-group estimator):
(i) plimNE ,T→∞ infi∈E

1
T 1′post,iMGi1post,i exists and is strictly positive a.s..

(ii) ζ2 := plimNE ,T→∞E

(∥∥∥ 1√
NET

∑
i∈E 1′post,iMGiεi

∥∥∥2
∣∣∣∣ G̃) exists and is strictly positive a.s..

Assumption AIpl (asymptotic identification, pooled estimator): Same as Assumption AImg,
except replacing AImg(i) by:
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(i) ρ := plimNE ,T→∞
1

NET

∑
i∈E 1′post,iMGi1post,i exists and is strictly positive a.s..

Assumption AIα (asymptotic identification, Alpha test): Let r be the normalization order of

Fµ0 such that ‖Fµ0‖2 /T 2r = Op(1) as T →∞. The following conditions hold:
(i) plimNE ,T→∞ infi∈E

1
T 2r µ

′
0F
′M[1post,i,Xi]Fµ0 exists and is strictly positive a.s..

(ii) plimNE ,T→∞E

(∥∥∥ 1√
NET r

∑
i∈E µ

′
0F
′M[1post,i,Xi]F (µi − µ0)

∥∥∥2
∣∣∣∣ G̃) exists and is strictly positive

a.s..

Remark : It is possible to asymptotically identify ATET with the pooled estimator even if Assumption
AIi(i) breaks down for a finite number of treated units, as long as Assumption AIpl(i) holds. By
contrast, asymptotically identifying ATET with the mean-group estimator requires that every treated
unit is well identified as the treatment panel grows, i.e., ρi > 0 uniformly over all i ∈ E as NE →∞
(Assumption AImg(i)). This is crucial for a well-defined mean-group estimator, defined as the average
of PCDID estimators over all i ∈ E.

1.2.4 Heterogeneous Treatment Effects

Assumption RTmg (treatment effects, simple mean-group estimator): Let X̃i be the matrix
of the covariates (excluding constant and deterministic ones) stacked over time for unit i, and υi :=

∆̄i − ¯̄∆. The following conditions are satisfied:
(i) For some p > 2, there exists 0 < c <∞ such that E |υi|p ≤ c for all i ∈ E.
(ii) υi is a mixing process with mixing coefficient φ of size −p/2(p−1) for p ≥ 2, or α of size −p/(p−2),
p > 2.

(iii) limNE→∞ V ar(N
−1/2
E

∑
i∈E υi) exists and is strictly positive.

Assumption RTpl (treatment effects, pooled estimator): Let RTi := 1
T 1′post,iMGi1post,i,

MSRT := {RTi}i∈E and υi := ∆̄i − ¯̄∆. The following conditions are satisfied:
(i) For each i ∈ E, E(υi|MSRT ) = 0 a.s..
(ii) For some p > 2, there exists 0 < c <∞ such that E(|υi|p |MSRT ) ≤ c for all i ∈ E and T .
(iii) Conditional on MSRT , υi is a mixing process with mixing coefficient φ of size −p/2(p − 1) for
p ≥ 2, or α of size −p/(p− 2), p > 2.

(iv) plimNE ,T→∞ V ar(N
−1/2
E

∑
i∈E RTiυi|MSRT ) exists and is strictly positive a.s..

Remark : To obtain asymptotic results in a heterogeneous treatment effect environment, we impose
Assumptions RTpl and RTmg respectively for the pooled and mean-group estimators. Both of them
exert control on the cross-section mean, variation and higher-order moments of the treatment effects
over the treated; nevertheless, to obtain desirable asymptotic properties of the pooled estimator we
need additional restrictions. Importantly, to ensure consistency of the pooled estimator, it is required
that the heterogeneous treatment effect is uncorrelated with the treatment status after partialling
out the factors and covariates (Assumption RTpl(i)). The mean-group estimator does not require
such assumption for consistency. For consistency of the mean-group estimator it is necessary that
E(υi|i ∈ E) = 0, but this is automatically satisfied by construction.

1.2.5 Weak Dependence of Idiosyncratic Errors

Define σij,st := E(εisεjt) and γT (i, j) := E
[
T−1

∑T
t=1 εitεjt

]
.

Assumption IE (idiosyncratic errors): There exists a positive constant 0 < c <∞ such that for
all NE , NC and T :
(i) E |εit|8 ≤ c for each i and t.
(ii) |γT (i, i)| ≤ c and

∑
j∈C |γT (i, j)| ≤ c for each i.

(iii) |σii,st| ≤ |σst| for some σst and for all i. In addition, 1
T

∑T
s,t=1 |σst| ≤ c.
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(iv) 1
NCT

∑
i,j∈C

∑T
s,t=1 |σij,st| ≤ c and 1

NET

∑
i,j∈E

∑T
s,t=1 |σij,st| ≤ c.

(v) E
∣∣∣ 1√

T

∑T
t=1 [εitεjt − E(εitεjt)]

∣∣∣4 ≤ c for each (i, j) pair.

Remark : Note that Assumption E(i) implies E(εit) = 0. The conditions in Assumption IE are no
stronger than those in Bai and Ng (2002) and Bai (2003). They allow for heteroskedastic and weakly
dependent idiosyncratic errors, both over cross-section and over time. Assumption IE(i) is imposed
to ensure the existence of those moments of εit appearing in the proofs of all lemmas and theorems
(including those in the rest of Assumption IE). Except for Assumption IE(ii) which is a combination
of Assumptions C(2) and E(1) of Bai (2003), all the rest are obtained from Bai and Ng (2002) and
Bai (2003) by interchanging the subscripts for i and t.

1.2.6 Moment Conditions

Assumption MX (moments on covariates): There exists 0 < c < ∞ such that the following
moment conditions are satisfied for all NE , NC and T :

(i) E supi

∥∥∥X′iXiT

∥∥∥ ≤ c.
(ii) infi infv∈Rk\{0} v

′
(
X′iXi
T

)
v > 0.

(iii) E supi
∥∥X ′iFΥ−1

∥∥2 ≤ c.

(iv) E supi,j

∥∥∥ 1√
T
X ′iεj

∥∥∥2

≤ c.

(v) 1
TNC

∑
i∈C

∑T
s=1

∑T
t=1 ‖Cov(xisεis, xitεit)‖ ≤ c.

(vi) E
∥∥∥ 1√

NCT

∑
i∈C

∑T
t=1 xitεitµi

∥∥∥2

≤ c.

(vii) E supi

∥∥∥ 1√
NCT

∑
j∈C X

′
iεj

∥∥∥2

≤ c and E supi

∥∥∥ 1√
NET

∑
j∈E X

′
iεj

∥∥∥2

≤ c.

Remark : MX(i) states that the second (self- and cross-) moments of covariates are uniformly bounded
over all i. In particular, this implies that all covariates are temporally stationary. MX(ii) means that
the matrices X ′iXi are positive definite uniformly over all i. MX(iii) states that xit and ft are orthog-
onal in the limit. When all factors are I(0), the orthogonality condition implies that all elements of

T−1
∑T
t=1 xitf

′
t are Op(T

−0.5) = op(1) uniformly over all i. This assumption is imposed for analytical
convenience when deriving some of the theoretical results. MX(iv) and (vii) are standard assumptions
that guarantee the existence of second moments of xitεjt while allowing for weak dependence across
time and units. MX(v) is the weak dependence assumption on xitεit.

Assumption M (moments): Assumption MX holds. In addition, there exists 0 < c <∞ such that
the following conditions are satisfied for all NC and T :

(i) E

(
1
T

∑T
t=1

∥∥∥ 1√
NC

∑
i∈C µiεit

∥∥∥2
)
≤ c.

(ii) E supi

∥∥∥Υ−1
∑T
t=1 ftεit

∥∥∥2

≤ c.

(iii) E
∥∥∥ 1√

NC
Υ−1

∑T
t=1

∑
i∈C εitµif

′
t

∥∥∥2

≤ c.

(iv) E supj∈E

∥∥∥ 1√
NCT

∑T
t=1

∑
i∈C µi[εitεjt − E(εitεjt)]

∥∥∥2

≤ c.

Remark : Assumptions M(i)-(iv) are the same as Assumptions D and F(1)-(3) in Bai (2003) after
interchanging the roles of factors and factor loadings. In particular, Assumption M(i) is used in the
proof of lemmas A1, A2 and A3(a). Assumptions M(ii)-(iv) are required for obtaining the consistency
of PCDID estimator in Theorem 1. Assumption M(iii) is a moment condition analogous to Assumption
MX(vi) with factors in place of covariates.
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Assumption MM (moments): Assumption M holds. In addition, there exists 0 < c < ∞ such
that the following conditions are satisfied for all NE , NC and T :
(i) 1

NC

∑
i,j∈C |γT (i, j)| ≤ c and 1√

NCNE

∑
i∈C

∑
j∈E |γT (i, j)| ≤ c.

(ii) E
∥∥∥Υ−1 1√

NE

∑
j∈E

∑T
t=1 ftεjt

∥∥∥2

≤ c and E
∥∥∥Υ−1 1√

NC

∑
i∈C

∑T
t=1 ftεit

∥∥∥2

≤ c.

(iii) E
∥∥∥ 1√

NENCT

∑T
t=1

∑
j∈E

∑
i∈C µi[εitεjt − E(εitεjt)]

∥∥∥2

≤ c.

Remark : Assumption MM lists the conditions necessary for the consistency of pooled and mean-group
estimators and alpha test. Assumption MM(i) is the customized version of Bai (2003)’s Assumption
C(2), and is weaker than our Assumption IE(ii). Assumptions MM(ii) and (iii) generalize Assumptions
M(ii) and (iv) to the large panel setting.

1.2.7 Time Series and Cross-Sectional Dependence

Denote ‖v‖r = [E(
∑k
j=1 |vj |r)]1/r be the r-th norm of a k-dimensional vector v. We say that a vector

sequence vt is L2-NED (near-epoch dependent) of size −p on another process ht with respect to scaling
constants πt if

∥∥vt − E(vt|F t+mt−m )
∥∥

2
≤ πtam, where F ts = σ(hs, . . . , ht) for s ≤ t, πt is positive for all

t, and am = O(m−p
′
) for some p′ > p as m→∞ (e.g., Definition 1 of DeJong and Davidson (2000)).

The definitions of φ- and α-mixing processes are standard in the literature (e.g., Section 3.4 of White
(2001)).

Assumption Di (time series dependence): Denote ut = (u1t, . . . , u`t)
′. Let x̃it be the vector of

covariates excluding the constant intercept and deterministic variables.
Each factor fjt (j = 1, . . . , `) takes any one of the following forms:
(1) a deterministic trend with maximal polynomial order dj ≥ 0,
(2) an L2-NED process fjt = ujt, or
(3) an integrated process with integer integration order dj = 1, 2 . . . and representation given by

fjt =
∑t
sdj−1=1

∑sdj−1

sdj−2=1 · · ·
∑s2
s1=1

∑s1
s=1 ujs.

For each i ∈ E, the vector sequence vit = (1{t>T0i}, x̃
′
it, u

′
t, εit)

′ satisfies all of the following conditions:

(i) vit is L2-NED of size − 1
2 on a process zit with respect to πit, where zit is φ-mixing of size − p

2(p−1)

for p ≥ 2, or α-mixing of size − p
p−2 for p > 2, and πit satisfies 0 < πit ≤ ‖vit‖p for all t.

(ii) supt ‖vit − E(vit)‖p <∞ for p defined in (i), and if p = 2 then each component of vit is uniformly
integrable.
(iii) limT→∞ V ar(T−1/2

∑T
t=1 vit) exists and is positive definite.

Assumption D (panel dependence): Assumption Di holds for all i ∈ E. In addition, the following
conditions are satisfied:
(i) εit are independent over i ∈ E.

(ii) ζ2
i := limT→∞ V ar(T−1/21′post,iMGiεi|G̃) satisfies

maxi∈E ζ
2
i∑

i∈E ζ
2
i

= Op

(
1
NE

)
as NE →∞.

Remark : To derive the asymptotic normality of PCDID estimator we need to strengthen existing
assumptions on idiosyncratic errors. Assumption Di puts restrictions on the time series dynamics of
regressors, factors and idiosyncratic errors by allowing for weak dependence and heteroskedasticity
over time. This enables us to apply the FCLT of DeJong and Davidson (2000). While fractionally
integrated processes are ruled out in Assumption Di, there exist more general assumptions and FCLT
results that accommodate factors with fractional normalization order (e.g., Davidson and DeJong
(2000)). To avoid further complicating our analysis we do not consider such level of generality.

Remark : Assumption D is the basis for obtaining the asymptotic distribution of the pooled and mean-
group estimators. Assumption D(i) restricts the idiosyncratic errors to be independent over treated
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units. Assumption D(ii) is an asymptotic negligibility condition on the cross-sectional variation of the
treatment panel. While stronger than weak dependence (Assumption IE), the restrictions enable us
to invoke the joint CLT of Phillips and Moon (1999) and obtain asymptotic normality. It is possible
to relax the cross-sectional independence at the expense of more technical assumptions.

1.2.8 Parallel Trend Hypothesis

Assumption PTW (weak parallel trends): E(µi|i ∈ C) = E(µi|i ∈ E) = µ0 for some finite and
non-zero vector µ0.

1.3 Result on PCDID Estimator

Theorem 1 (PCDID estimator): Suppose Assumptions E, F, FLC , AIi, IE and M hold. Then, as

T,NC →∞ jointly and
√
T

NC
→ 0, we have for each i ∈ E:

(a) δ̂i
p−→ ∆̄i.

(b)
√
Tσ−1

Ti (δ̂i−∆̄i)
d−→ N(0, 1) if additionally Assumptions ES and Di hold, where σ2

Ti := V ar[
√
T (δ̂i−

∆̄i)|G̃i].

1.4 Result on Simple Mean-Group Estimator

Theorem 2 (simple mean-group estimator): Suppose Assumptions E, F, FL, AImg, IE and MM
hold. As T,NE , NC →∞ jointly and T

NC
→ 0, we have the following results:

(a) (homogeneous ITET) Suppose υi := ∆̄i − ¯̄∆ ≡ 0. Then,

(i) δ̂mg
p−→ ¯̄∆.

(ii)
√
NET ς̄

−1
NE ,T

(δ̂mg− ¯̄∆)
d−→ N(0, 1) if additionally Assumptions ESS and D hold, where ς̄2NE ,T :=

V ar[
√
NET (δ̂mg − ¯̄∆)|G̃].

(b) (heterogeneous ITET) Suppose υi satisfies Assumption RTmg. Then,

(i) δ̂mg
p−→ ¯̄∆.

(ii)
√
NE ¯̃ς−1

NE ,T
(δ̂mg − ¯̄∆)

d−→ N(0, 1), where ¯̃ς2NE ,T := V ar[
√
NE(δ̂mg − ¯̄∆)].

1.5 Result on Pooled Estimator

Theorem 3 (pooled estimator): Suppose Assumptions E, F, FL, AIpl, IE and MM hold. As
T,NE , NC →∞ jointly and T

NC
→ 0, we have the following results:

(a) (homogeneous ITET) Suppose υi := ∆̄i − ¯̄∆ ≡ 0. Then,

(i) δ̂pl
p−→ ¯̄∆.

(ii)
√
NET σ̄

−1
NE ,T

(δ̂pl− ¯̄∆)
d−→ N(0, 1) if additionally Assumptions ESS and D hold, where σ̄2

NE ,T
:=

V ar[
√
NET (δ̂pl − ¯̄∆)|G̃].

(b) (heterogeneous ITET) Suppose υi satisfies Assumption RTpl. Then,

(i) δ̂pl
p−→ ¯̄∆.

(ii)
√
NE ¯̃σ−1

NE ,T
(δ̂pl − ¯̄∆)

d−→ N(0, 1), where ¯̃σ2
NE ,T

:= V ar[
√
NE(δ̂pl − ¯̄∆)|MSRT ].
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1.6 Result on Asymptotic Efficiency

Theorem 4 (asymptotic efficiency): Suppose Assumptions E, F, FL, IE, D, AIpl, AImg and MM
hold. For each i ∈ E, define ρi := plimT→∞ 1′post,iMGi1post,i/T , where RTj := 1′post,jMGj1post,j/T .
The following results are valid a.s.:

(a) (homogeneous ITET) Suppose εit are iid over i and t with mean 0 and variance σ2
ε . Then σ2 ≤ ς2

a.s.. Equality holds iff ρi are identical over i ∈ E.

(b) (heterogeneous ITET) Suppose υi are iid with mean 0 and variance σ2
υ, and that υi are independent

of RTj for all i, j ∈ E. Then ς̃2 ≤ σ̃2. Equality holds iff ρi are identical over i ∈ E.

1.7 Result on Alpha Test

Theorem 5 (Alpha test): Suppose Assumptions E, F, FLM, AIα, IE and MM hold. Then, under
Assumption PTW, we have the following results as T,NE , NC →∞ jointly and T

NC
→ 0:

(a) âmg
p−→ 1.

(b)
√
NEϕ̄

−1
NE ,T

(âmg − 1)
d−→ N(0, 1) if additionally Assumption FLM2 holds, where ϕ̄2

NE ,T
:=

V ar[
√
NE(âmg − 1)|G̃].

2 Intermediate Results

Let V be the `× ` eigenvalue matrix V , and W be the associated NC × ` eigenvector matrix for the
principal component analysis. The following lemma shows that both V and W have full (column)
rank in the limit as the control panel grows in size.

Lemma A1: Suppose Assumptions F, FLC , IE, M(i) and MX(i)-(iii) hold. Then we have rank(W ) =

rank(V )
p→ ` as NC , T →∞.

The factor space can be identified up to a rotation. The following lemma constructs a rotation
matrix which has full rank for large NC and T . This construction is necessary for the asymptotic
arguments in the main theorems. Define Υ = diag(T r1 , . . . , T r`).

Lemma A2: Suppose Assumptions F, FLC , IE, M(i) and MX(i)-(iii) hold. Then there exists an

`× ` block-diagonal rotation matrix H defined by H := Υ−1F ′F
µ′CW
NC

V −1Υ−1 such that rank(H) = `
almost surely for large NC and T .

The following lemma states a number of asymptotic results which will be useful for the proofs of
the main theorems. Let wi be the ith row of the eigenvector matrix W . H is as constructed in lemma
A2.

Lemma A3: Under Assumptions E, F, FLC , IE and M, the following results hold as NC , T →∞:

(a) 1
NC

∑
i∈C ‖wi −Hµi‖

2
= Op

(
1

min(NC ,T )

)
.

(b)
∥∥∥W ′(W−µCH)

NC

∥∥∥ = Op

(
1

min(
√
NC ,
√
T )

)
.

(c)
∥∥∥ (W−µCH)′εCε

′
C(W−µCH)

TN2
C

∥∥∥ = Op

(
1

min(NC ,T )

)
.

(d)
∥∥∥W ′εCε′CWTN2

C

∥∥∥ = Op

(
1

min(NC ,T )

)
.
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(e)
∥∥∥Υ−1 F

′ε′CW
NC

∥∥∥ = Op

(
1

min(
√
NC ,
√
T )

)
.

The following lemmas are the key to the main theorems (lemmas A4 and A5 for Theorem 1,
lemma A6 for Theorem 2, lemma A7 for Theorem 3). The important message from the lemmas is
that the estimation error of the principal components does not contribute to the asymptotic limit of
the treatment effect estimators. Recall that MA is the orthogonal projection matrix of A defined as
MA = I −A(A′A)−1A′.

Lemma A4: Suppose Assumptions E, F, FLC , IE, M and MX hold. Then, as NC , T →∞,

(a) supj∈E

∥∥∥ 1
NC
√
T

∑
i∈C 1′post,jMXiFµiwiΥ

−1 − 1√
T

1′post,jFΥ−1H ′−1
∥∥∥ = op(1).

(b)
∥∥∥ 1
NC
√
T

∑
i∈C X

′
iεiwi

∥∥∥ = Op

(
1

min(
√
T ,
√
NC)

)
.

(c) supj∈E

∥∥∥ 1
NC
√
T

∑
i∈C 1′post,jMXiεiwiΥ

−1
∥∥∥ = op(1).

(d) supj∈E

∥∥∥∥ 1′post,j F̂√
T

Υ−1 − 1′post,jF√
T

Υ−1H ′−1

∥∥∥∥ = op(1).

(e) supj∈E

∥∥∥∥X′j F̂√T Υ−1

∥∥∥∥ = op(1).

(f)
∥∥∥Υ−1F̂ ′F̂Υ−1 −H−1Υ−1F ′FΥ−1H ′−1

∥∥∥ = op(1).

(g) supj∈E

∥∥∥ε′jF̂Υ−1 − ε′jFΥ−1H ′−1
∥∥∥ = op(1) if in addition

√
T

NC
→ 0.

Lemma A5: Suppose Assumptions E, F, FLC , IE, M and MX hold. Then, as NC , T →∞,

(a) supj∈E

∣∣∣ 1
T 1′post,jM[F̂ ,Xj ]

1post,j − 1
T 1′post,jM[F,Xj ]1post,j

∣∣∣ = op(1).

(b) supj∈E

∣∣∣ 1√
T

1′post,jM[F̂ ,Xj ]
(Fµj +Xjβj + εj)− 1√

T
1′post,jM[F,Xj ]εj

∣∣∣ = op(1) if in addition
√
T

NC
→ 0.

Lemma A6: Suppose Assumptions E, F, FL, IE, MM and MX hold. Then, as NE , NC , T →∞ and
T
NC
→ 0,∣∣∣ 1√
NET

∑
j∈E 1′post,jM[F̂ ,Xj ]

(Fµj +Xjβj + εj)− 1√
NET

∑
j∈E 1′post,jM[F,Xj ]εj

∣∣∣ = op(1).

Lemma A7: Suppose Assumptions E, F, FLM, IE, MM and MX hold. Suppose further that E(µi|i ∈
C) =: µ0, a finite and non-zero vector. Let r be the normalization order of Fµ0 such that ‖Fµ0/T

r‖ =
Op(1) as T →∞. Then, as NC , T →∞,

(a) supj∈E

∣∣∣∣ ū′CM[1post,j ,Xj ]
ūC

T 2r − µ′0
F ′M[1post,j ,Xj ]

F

T 2r µ0

∣∣∣∣ = op(1).

(b) supj∈E

∣∣∣∣ ū′CM[1post,j ,Xj ]
fµj

T 2r − µ′0
F ′M[1post,j ,Xj ]

Fµj

T 2r

∣∣∣∣ = op(1).

(c)

∣∣∣∣∑j∈E
ū′CM[1post,j ,Xj ]

εj
√
NET r

− µ′0
∑
j∈E

F ′M[1post,j ,Xj ]
εj

√
NET r

∣∣∣∣ = op(1) if in addition NE →∞ and T/NC → 0.

Remark : When some factors are I(0) and the idiosyncratic errors display heteroskedasticity and weak

dependence, the asymptotic condition
√
T

NC
→ 0 is necessary to achieve consistency of the individual

treatment effect estimator, and the asymptotic condition T
NC
→ 0 is necessary to achieve consistency

of the pooled estimator and the alpha test.

Lemma A8: For each i ∈ E, define SG̃ε := Γ̃−1
∑T
t=1 G̃itεit. Suppose Assumptions ES and Di hold,

and that the asymptotic variance ΩG̃ε := plimT→∞ V ar(SG̃ε|G̃i) is Op(1) and positive definite a.s..

Then we have SG̃ε|G̃i
d−→ N (0,ΩG̃ε) as T →∞.
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3 Comparison with Other Methods

In this section, we study the generalized synthetic control (GSC) estimator of Xu (2017). A formal
comparison with the PCDID estimator (defined in Section 4) is made in terms of identification and
efficiency.

3.1 The Generalized Synthetic Control Estimator

The DGP is the same as Section 3, equation (5): yit = ∆it1{i∈E}1{t>T0i}+β′ixit + ςi +µ′ift + ε̃it. The
estimator is obtained from the following procedure:

1. Use Bai (2009)’s estimator on the control panel (NC × T observations) to obtain β̂baii , ς̂baii , µ̂baii
and f̂ bait for i ∈ C and t = 1, .., T . The cth iteration contains two estimation sub-procedures:

(i) based on the control panel of residuals yit − β̂
(c−1)′

i xit − ς̂
(c−1)
i where {β̂(c−1)

i , ς̂
(c−1)
i }i∈C

are estimates from the (c-1)th iteration, use PCA to estimate µ̂
(c)
i and f̂

(c)
t , and (ii) subtract

µ̂
(c)′

i f̂
(c)
t from yit, and obtain {β̂(c)

i , ς̂
(c)
i }{i∈C} from the regression yit−µ̂(c)′

i f̂
(c)
t = b0i+b

′

1ixit+eit
using the control panel.

2. For each treated unit (i ∈ E), use data from pre-intervention periods (t = 1, .., T0i) to obtain

ς̂gsci , µ̂gsci from the regression yit − β̂bai
′

i xit = b0i + b
′

1if̂
bai
t + eit. The least squares formula is

[ς̂gsci , µ̂gsci ]
′

= (
˜̂
G
′

0i
˜̂
G0i)

−1 ˜̂
G
′

0i(
˜̂
Yi), (1)

where
˜̂
G0i :=

[
1 , ..., 1

f̂bai1 , ..., f̂baiT0i

]′
and

˜̂
Yi := [yi1 − β̂bai

′
i xi1 , ..., yiT0i − β̂

bai′
i xiT0i ]

′
.

3. For each i ∈ E and t = T0i + 1, .., T , compute

δ̂gscit := yit − β̂bai
′

i xit − ς̂gsci − µ̂gsc
′

i f̂ bait .

As in most synthetic control or matrix completion approaches, GSC uses the control panel and
pre-intervention periods of treated units to construct the counterfactual outcome. Then, using the
post-intervention periods of treated units, it computes the treatment effect by subtracting the coun-
terfactual outcome from the actual outcome.

Without losing the key insights, the ensuing analysis abstracts from the presence of covariates and
assume that all factors are stationary processes. The lengths of pre- and post-intervention periods (T0

and T1) are assumed to be homogeneous. The idiosyncratic errors ε̃it are assumed to be iid with mean
zero and independent of the factors, factor loadings and treatment effects. The number of factors ` is
assumed fixed.

3.1.1 Identification

A key identification condition of the GSC estimator is:1

G0 has full column rank, (2)

where G0 = [1pre, F0], 1pre is a T × 1 vector storing T0 ones followed by T1 zeros, and F0 is a T × `
matrix which is the same as F except that the last T1 rows are set to zero. This is evident from

(1), which requires (
˜̂
G
′

0
˜̂
G0)−1 to exist (

˜̂
G0i ≡ ˜̂

G0). In practice, it means that there is sufficient time
variation in factors during pre-intervention periods that can identify the factor loadings among all
treated units. For the PCDID estimator, the identification condition is:

1′postMG1post > 0, (3)

1This condition is analogous to Assumption 4.4 of Xu (2017b) after switching the roles of t and i.
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where G = [1, F ] and 1post is a T × 1 vector storing T0 zeros followed by T1 ones. It turns out that
condition (3) is stronger than (4). This is stated in the following proposition. The proof is found at
the end of this appendix section.

Proposition S1: (2) =⇒ (3).

Geometrically, condition (2) implies that 1post does not lie on the linear subspace spanned by the
columns of F . The full rank condition is crucial for GSC estimator to be well-defined, but it is optional
for PCDID estimator. Some examples illustrating this point are given below.

Example 1a: Set T0 = T1 = T/2, ft = 1{t>0.75T} (single factor). GSC estimator is not well defined
due to lack of variation in ft for t ≤ T0. PCDID estimator is well defined because the intervention

dummy 1{t>T0} is not collinear with ft over t = 1, .., T . (
1′postMG1post

T > 0 uniformly over all T, T1,
and hence Assumption AI(i) holds.).

Example 1b: Let ut be an iid sequence with mean 0 and variance σ2
u > 0. Set T0 = T1 = T/2,

ft = ut1{t≤T0}+1{t>T0} (single factor). GSC estimator is well-defined due to variation in ft for t ≤ T0.
PCDID estimator is also well-defined because the intervention dummy 1{t>T0} is not collinear with ft
for t = 1, .., T .

Due to treatment effect heterogeneity, we must also align the estimands between GSC and PCDID
when discussing identification. That said, an important benchmark case in the synthetic control or
matrix completion literature is T1 = NE = 1 but T0 and NC are large. As in those literatures, assume
that the treatment effect ∆it as given once the sample is drawn, i.e., the estimand is ∆it instead of
some population moments of ∆it. Then, in this case, the estimands are identical and, clearly, PCDID
has a weaker identification condition than GSC according to Proposition S1.

More generally, the building block of PCDID’s estimand is the ITET ∆̄i := E(∆it|t > T0) for each
i ∈ E, which is identified when T1 is large. The asymptotic analog of (3) and (4) are, respectively,

plim
T0→∞

G′0G0

T0
is invertible, and (4)

plim
T1,T→∞

1′postMG1post

T
> 0, (5)

which is Assumption AIi(i). The proposition below is the asymptotic analog of Proposition S1.

Proposition S2: Suppose 0 < κ < 1, where κ := limT,T1→∞ T1/T . Then (4) =⇒ (5).

In practice, 0 < κ < 1 means that the proportions of pre- and post-intervention periods do
not vanish in the limit (see also Assumption E(iii)). This makes the comparison of pre- and post-
intervention periods meaningful when T becomes large, as illustrated by the example below.

Example 2: Set ` = 1 (single factor), ft = 1{t>T0+0.5T1}. GSC estimator is not well defined due to
lack of variation in ft for t ≤ T0. As long as 0 < κ < 1, PCDID estimator is well-defined because the
intervention dummy 1{t>T0} is not collinear with ft for t = 1, .., T . When κ = 0 or κ = 1, PCDID
estimator is not well defined because there is no variation in the intervention dummy in the limit.

3.1.2 Efficiency

To compare the efficiency of GSC and PCDID estimators, we first align the estimands. Without losing
the main intuition, we consider the ITET as the estimand in large samples.2 The relevant estimators

2The results still hold even when T1 = 1, by replacing ∆̄i with ∆it. This can then be used to construct 1
NE

∑
i∈E δ̂

gsc
it

found in Xu (2017) and PCDID-MG estimators, using 1
NE

∑
i∈E ∆it as the estimand, with similar results.
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are then δ̂gsci := 1
T1

∑
t>T0

δ̂gscit and δ̂pcdidi . To facilitate our analysis, it is helpful to decompose δ̂gsci

as follows. Recall that the vector of composite idiosyncratic errors is εi = ε̃i + ∆̃i1{i∈E}1post.

Lemma S1: As NC , T →∞ and T/NC → 0, we have

δ̂gsci − ∆̄i =
1

T1
1′postεi −

1

T1
1′postG(G′0G0)−1G′0εi + op(1).

Suppose εit are iid with mean zero and variance σ2
ε . Then, by the above lemma, the asymptotic

variance of δ̂gsci is given by:

V gsc := V ar(
√
T δ̂gsci |1post, G) =

σ2
ε

T 2
1

(1′post1post + 1′postG(G′0G0)−1G′1post) + op(1). (6)

On the other hand, the asymptotic variance of δ̂pcdidi is (c.f. Theorem 1 and its proof):

V pcdid := V ar(
√
T δ̂pcdidi |1post, G) =

Tσ2
ε

1′postMG1post
+ op(1). (7)

To analyze the variances in a simple setting, we consider the DGP

yit = ∆it1{i∈E}1{t>T0} + ςi + µ′ift + ε̃it, (8)

where ft consists of a single factor that is a stationary, mean-zero process possibly correlated with the
intervention dummy 1{t>T0}. Let b0 := E(ft|t ≤ T0) and b1 := E(ft|t > T0). Suppose further that
V ar(ft|t ≤ T0) = V ar(ft|t > T0) =: vf > 0. The following proposition compares the variances of the
two estimators under this DGP.

Proposition S3: Suppose the DGP is given by (8), and that 0 < κ < 1 and (4) holds. Then
plimV gsc ≥ plimV pcdid as NC , T →∞ and T/NC → 0. Equality holds iff b0 = b1 = 0.

The implication is that PCDID estimator is at least as efficient as GSC estimator in large samples,
and both estimators are equally efficient if and only if the factor is uncorrelated with the intervention
dummy. To explain the rationale, we note that GSC estimator discards data in the post-intervention
subsample which contain useful information about the correlation between factors and intervention
dummy. This leads to efficiency loss, which becomes bigger as the proportion of post-intervention
periods to be discarded is higher. This is illustrated in Example 3 below.

Example 3: Set σ2
ε = 1, T0 = 0.75T , T1 = 0.25T , ft is an iid sequence with mean 0 and (uncondi-

tional) variance σ2
f > 0. Assume that ft and 1{t>T0} are correlated such that b1 = E(ft|t > T0) = 0.5.

Further assume that vf = V ar(ft|t ≤ T0) = V ar(ft|t > T0) = 1. Then we have κ = 1
4 , θ := κ

1−κ = 1
3 ,

b0 = −θb1 = − 1
6 , σ2

f = vf + b20(1 − κ) + b21κ = 13
12 , A :=

b21
vf

= 1
4 and B :=

b21
σ2
f

= 3
13 . The variance of

GSC estimator is V ar(δ̂gsci ) = 1
T1
σ2
ε

(
1 + θ

[
1 + (θ + 1)

2
A
])

= 40
27

1
T1

= 1.4815
T1

, which is bigger than

that of PCDID estimator: V ar(δ̂pcdidi ) = 1
T1
σ2
ε

1
1−κ(1+B) = 13

9
1
T1

= 1.4444
T1

.

Now treat κ and b1 as free parameters. As illustrated in the table below, the ratio plimV gsc

plimV pcdid
≥ 1

for all (κ, b1) pairs. For example, when κ = 0.5 and b1 = 1 (A = 1), plimV gsc is 50 percent larger
than plimV pcdid.

b1 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2

A :=
b21
vf

0.0 0.04 0.16 0.36 0.64 1.0 1.44 1.96 2.56 3.24 4.00

κ = 0.1 1.00 1.00 1.00 1.00 1.01 1.01 1.02 1.02 1.02 1.03 1.03
κ = 0.2 1.00 1.00 1.01 1.02 1.03 1.05 1.07 1.08 1.10 1.11 1.13
κ = 0.3 1.00 1.01 1.03 1.06 1.09 1.13 1.16 1.20 1.22 1.25 1.27
κ = 0.4 1.00 1.02 1.06 1.13 1.20 1.27 1.33 1.38 1.42 1.46 1.48
κ = 0.5 1.00 1.04 1.14 1.26 1.39 1.50 1.59 1.66 1.72 1.76 1.80
κ = 0.6 1.00 1.08 1.29 1.53 1.73 1.90 2.03 2.12 2.19 2.24 2.29
κ = 0.7 1.00 1.20 1.63 2.07 2.40 2.63 2.80 2.91 3.00 3.06 3.11
κ = 0.8 1.00 1.55 2.56 3.36 3.88 4.20 4.41 4.55 4.64 4.71 4.76
κ = 0.9 1.00 3.38 6.31 7.88 8.67 9.10 9.36 9.52 9.63 9.70 9.76
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3.2 The Step-wise GM Estimator

Gobillon and Magnac (2016) examine identification and estimation of treatment effects under the
original Bai (2009) approach, which uses the entire panel for estimation. They also consider a step-
wise estimator (“GM”) as follows. This estimator uses the same #1 and #2 procedure as the GSC
estimator. Then, do the following:

3. Use the Bai (2009)’s estimator on the full panel (N × T observations) where the outcomes of
treated units during post-intervention periods (yit for all i ∈ E and t = T0i+1, ..., T ) are replaced

by the counterfactual outcome β̂bai
′

i xit + ς̂gsci + µ̂gsc
′

i f̂ bait . Denote the estimates by β̂bbaii , ς̂bbaii ,

µ̂bbaii and f̂ bbait for i ∈ C,E and t = 1, .., T .

4. For each i ∈ E and t = T0i + 1, .., T , compute δ̂gmit := yit − β̂bbai
′

i xit − ς̂bbaii − µ̂bbai′i f̂ bbait .

From the #2 procedure, the identification condition is the same as GSC. In addition, we expect
GM to have similar efficiency performance as GSC because in #3, information of the actual outcomes
of treated units during post-intervention periods are not used for estimating the factor structure and
treatment effects.

3.3 The MC-NNM Estimator

The Matrix Completion with Nuclear Norm Minimization (MC-NNM) estimator (Athey et al. (2018))
assumes the potential outcome without treatment is given by Y (0) = L∗+ε, where Y (0), L∗, ε areN×T
matrices, L∗ is a low-rank matrix of rankR (e.g., factor structure withR factors), and the measurement
error ε satisfies E(ε|L∗) = 0. See their paper for the full list of assumptions. They show that
MC-NNM, vertical regression (synthetic control methods), horizontal regression (unconfoundedness
methods), and the original synthetic control approach (Abadie et al. (2010)) can all be viewed as
matrix completion methods based on matrix factorization with different restrictions/regularizations.

Let Y be a N × T matrix of actual outcomes, and O := {(i, j)|(i ∈ C ∩ 1 ≤ t ≤ T ) ∪ (i ∈ E ∩ 1 ≤
t ≤ T0i)} be a set of indices consisting of all periods of control units and pre-intervention periods of
treated units. Define the N × T matrix PO(Y ) with elements as follows: PO(Y )it = Yit if (i, t) ∈ O,
PO(Y )it = 0 otherwise. Their estimator for L∗ is

L̂ = argminL{
1

|O|
||PO(Y − L)||2F + λ||L||∗}, (9)

where ||.||2F is the Fröbenius norm, λ is a penalty factor for the regularization problem, and ||L||∗ :=∑
i σi(L) is the nuclear norm given by the sum of all singular values of L.3 This estimator finds a

low-rank matrix L̂ that best fits the observed entries of Y (0), where the optimal rank is determined
by the relative size of the penalty term λ||L||∗.

The minimization problem can be solved by a recursive algorithm as follows. Initialize L(1) :=
PO(Y ) (i.e., the initial L fits observed Y (0) perfectly). The cth iteration uses the following sub-
procedures to update L(c):

1. Given L(c−1), compute A(c) = PO(Y ) + P⊥O (L(c−1)) where P⊥O (L(c−1)) := L(c−1) − PO(L(c−1)).

2. Perform singular value decomposition (SVD) on A(c), yielding S(c)Σ(c)R(c)′ where Σ(c) is a N×T
diagonal matrix with ordered diagonal elements σ

(c)
ii for i = 1, ..,min{N,T} as singular values.

3. Perform shrinkage operation on Σ(c) by replacing each diagonal element σ
(c)
ii with max{σ(c)

ii −
λ|O|

2 , 0} for i = 1, ..,min{N,T}. Denote the new matrix by Σ̃(c).

3The singular value decomposition (SVD) LN×T = SN×NΣN×TR
′
T×T yields singular values σi(L), i =

1, ..,min(N,T ) as the ordered diagonal elements of ΣN×T . The rank of L is equal to the number of non-zero sin-
gular values of L.
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4. Compute L(c) = S(c)Σ̃(c)R(c)′ .

The optimal penalty factor λ is chosen by cross-validation within O. Consider a random subset
Õ ⊂ O as the training set and its complement, O\Õ, as the testing set. Given each λ, apply the
recursive algorithm to the training set and compute the mean squared prediction error (MSPE) in the
testing set. The optimal λ is the one that minimizes the MSPE.

4 Parallel Trend Tests: More Details

4.1 Alpha Test

The factor loading µj for each treated unit j ∈ E can be represented as

µj = αjE(µi|i ∈ C) + vj , (10)

where αj is a scalar and vj is an `× 1 vector. The representation exists for the factor loading of any
treated unit j.4 To ensure uniqueness of the above representation, we impose the restrictions that (i)
the sum of the elements of vj is zero, and (ii) vj 6= γjE(µi|i ∈ C) for all non-zero scalars γj (see the
proposition below and its proof in Section 9).

Proposition A (Alpha test): Restrictions (i) and (ii) hold iff any ` × 1 factor loading can be
uniquely represented by (10).

The Alpha test involves the following steps: (1) for each unit i ∈ C ∪E, run a simple regression of
yit on xit (with intercept) and obtain the residuals ûit; (2) compute the simple average of the residuals
over i ∈ C, and obtain the factor proxy ūCt = 1

NC

∑
i∈C ûit which approximates E(µ′i|i ∈ C)ft; (3) for

each treated unit j ∈ E, run the time series regression ûjt = δj1{t>T0j} + aj ūCt +wjt, and obtain the

OLS estimator âj of aj ; (4) compute the simple mean-group estimator, given by âmg := 1
NE

∑
j∈E âj .

Let us discuss what happens under PTW. Define α := E(αj |j ∈ E). By (10), the reduced-form
DGP of yjt for j ∈ E can be rewritten as

yjt = ςi + β′ixit + ∆̄j1{t>T0j} + αE(µ′i|i ∈ C)ft + [(αj − α)E(µ′i|i ∈ C)ft + v′jft + εjt]. (11)

On the other hand, âmg is the simple mean-group estimator based on the regression

yjt = b0j + b′1jxjt + δj1{t>T0j} + aūCt + qjt. (12)

Matching the terms, we see that the regression error qjt in (12) is given by

qjt = α[E(µ′i|i ∈ C)ft − ūCt] + (αj − α)E(µ′i|i ∈ C)ft + v′jft + εjt.

Under PTW, we see that α = 1 after taking conditional expectation of µj in (10). On the other hand,
PTW entails that the linear combination E(µ′i|i ∈ C)ft becomes µ′0ft, which may be viewed as a
single factor f̃t common to all units i. According to the above matching, the regression coefficient a
of the factor proxy ūCt in (12) corresponds to the loading of f̃t := E(µ′i|i ∈ C)ft in (11), and so we
expect that the estimate of a is close to unity under PTW.

The error of the reduced-form DGP is given by the square-bracketed expression in (11). Each
of the error components is described below. The first term α[E(µ′i|i ∈ C)ft − ūCt] represents the
estimation error due to the use of factor proxy ūCt. It vanishes in the limit by the asymptotic theory
of PCDID estimation (see Lemma A7). The second term (αj −α)E(µ′i|i ∈ C)ft measures the portion
of the treated-group factor structure that departs from parallel trends but remains proportional to
the “average factor” for the control group. Its conditional mean over treated group is non-zero,

4If µj takes the form of γjE(µi|i ∈ C) for some non-zero scalar γj , then αj = γj and vj = 0 (the zero vector);
otherwise, αj = 0 and vj = µj .
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except when Assumption PTW holds (in which case α = E(αj |j ∈ E) = 1). The third term v′jft =
[µj−αjE(µ′i|i ∈ C)]′ft (by (10)) captures the portion of the treated-group factor structure that is not
proportional to the “average factor” for the control group. Its conditional mean over treated group
is non-zero, except when Assumption PTW holds (in which case E(vj |j ∈ E) = 0 by (10)). The last
term εjt is the idiosyncratic errors in the reduced-form DGP.

There are several ways by which PTW is violated in the DGP. We expect that the Alpha test is
powerful against the following departures from PTW.

(A) α 6= 1 and E(vj |j ∈ E) = 0. In other words, the “average factor” for the treated group
E(µ′j |j ∈ E)ft remains proportional to that for the control group E(µ′i|i ∈ C)ft, but the
proportionality constant is different from one. The Alpha test has power as âmg approaches α,
which is different from unity.

(B) E(vj |j ∈ E) 6= 0 and ft is covariance stationary (possibly with deterministic trends). In this
case, the “average factors” for the treated and control groups are not proportional to each other.
This gap is time-varying in general. This is captured by the third term v′jft in the regression
error εjt. Since the gap may be correlated with the factor proxy (with covariance c), the Alpha
test has power as âmg approaches α+ c, which is different from unity in general.

(C) E(vj |j ∈ E) 6= 0 and ft contains stochastic trends (e.g., integrated processes). This is similar
to (B) in that the gap between the “average factors” is time-varying, but the gap contains
stochastic trends over time. The Alpha test has power as âmg explodes in the limit.

4.2 Hausman Test

In the context of Hausman test, we suppose that the factors are I(0), the treatment effects are

homogeneous, i.e., ∆̄i ≡ ¯̄∆ for all i ∈ E, and the intervention dates are identical across treated
units (so that 1post,i ≡ 1post for all i ∈ E). Without losing the main insight, we assume iid errors
(εit ∼ iid(0, σ2

ε )) and the absence of covariates. Suppose that the strong parallel trend hypothesis
holds: µi ≡ µ0 for all i ∈ C ∪ E. We then see that multiple factors combine into a single factor
f := Fµ0 common to all units. The DGP thus reduces to

yit = ςi + ft + ¯̄∆1{i∈E}1{t>T0} + εit. (13)

Under the strong parallel trend hypothesis and the above DGP, it suffices to use a single factor proxy
in simple mean-group estimation. Let δ̂mg be the simple mean-group estimator that uses the simple
cross-sectional average of control-group outcomes ȳCt := N−1

C

∑
i∈C yit as the factor proxy. Let δ̂2wfe

be the OLS estimator of ¯̄∆ in the two-way fixed-effects regression associated with (13). The following
proposition compares the variances of the two estimators, providing motivation for the construction
of Hausman test. The proof is found at the end of the Appendix.

Proposition H (Hausman test): Suppose the strong parallel trend hypothesis holds: µi ≡ µ0 for
all i ∈ C ∪ E, and that the DGP is given by (13). We then have:

(a) V ar(δ̂2wfe) = σ2
ε

(
1
T0

+ 1
T1

)(
1
NE

+ 1
NC

)
= σ2

ε

(
1′postM[1]1post

)−1
(

1
NE

+ 1
NC

)
,

(b) V ar(δ̂mg) = σ2
ε (1′postM[1,ȳC ]1post)

−1
(

1
NE

+ 1
NC

)
,

(c) V ar(δ̂mg − δ̂2wfe) = V ar(δ̂mg)− V ar(δ̂2wfe).

5 Micro-Level Analysis

5.1 Assumptions

To simplify the notation, the subscript g is suppressed wherever it is redundant, e.g, write ∆̄ig (:=

E(∆igt|t > T0g)) as ∆̄i, xigt as xit, µig as µi, and εigt (:= ∆̃igt1{g∈E}1{t>T0g} + ε̃igt) as εit, with
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the understanding that unit i is in group g (which has Ng units). Let µ̄g := N−1
g

∑Ng
i=1 µig and

ε̄gt := N−1
g

∑Ng
i=1 εigt. Denote C the collection of NC control groups, and E the collection of NE

treated groups.

Assumption G (group structure): The micro-level model with interactive effects has at least
one treated group and one control group, i.e., NE ≥ 1 and NC ≥ 1. The factor loading µig and
idiosyncratic error εigt are independent across groups.

Assumption EG (predeterminedness, treatment and intervention dummies):
(i) E(εit|∆̄i, 1{g∈E}, 1{t>T0g}, βi, ςi, µi, ft, xit) = 0 for each i in group g and for each t.
(ii) 0 < E(1{g∈E}) < 1 for each g.

(iii) for each g ∈ E , T1g/T
p−→ κg as T, T1g →∞, where 0 < κg < 1.

Assumption FLGC (factor loadings of control groups):

(i) For all g ∈ C , E ‖µ̄g‖2 ≤ c for some constant c > 0.
(ii) plimNC→∞

1
NC

∑
g∈C µ̄gµ̄

′
g is positive definite.

Assumption FLG (factor loadings): Assumption FLGC holds. In addition, Assumption FL(i)-(ii)
hold.

Define σ̄gh,st := E(ε̄gsε̄ht) and γ̄T (g, h) := E
[
T−1

∑T
t=1 ε̄gtε̄ht

]
.

Assumption IEG (idiosyncratic errors): Assumptions IE(i)-(iii) and (v) hold for all i, j ∈ E. In
addition, there exists a positive constant 0 < c <∞ such that for all NE , NC and T :
(i) E |ε̄gt|8 ≤ c for each g ∈ C and t.
(ii) |γ̄T (g, g)| ≤ c and

∑
h∈C |γ̄T (g, h)| ≤ c for each g ∈ C .

(iii) |σ̄gg,st| ≤ |σ̄st| for some σ̄st and for all g ∈ C . In addition, 1
T

∑T
s,t=1 |σ̄st| ≤ c.

(iv) 1
NCT

∑
g,h∈C

∑T
s,t=1 |σ̄gh,st| ≤ c.

(v) E
∣∣∣ 1√

T

∑T
t=1 [ε̄gtε̄ht − E(ε̄gtε̄ht)]

∣∣∣4 ≤ c for all g, h ∈ C .

Assumption IEDG (decomposition of idiosyncratic errors): Suppose 1 ≤ NC <∞. Without
loss of generality, let g ∈ C ′ := {1, . . . , N ′C } (where 1 ≤ N ′C ≤ NC ) be the control groups with
Ng →∞. For each g ∈ C ′, the idiosyncratic errors can be decomposed as εigt = γ̌′ig ε̌gt + ε̌igt, so that

the interactive-effect structure of the micro-level model can be rewritten as µ′igft + εigt = µ̌′ig f̌t + ε̌igt,

where µ̌′ig := [ µ′ig ci1γ̌
′
i1 · · · ciN ′C γ̌

′
iN ′C

]′, cig is a scalar equalling 1 if individual i is in group g

and 0 otherwise, and f̌t = [ f ′t ε̌′1t · · · ε̌′N ′C t ]′.

Remark : Note that Assumption IEDG is not needed by aggregated (AGG) PCDID estimators.

Assumption MG (moments): Assumption MX holds. In addition, there exists 0 < c < ∞ such
that the following conditions are satisfied for all NC and T :

(i) E

(
1
T

∑T
t=1

∥∥∥ 1√
NC

∑
g∈C µ̄g ε̄gt

∥∥∥2
)
≤ c.

(ii) E supi

∥∥∥Υ−1
∑T
t=1 ftεit

∥∥∥2

≤ c.

(iii) E
∥∥∥ 1√

NC
Υ−1

∑T
t=1

∑
g∈C ε̄gtµ̄gf

′
t

∥∥∥2

≤ c.

(iv) E supj∈E

∥∥∥ 1√
NCT

∑T
t=1

∑
g∈C µ̄g[ε̄gtεjt − E(ε̄gtεjt)]

∥∥∥2

≤ c.

Assumption MMG (moments): Assumption MG holds. In addition, there exists 0 < c <∞ such
that the following conditions are satisfied for all NE , NC and T :
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(i) 1
NC

∑
g,h∈C |γ̄T (g, h)| ≤ c and 1√

NCNE

∑
g∈C

∑
j∈E

∣∣∣E[T−1
∑T
t=1 ε̄gtεjt]

∣∣∣ ≤ c.
(ii) E

∥∥∥Υ−1 1√
NE

∑
j∈E

∑T
t=1 ftεjt

∥∥∥2

≤ c and E
∥∥∥Υ−1 1√

NC

∑
g∈C

∑T
t=1 ftε̄gt

∥∥∥2

≤ c.

(iii) E
∥∥∥ 1√

NENCT

∑T
t=1

∑
j∈E

∑
g∈C µ̄g[ε̄gtεjt − E(ε̄gtεjt)]

∥∥∥2

≤ c.

Assumptions ES, ESS, AIi, AIpl, AImg, RTpl, RTmg, MX, MM, Di and D: same as before.

5.2 Key Results

Corollary 1 (PCDID-AGG): Suppose Assumptions G, EG, F, FLGC , AIi, IEG and MG hold in
the micro-level model with interactive effects. Then, as T,NC →∞ jointly, we have for each i ∈ E:

(a) δ̂AGGi
p−→ ∆̄i.

(b)
√
T σ̆−1

Ti (δ̂AGGi − ∆̄i)
d−→ N(0, 1) if additionally Assumptions ES and Di hold, where σ̆2

Ti :=

V ar[
√
T (δ̂AGGi − ∆̄i)|G̃i].

Similar to Sections 4.3 and 5, we decompose the treatment effect ∆igt = ∆̄ig+∆̃igt = ¯̄∆+υig+∆̃igt,

where ∆̄ig is the ITET of unit i in group g, ¯̄∆ := E(∆̄ig|i ∈ E) is the ATET of treated units, and

υig := ∆̄ig − ¯̄∆ is the unit-specific deviation of the ITET from the ATET. To simplify the notation,
write ∆̄ig as ∆̄i and write υig as υi, with the understanding that unit i is in group g.

Corollary 2 (PCDID-MG-AGG): Suppose Assumptions G, EG, F, FLG, AImg, IEG and MMG
hold in the micro-level model with interactive effects. As T,NE , NC →∞ jointly, we have the following
results:

(a) (homogeneous ITET) Suppose υi := ∆̄i − ¯̄∆ ≡ 0. Then,

(i) δ̂mg,AGG
p−→ ¯̄∆.

(ii)
√
NET ς̌

−1
NE ,T

(δ̂mg,AGG − ¯̄∆)
d−→ N(0, 1) if additionally Assumptions ESS and D hold, where

ς̌2NE ,T := V ar[
√
NET (δ̂mg,AGG − ¯̄∆)|G̃].

(b) (heterogeneous ITET) Suppose υi satisfies Assumption RTmg. Then,

(i) δ̂mg,AGG
p−→ ¯̄∆.

(ii)
√
NE ˇ̃ς−1

NE ,T
(δ̂mg,AGG − ¯̄∆)

d−→ N(0, 1), where ˇ̃ς2NE ,T := V ar[
√
NE(δ̂mg,AGG − ¯̄∆)].

Corollary 3 (PCDID pooled AGG): Suppose Assumptions G, EG, F, FLG, AIpl, IEG and MMG
hold in the micro-level model with interactive effects. As T,NE , NC →∞ jointly, we have the following
results:

(a) (homogeneous ITET) Suppose υi := ∆̄i − ¯̄∆ ≡ 0. Then,

(i) δ̂pl,AGG
p−→ ¯̄∆.

(ii)
√
NET σ̌

−1
NE ,T

(δ̂pl,AGG − ¯̄∆)
d−→ N(0, 1) if additionally Assumptions ESS and D hold, where

σ̌2
NE ,T

:= V ar[
√
NET (δ̂pl,AGG − ¯̄∆)|G̃].

(b) (heterogeneous ITET) Suppose υi satisfies Assumption RTpl. Then,

(i) δ̂pl,AGG
p−→ ¯̄∆.

(ii)
√
NE ˇ̃σ−1

NE ,T
(δ̂pl,AGG − ¯̄∆)

d−→ N(0, 1), where ˇ̃σ2
NE ,T

:= V ar[
√
NE(δ̂pl,AGG − ¯̄∆)|MSRT ].

As discussed in Section 5, Assumption IE in theorems 1, 2 and 3 may be violated if the micro-
level data exhibit strong clustering in its idiosyncratic errors. For completeness, we present below
alternative assumptions for these theorems that allow strong clustering in idiosyncratic errors. The
key alternative assumptions are: (i) group structure, (ii) the number of control groups is fixed and
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finite, and (iii) the idiosyncratic errors can be decomposed into a strong clustering component and a
weak clustering component, via an error-components model or sub factor structure.

Corollary 4 (PCDID estimators, alternative assumptions): Suppose 1 ≤ NC < ∞ and
Assumptions G and IEDG hold. Consider the decomposed micro-level model as in IEDG, where
µ̌ig and ε̌igt are the factor loadings and idiosyncratic error, respectively. Then, the statements in
Theorems 1, 2 and 3 hold for this model.

6 Bootstrap Procedures

The bootstrap procedures below are motivated by the property that the normalized PCDID and Alpha
statistics have an asymptotic standard normal distribution, regardless of the factor specification (e.g.,
even when some or all factors are nonstationary). Overall, the procedures mimic the two-step nature of
PCDID. Step 1 performs a wild cluster bootstrap on the residuals obtained from an auxiliary regression
based on control units to construct the bootstrap factor proxies. Gonçalves and Perron (2014) propose
a similar first-step procedure to obtain bootstrap factors in factor-augmented regression models. Our
second step is different to that in Gonçalves and Perron (2014). For hypothesis tests related to the
ITET (e.g., unit-specific PCDID), step 2 performs the “stationary bootstrap” based on Politis and
Romano (1994), by resampling blocks of observations of random length from the time series of the
residuals of the treated unit.5 For hypothesis tests related to the ATET (e.g., PCDID-MG), step
2 performs a wild cluster bootstrap among treated units. In both cases, we combine the bootstrap
treated sample and bootstrap factor proxies to obtain a bootstrap estimate.

6.1 PCDID: Hypothesis tests on ITET and ATET

1. (Construct residuals) Let ûit be the residual from stage 1 of PCDID using the original sample,

and f̂t be the factor proxies obtained by PCA on {ûit}i∈C,t=1,...,T . Obtain residuals ṽit from
the following auxiliary regressions:

for i ∈ C, ûit = c̃i + ã′if̂t + ṽit;

for i ∈ E, yit = c̃i + δ1{t>T0i} + b̃′ixit + α̃′if̂t + ṽit,

where (c̃i, ã
′
i) are the OLS estimates of the regression of ûit on f̂t, and (c̃i, b̃

′
i, α̃
′
i) are the OLS

estimates of the regression of yit on 1{t>T0i}, xit and f̂t with H0 imposed (i.e., restricting δ = δ0).

2. Do B iterations of this step. On the bth iteration:

(a) (Wild and pairs cluster bootstrap, control units) For i ∈ C, let r
(b)
i be iid variables with a

Rademacher distribution (i.e., takes values 1 and -1 with equal probability; see Davidson
and Flachaire (2008)). Construct:

û
(b)
it = c̃i + ã′if̂t + ṽitr

(b)
i .

Denote û
(b)
i := (û

(b)
i1 , . . . , û

(b)
iT )′. From the sample of {û(b)

i }i∈C , resample with replacement

NC times to obtain the bootstrap sample {û∗(b)i }i∈C .

(b) Do one of the following:

5This method is nonparametric and simple to implement, and it can be interpreted as a weighted average version of
moving block bootstrap in which the block length is fixed. By resampling the residuals only, the method also ensures
that the key asymptotic identification condition of PCDID (Assumption AIi(i)) is met in the bootstrap sample. An
alternative resampling approach is subsampling, which require weaker assumptions than bootstrap.
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i. (ITET: stationary bootstrap) Consider a treated unit j (j ∈ E). Construct the vector

(ṽ
(b)
j1 , . . . , ṽ

(b)
jT ) from (ṽj1, . . . , ṽjT ) using the following algorithm:6

• let I
(b)
j1 , ..., I

(b)
jT be a sequence of iid variables with a discrete uniform distribution

on {1, ..., T}. Construct the index sequence k
(b)
j1 , ..., k

(b)
jT as follows: k

(b)
j1 = I

(b)
j1 ; for

t = 2, ..., T , let k
(b)
jt = mod (k

(b)
j,t−1, T ) + 1 with probability 1 − p and k

(b)
jt = I

(b)
jt

with probability p (note: p is the tuning parameter). Define (ṽ
(b)
j1 , . . . , ṽ

(b)
jT ) =

(ṽ
j,k

(b)
j1
, . . . , ṽ

j,k
(b)
jT

).

Then compute:

y
(b)
jt = c̃j + δ01{t>T0j} + b̃′jxjt + α̃′j f̂t + ṽ

(b)
jt .

Compute the PCDID estimate (for ITET) δ̂
(b)
j from the bootstrap sample {û∗(b)i }i∈C

and {(y(b)
jt , 1{t>T0j}, xjt)}t=1,..,T .

(c) (ATET: wild cluster bootstrap) For i ∈ E, let r
(b)
i be iid variables with a Rademacher

distribution. Construct:

y
(b)
it = c̃i + δ01{t>T0i} + b̃′ixit + α̃′if̂t + ṽitr

(b)
i .

Compute the PCDID estimate (for ATET) δ̂(b) from the bootstrap sample {û∗(b)i }i∈C and

{(y(b)
it , 1{t>T0i}, xit)}i∈E;t=1,..,T .

Micro-level data. The bootstrap procedure is as follows:

1. (Construct residuals) Let ûigt be the residual from stage 1 of PCDID using the original sample,
¯̂ugt = 1

Ng

∑Ng
i=1 ûigt be the within-group average value of residuals at time t, and f̂t be the factor

proxies obtained by PCA on {¯̂ugt}g∈C ;t=1,...,T . Obtain residuals ṽgt for g ∈ C and ṽigt for g ∈ E
from the following auxiliary regressions:

for g ∈ C , ¯̂ugt = c̃g + ã′g f̂t + ṽgt;

for g ∈ E , yigt = c̃ig + δ1{t>T0g} + b̃′igxigt + α̃′ig f̂t + ṽigt,

where (c̃g, ã
′
g) are the OLS estimates of the regression of ¯̂ugt on f̂t, and (c̃ig, b̃

′
ig, α̃

′
ig) are the

OLS estimates of the regression of yigt on 1{t>T0g}, xigt and f̂t with H0 imposed (i.e., restricting
δ = δ0).

2. Do B iterations of this step. On the bth iteration:

(a) (Wild and pairs cluster bootstrap, control groups) For g ∈ C , let r
(b)
g be iid variables with

a Rademacher distribution. Construct:

¯̂u
(b)
gt = c̃g + ã′g f̂t + ṽgtr

(b)
g .

Denote ¯̂u
(b)
g := (¯̂u

(b)
g1 , . . . ,

¯̂u
(b)
gT )′. From the sample of {¯̂u(b)

g }g∈C , resample with replacement

GC times to obtain the bootstrap sample {¯̂u∗(b)g }g∈C .

6Here is an informal description. Draw the initial index k
(b)
j1 at random from {1, ..., T}. With probability 1− p, set

the next index as k
(b)
j2 = k

(b)
j1 + 1 or if kj1 = T , set k

(b)
j2 = 1; with probability p, draw the next index k

(b)
j2 at random

from {1, ..., T}. Repeat this procedure until the vector of indices (k
(b)
j1 , ..., k

(b)
jT ) is formed. Draw (ṽ

(b)
j1 , . . . , ṽ

(b)
jT ) from

(ṽj1, . . . , ṽjT ) according to this vector of indices.
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(b) Do one of the following:

i. (ITET: stationary bootstrap) Same procedure as in nonmicro-level data for any treated
unit j.

ii. (ATET: wild cluster bootstrap) For g ∈ E , let r
(b)
g be iid variables with a Rademacher

distribution. Construct:

y
(b)
igt = c̃ig + δ01{t>T0g} + b̃′igxigt + α̃′ig f̂t + ṽigtr

(b)
g .

Compute the PCDID estimate (for ATET) δ̂(b) from the bootstrap sample {¯̂u∗(b)g }g∈C

and {(y(b)
igt, 1{t>T0g}, xigt)}i=1,..,NE ;g∈E ;t=1,..,T .

6.2 Parallel Trend Alpha Test

1. (Construct residuals) Let ûit be the residual from stage 1 of PCDID using the original sample,
and ¯̂uCt = 1

NC

∑
i∈C ûit be the simple average of ûit. Obtain residuals ṽit from the following

auxiliary regressions:

for i ∈ C, ûit = c̃i + ãi ¯̂uCt + ṽit;

for i ∈ E, yit = c̃i + δ̃i1{t>T0i} + b̃′ixit + α¯̂uCt + ṽit,

where (c̃i, ãi) are the OLS estimates of the regression of ûit on ¯̂uCt, and (c̃i, δ̃i, b̃
′
i) are the OLS

estimates of the regression of yit on 1{t>T0i}, xit and ¯̂uCt with H0 imposed (i.e., restricting
α = 1).

2. Do B iterations of this step. On the bth iteration:

(a) (Wild and pairs cluster bootstrap, control units) For i ∈ C, let r
(b)
i be iid variables with a

Rademacher distribution. Construct:

û
(b)
it = c̃i + ãi ¯̂uCt + ṽitr

(b)
i .

Denote û
(b)
i := (û

(b)
i1 , . . . , û

(b)
iT )′. From the sample of {û(b)

i }i∈C , resample with replacement

NC times to obtain the bootstrap sample {û∗(b)i }i∈C .

(b) (Wild cluster bootstrap) For i ∈ E, let r
(b)
i be iid variables with a Rademacher distribution.

Construct:

y
(b)
it = c̃i + δ̃i1{t>T0i} + b̃′ixit + ¯̂uCt + ṽitr

(b)
i .

Compute the Alpha statistic α̂(b) from the bootstrap sample {û∗(b)i }i∈C and {(y(b)
it , 1{t>T0i},

xit)}i∈E;t=1,..,T .

6.3 Two-Way Fixed-Effects Regressions

For completeness, we describe the bootstrap procedures used for 2wfe regressions in this paper.7

1. (Construct residuals) Obtain ṽit from the following auxiliary regression:

yit = c̃i + τ̃t + δ1{i∈E}1{t>T0i} + b̃′xit + ṽit,

where (c̃i, τ̃t, b̃
′) are the OLS estimates of the regression of yit on 1{i∈E}1{t>T0i} and xit having

unit and time fixed effects, with H0 imposed (i.e., restricting δ = δ0).

7For comparability, we try to maintain a symmetry with the PCDID bootstrap procedures. The 2wfe bootstraps
are similar to those used in the relevant literature (e.g., Bertrand et al. (2004), Cameron et al. (2008), Mackinnon and
Webb (2017)).
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2. Do B iterations of this step. On the bth iteration, perform wild cluster bootstrap as follows. For

i ∈ C ∪ E, let r
(b)
i be iid variables with a Rademacher distribution. Construct:

y
(b)
it = c̃i + τ̃t + δ01{i∈E}1{t>T0i} + b̃′xit + ṽitr

(b)
i ,

Compute the 2wfe estimate δ̂(b) from the bootstrap sample {(y(b)
it , 1{i∈E}1{t>T0i}, xit)}i∈C∪E;t=1,..,T .

For micro-level data, first obtain residuals ν̃igt from the auxiliary regression yigt = c̃g + τ̃t +

δ1{g∈E}1{t>T0g} + b̃′xigt + ṽigt, where (c̃g, τ̃t, b̃
′) are the OLS estimates of the regression of yigt on

1{g∈E}1{t>T0g} and xigt having group and time fixed effects, with H0 imposed (i.e., restricting δ = δ0).

Then, do B iteration of the following step. On the bth iteration, perform wild cluster bootstrap:

for g ∈ C ∪ E , let r
(b)
g be iid variables with a Rademacher distribution. Construct y

(b)
igt = c̃g +

τ̃t + δ01{g∈E}1{t>T0g} + b̃′xigt + ṽigtr
(b)
g . Compute the 2wfe estimate δ̂(b) from the bootstrap sample

{(y(b)
igt, 1{g∈E}1{t>T0g}, xigt)}i=1,..,N ;g∈C∪E ;t=1,..,T .

6.4 Rejection Criterion

Let H0 : θ = θ0, Ha : θ 6= θ0, θ̂ be the raw test statistic from the full sample, and θ̂(b) be the raw test
statistic from the bth iteration of the bootstrap sample.

1. Bootstrap t-statistic (b-t) criterion: compute the studentized statistic from the full sample

t̂ := θ̂−θ0
se(θ̂)

, where se(θ̂) is obtained from an appropriate standard error formula (see discussions

after theorems 1,2,5). Compute the bootstrap studentized statistic t̂(b) := θ̂(b)−θ̂
se(θ̂(b))

. Let s[q]

denote the qth percentile of the bootstrap sample {t̂(1), . . . , t̂(B)}. Reject H0 at level a if and
only if t̂ < s[a/2] or t̂ > s[1−a/2].

2. Bootstrap standard error (b-se) criterion: compute the bootstrap standard error b.s.e. :=√
1

B−1

∑B
b=1

(
θ̂(b) − θ̂

)2

, where θ̂ = 1
B

∑B
b=1 θ̂

(b). Then compute the studentized statistic from

the full sample t̂bse = θ̂−θ0
b.s.e. . Obtain the p-value as pbse = 2[1 − Φ(

∣∣t̂bse∣∣)]. Reject H0 if pbse is
smaller than the significance level a.

7 Endogenous Covariates

When deriving the asymptotic theory of PCDID estimation, the restriction that covariates are asymp-
totically orthogonal to factors is imposed for analytical convenience. In this section, we examine some
DGP for endogenous covariates under which the proposed PCDID approach delivers valid inference.

As a motivation, we recall that the factor proxies are extracted by PCA from the covariance matrix
ûC û

′
C/T of the residuals from the time series regression of control unit’s outcomes on the covariates.

The factor proxies then act as the regressors (along with the intervention dummy and covariates) in
the regression of the treated units’ outcomes.

Now suppose that the covariates follow the DGP given below:

Xi = FΠi + Vi,

where Xi is the T × k covariate matrix, F is the T × ` factor matrix, Πi is the `× k matrix of factor
loadings, and Vi is the T × k matrix of idiosyncratic errors. The endogeneity of the covariates is due
to their dependence on the factors. This DGP is often included as a special case in interactive effects
model commonly found in the literature (Pesaran (2006), Bai (2009)).
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In vector form, the DGP is expressed as

xit = Π′ift + vit,

where xit and vit are k × 1 vectors, and ft is a `× 1 vector.
We assume that vit are iid over i and t, E(vit) = 0, E(vitf

′
t) = O, vit are independent of εjs for

all i, j, s, t, and that E(vitv
′
it) has full rank. Furthermore, we assume that V ′i Vi/T has full rank for

large enough T . We restrict our analysis to I(0) factors for simplicity.
It follows that E(xitx

′
it) has full rank because E(xitx

′
it) = Π′iE(ftf

′
t)Πi+E(vitv

′
it), which is positive

definite as E(vitv
′
it) has full rank. Similarly, X ′iXi/T has full rank for large enough T . Note that the

quadratic form Qi := Π′iE(ftf
′
t)Πi is allowed to be positive semidefinite, for example:

• k > ` (more covariates than factors). In this case, the k × k quadratic form Qi does not have
full rank (its rank is at most `).

• k ≤ ` and that some covariates are not driven by factors. In this case, some columns of Πi are
zero vectors, and Qi does not have full rank.

• k ≤ ` and that some covariates are driven by factors in the same way. In this case, some columns
of Πi are linearly dependent, and Qi does not have full rank.

We want to show that the proposed PCDID procedure works for this DGP. Recall that the first
step is to obtain, for each control unit i, the residuals ûi = MXiyi from the time series regression of
yi on Xi. The factor proxies are then obtained as weighted averages of ûi over control units, where
the weights are obtained from the eigenvectors from PCA on ûC û

′
C/T . More precisely,

F̂ =
1

NC

∑
i∈C

ûiwi =
1

NC

∑
i∈C

MXiyiwi =
1

NC

∑
i∈C

MXi (Fµi + εi)wi

=
1

NC

∑
i∈C

MXiFµiwi +
1

NC

∑
i∈C

MXiεiwi =: (I) + (II).

By the orthogonality of Xi and εi (as F is orthogonal to εi by Assumption E(i), and Vi is independent
of εi by the DGP assumption), the second term (II) reduces to ` columns of weighted averages of
εi ( 1

NC

∑
i∈C εiwi) which all vanish to zero for large NC . The first term (I) consists of ` columns

of weighted averages of MXiFµi. By the assumption on Vi, we see that Xi and hence Gi := [F,Xi]
have full column rank for large T , satisfying Assumption F(i). It follows that the Frisch-Waugh-Lovell
theorem ensures the existence of (F ′MXiF )−1, which means that F ′MXiF = F ′MXiMXiF has full
rank, i.e., rank(MXiF ) = rank(F ) = `. Since Vi are independent over i, the T × ` matrix of weighted
averages, (I) = 1

NC

∑
i∈CMXiFµiwi, has full column rank (i.e., rank(F̂ ) = `) for large enough NC .

This establishes our main result that the factor proxies have full rank when covariates are endogenous.
In addition, since Vi are independent of Xj for j ∈ E, the regressor matrix Gj := [F̂ ,Xj ] in the PCDID
regression has full column rank (i.e., rank(Gj) = `+k) for large enough NC and T , and so the PCDID
estimator is well defined and can identify ITET asymptotically.

8 A Recursive Approach to Factor Extraction

The following recursive procedure constructs factors proxies when the true number of factors is un-
known and when the normalization orders of factors are heterogeneous and integer-valued.

1. For each i ∈ C, run the time series regression yi = ςi +Xiβi + ui. Obtain the residuals ûi and
form the NC × T residual matrix ûC .

2. Set the maximum possible number of factors as kmax < min(NC , T ). Set the largest possible
normalization order as the integer jmax (set jmax = 0 under full stationarity). Initialize
j = jmax and kmax(j) = kmax. Denote the residuals obtained in step 1 by u(j)i.
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3. Using a consistent procedure (e.g., Ahn and Horenstein (2013)), determine pj ≤ kmax(j), the
number of orthonormal eigenvectors extracted from S(j) := 1

T (2j)∨1 ûC û
′
C . Store them as columns

in W (j). Obtain factor proxies F̂ (j) :=
û′CW

(j)

NC
. If pj = kmax(j), then STOP.

4. Repeat this step until reaching STOP:

(a) If j > 0, then do the following. Set j = j − 1. Then set kmax(j) = kmax(j+1) − pj+1. For

each i ∈ C, run the time series regression û
(j+1)
i = ςi + F̂ (j+1)αi + ui. Obtain the residuals

û
(j)
i and form the NC × T residual matrix û

(j)
C . Using the same consistent procedure as in

step 3, determine pj ≤ kmax(j), the number of orthonormal eigenvectors extracted from

S(j) := 1
T (2j)∨1 û

(j)
C û

(j)′
C . Store them as columns in W (j). Obtain factor proxies F̂ (j) :=

û′CW
(j)

NC
. If pj = kmax(j), then STOP.

(b) If j = 0, then STOP.

The recursive procedure above generates p =
∑jmax
j=0 pj distinct factor proxies given as columns in

F̂ := [F̂ (jmax), F̂ (jmax−1), . . . , F̂ (0)]. This procedure is conservative in that p is overestimated when
the researcher sets a jmax that is higher than the maximum normalization order in the DGP.

The Ahn and Horenstein (2013) eigenvalue-ratio (ER) and growth-ratio (GR) tests are imple-

mented as follows. Both tests require the researcher to set kmax. Given j, let s
(j)
k be the kth largest

eigenvalue extracted from S(j). Let ER(j)(k) ≡ s
(j)
k

s
(j)
k+1

be the ratio of the kth and (k+1)th largest

eigenvalues. The ER test yields pj = argmax1≤k≤kmax(j) ER(j)(k). In the GR test, let V (j)(k) =∑min(NC ,T )
r=k+1 s

(j)
r be the sum of all eigenvalues smaller than s

(j)
k . Let GR(j)(k) ≡ ln[V (j)(k−1)/V (j)(k)]

ln[V (j)(k)/V (j)(k+1)]
.

The GR test yields pj = argmax1≤k≤kmax(j) GR(j)(k). To address the one-factor bias in finite samples,

a conservative version of the tests involve resetting pj = dkmax
(j)

2 e whenever pj = 1.

9 Proofs

9.1 Proof of Lemma A1

Without loss of generality, we reorder the factors (columns of F ) in descending order of their normal-
ization orders. Let R = {rmin, . . . , rmax} be the set of all possible normalization orders, and let `r be
the number of factors having the normalization order r. In the proof we will use the same notations
as introduced in the section on factor extraction.

We start with the largest normalization order r = rmax. The eigenequation is

1

NCT 2r
ûC û

′
CW

(r) = W (r)V (r), (14)

where V (r) is an `r × `r diagonal matrix storing `r eigenvalues in descending order from top left
to bottom right, and W (r) is an NC × `r eigenvector matrix storing the `r associated eigenvectors
as columns. By orthonormality, we have W (r)′W (r)/NC = I, so pre-multiplying (14) both sides by
N−1
C W (r)′ gives

V (r) =
1

N2
CT

2r
W (r)′ûC û

′
CW

(r).

We want to show that V (r) is a full rank matrix. Let F (r) denote the T × `r matrix of factors with
normalization order r, and let µ(r) be the associated NC × `r factor loading vector. Let w

(r)
i be the

24



ith row of W (r), and µ
(r)
i the ith row of µ(r). Using the definition of ûC , we obtain

V (r) =
∑
i∈C

∑
j∈C

w
(r)′
i µ

(r)′
i

NC

F (r)′MXiMXjF
(r)

T 2r

µ
(r)
j w

(r)
j

NC
+
∑
i∈C

∑
j∈C

1

N2
CT

2r
w

(r)′
i εiMXiMXj ε

′
jw

(r)
j .

The first term is∑
i∈C

∑
j∈C

w
(r)′
i µ

(r)′
i

NC

F (r)′MXiMXjF
(r)

T 2r

µ
(r)
j w

(r)
j

NC

=
W (r)′µ

(r)
C

NC

F (r)′F (r)

T 2r

µ
(r)′
C W (r)

NC

−
∑
i∈C

∑
j∈C

w
(r)′
i µ

(r)′
i

NC

F (r)′Xi

T r+0.5

(
X ′iXi

T

)−1
X ′iXj

T

(
X ′jXj

T

)−1
X ′jF

(r)

T r+0.5

µ
(r)
j w

(r)
j

NC

=
W (r)′µ

(r)
C

NC

F (r)′F (r)

T 2r

µ
(r)′
C W (r)

NC
+ op(1`1

′
`),

where the last line follows from Assumptions MX(i)-(iii). The second term is∑
i∈C

∑
j∈C

w
(r)′
i

εiMXiMXj ε
′
j

N2
CT

2r
w

(r)
j

=
W (r)′εCε

′
CW

(r)

N2
CT

2r
− 1

N2
C

∑
i∈C

∑
j∈C

w
(r)′
i

εiXi

T r+0.5

(
X ′iXi

T

)−1
X ′iXj

T

(
X ′jXj

T

)−1
X ′jε

′
j

T r+0.5
w

(r)
j

=
W (r)′εCε

′
CW

(r)

N2
CT

2r
+ op(1`1

′
`),

where the last line follows from Assumptions MX(i), (ii) and (iv). This implies that

V (r) =
W (r)′µ

(r)
C

NC

F (r)′F (r)

T 2r

µ
(r)′
C W (r)

NC
+
W (r)′εCε

′
CW

(r)

N2
CT

2r
+ op(1`1

′
`)

as NC , T → ∞. Note that the two dominating terms of V (r) on the right are clearly non-negative
definite. Furthermore, by applying lemma A.3 of Bai (2003) after interchanging the roles of factors

and factor loadings, we see that both V (r) and
W (r)′µ

(r)
C

NC
F (r)′F (r)

T 2r

µ
(r)′
C W (r)

NC
converge in probability to a

full-rank matrix plimNC ,T→∞ V (r). By the continuity of eigenvalues, it follows that V (j) has full rank

and W (r) has full column rank for large enough NC and T .
Provided that r > rmin, we apply the same arguments by replacing r by the next largest r ∈ R

and solving for the next `r eigenvalues that form V (r) and the associated eigenvectors that form
W (r). We repeat the above procedures until reaching r = rmin. By constructing the diagonal matrix
V using all the eigenvalues in V (rmax), . . . , V (rmin) arranged in descending order, and defining W =
[W (rmax), . . . ,W (rmin)], we deduce that both V and W have full column rank in the limit in the sense

that rank(V ) = rank(W )
p→ ` :=

∑
r∈R `r as NC , T →∞.

9.2 Proof of Lemma A2

For each r, we know by lemma A1 and the continuity of eigenvalues that the inverse (V (r))−1 exists
for large NC and T . Together with Assumption F and lemma A1, we see that the `r × `r rotation

matrix H(r), H(r) := F (r)′F (r)

T 2r

µ
(r)′
C W (r)

NC
(V (r))−1 has full rank for large NC and T . Construct W and V

as in lemma A1, and let H be the `×` block diagonal matrix with block matrices H(rmax), . . . ,H(rmin).

We then have H = Υ−1F ′F
µ′CW
NC

V −1Υ−1. Since each block matrix has full rank in the limit, we see
that rank(H) = ` for large NC and T .
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9.3 Proof of Lemma A3

Let ziq := (wiq − µ′ihq), the (i, q)th element of (W − µCH).
(a) The proof is obtained by switching the role of factors and factor loadings and adapting the proof
of Theorem 1 of Bai and Ng (2002) to the NC × T control group panel.

(b) The (p, q)th element of W ′(W−µCH)
NC

is

1

NC

∑
i∈C

wip(wiq − µ′ihq) ≤

(
1

NC

∑
i∈C

w2
ip

)1/2(
1

NC

∑
i∈C

z2
iq

)1/2

,

which is Op

(
1

min(
√
NC ,
√
T )

)
by part (a).

(c) The (p, q)th element of
(W−µCH)′εCε

′
C(W−µCH)

TN2
C

is

1

T

T∑
t=1

(
1

NC

∑
i∈C

εitzip

) 1

NC

∑
j∈C

εjtzjq


≤ 1

T

T∑
t=1

(
1

NC

∑
i∈C

ε2it

)(
1

NC

∑
i∈C

z2
ip

)1/2
 1

NC

∑
j∈C

z2
jq

1/2

.

By Assumption IE(iv), we see that 1
TNC

∑T
t=1

∑
i∈C E(ε2it) ≤ 1

TNC

∑T
t=1

∑
i∈C σii,tt ≤ c. The result

follows by applying the result of part (a).
(d) We consider the decomposition

W ′εCε
′
CW = H ′µCεCε

′
Cµ
′
CH + (W − µCH)′εCε

′
C(W − µCH)

+H ′µCεCε
′
C(W − µCH) + (W − µCH)′εCε

′
CµCH.

The (p, q)th element of (I) :=
µ′CεCεCµC

TN2
C

is given by

1

TN2
C

T∑
t=1

∑
i∈C

∑
j∈C

µipεitεjtµjq =
1

TNC

T∑
t=1

(
1√
NC

∑
i∈C

µipεit

) 1√
NC

∑
j∈C

µjqεjt


which is Op

(
1
NC

)
by Assumption M(i).

By part (c), we know that (II) :=
(W−µCH)′εCε

′
C(W−µCH)

TN2
C

is Op

(
1

min(NC ,T )

)
.

The (p, q)th element of (III) :=
µ′CεCε

′
C(W−µCH)

TN2
C

is

1

TN2
C

∑
i∈C

∑
j∈C

T∑
t=1

µipεitεjtzjq ≤

 1

NC

∑
i∈C

(
1

TNC

∑
i∈C

T∑
t=1

µipεitεjt

)2
1/2 1

NC

∑
j∈C

z2
jq

1/2

.

The second factor on the right is Op

(
1

min(
√
NC ,
√
T )

)
by part (a), whereas the first factor on the right
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is Op

(
1√
NC

)
. To show the latter, we observe that, for fixed j ∈ C,

1

NC

∑
i∈C

E

(
1

TNC

T∑
t=1

∑
i∈C

µipεitεjt

)2

=
1

NC

∑
i∈C

E

(
1

TNC

T∑
t=1

∑
i∈C

µip[εitεjt − E(εitεjt)] +
1

NC

∑
i∈C

µipγT (i, j)

)2

≤ 2

NC

∑
i∈C

E

(
1

TNC

T∑
t=1

∑
i∈C

µip[εitεjt − E(εitεjt)]

)2

+
2

NC

∑
i∈C

E

(
1

NC

∑
i∈C

µipγT (i, j)

)2

≤ 2c1
TNC

+
2

NC

∑
i∈C

(
1

NC

∑
i∈C

E(µ2
ip)

)(
1

NC

∑
i∈C

γ2
T (i, j)

)

≤ 2c1
TNC

+
2

NC

∑
i∈C

c2 ·
c3
NC

=
2c1
TNC

+
2c2c3
NC

.

The second inequality is by Assumption M(iv) and Cauchy-Schwarz inequality, while the third in-
equality is by Assumptions FLC(i) and IE(ii) and the fact that absolute summability implies square

summability. We therefore deduce that (III) is Op

(
1√

NC min(
√
NC ,
√
T )

)
.

The last term (IV ) :=
(W−µCH)′εCε

′
CµCH

TN2
C

is the transpose of (III) and hence of the same order.

In summary, we conclude that∥∥∥∥W ′εCε′CWTN2
C

∥∥∥∥ = Op

(
1

NC

)
+Op

(
1

min(NC , T )

)
+Op

(
1

√
NC min(

√
NC ,
√
T )

)
= Op

(
1

min(NC , T )

)
.

(e) We first decompose Υ−1 F
′ε′CW
NC

as follows:

Υ−1F
′ε′CW

NC
= Υ−1F

′ε′CµC
NC

H + Υ−1Fε
′
C(W − µCH)

NC
.

Ignoring H, the term Υ−1 F
′ε′CµC
NC

is Op

(
1√
NC

)
by Assumption M(iii). The (p, q)th element of

Υ−1 F
′ε′C(W−µCH)

NC
is bounded from above as follows:

1

T rpNC

∑
i∈C

T∑
t=1

ftpεit(wiq − µ′ihq) ≤

 1

NC

∑
i∈C

(
1

T rp

T∑
t=1

ftpεit

)2
1/2(

1

NC

∑
i∈C

(wiq − µ′ihq)2

)1/2

≤ Op(1)Op

(
1

min(
√
NC ,
√
T )

)
,

where the last inequality follows from Assumption M(ii) and part (a) of the lemma. It then follows

that the elements of Υ−1 F
′ε′CW
NC

are Op

(
1√
NC

)
+Op

(
1

min(
√
NC ,
√
T )

)
= Op

(
1

min(
√
NC ,
√
T )

)
.

9.4 Proof of Lemma A4

Let 1` be the `× 1 vector of ones.
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In several parts of the proof, we will make use of the facts:∥∥∥√TΥ−1
∥∥∥ ≤ 1 as T →∞. (15)∥∥∥∥W ′µCNC

−H−1

∥∥∥∥ = op(1) as NC , T →∞. (16)

The bound (15) follows from Assumption F, which restricts the minimum normalization order of the
factors to be rmin = 0.5. To show (16), we consider the decomposition µC = WH−1−(W−µCH)H−1.
Note the matrix H is invertible by lemma A2. Using the decomposition, we obtain

W ′µC
NC

−H−1 =
1

NC
[W ′W −W ′(W − µCH)]H−1 −H−1

=

[
I − W ′(W − µCH)

NC

]
H−1 −H−1

=
W ′(W − µCH)

NC
H−1,

where I is the NC × NC identity matrix. The result (16) follows from
∥∥∥W ′(W−µCH)

NC

∥∥∥ = op(1) (by

lemma A3(b)) and ‖H‖ > 0 (as H is non-singular by lemma A2).
The matrix norm properties will be useful for the computation to be carried out in the proof.8

(a) We decompose the expression as follows:

sup
j∈E

∥∥∥∥∥ 1

NC
√
T

∑
i∈C

1′post,jMXiFµiwiΥ
−1 − 1√

T
1′post,jFΥ−1H ′−1

∥∥∥∥∥
≤ sup

j∈E

∥∥∥∥∥ 1

NC
√
T

∑
i∈C

1′post,jMXiFµiwiΥ
−1 − 1√

T
1′post,jF

µ′CW

NC
Υ−1

∥∥∥∥∥
+ sup
j∈E

∥∥∥∥ 1√
T

1′post,jF

(
µ′CW

NC
Υ−1 −Υ−1H ′−1

)∥∥∥∥
=: (I) + (II).

To show that (I) is op(1), we observe the following facts: (i) supi∈C
∥∥X ′iFΥ−1

∥∥ = Op(1) by As-

sumption MX(iii); (ii) infi∈C
X′iXi
T is positive definite by Assumption MX(ii); (iii) supi∈C,j∈E

∥∥T−11′post,jXi

∥∥ =
Op(1), as

E sup
i∈C,j∈E

∥∥∥∥1′post,jXi

T

∥∥∥∥2

≤ E sup
i∈C

∥∥∥∥1′Xi

T

∥∥∥∥2

≤ E sup
i∈C

∥∥∥∥X ′iXi

T

∥∥∥∥ ≤ c
by Assumption MX(i) and Cauchy-Schwarz inequality; and (iv)

µ′CW
NC

= Op(1) as

E

∥∥∥∥µ′CWNC
∥∥∥∥2

≤ E
∥∥∥∥µ′CµCNC

∥∥∥∥ ≤ c (17)

by Assumption FLC(i), Cauchy-Schwarz inequality and that W ′W/NC = I. We therefore deduce that

‖(I)‖ = sup
j∈E

∥∥∥∥∥ 1

NC
√
T

∑
i∈C

1′post,jPXiFµiwiΥ
−1

∥∥∥∥∥
≤ 1√

T
sup
j∈E

∥∥∥∥∥ 1

NC

∑
i∈C

1′post,jXi

T

(
X ′iXi

T

)−1

X ′iFµiwiΥ
−1

∥∥∥∥∥
≤ 1√

T
sup

i∈C,j∈E

∥∥∥∥1′post,jXi

T

∥∥∥∥ · inf
i∈C

∥∥∥∥X ′iXi

T

∥∥∥∥−1

· sup
i∈C

∥∥X ′iFΥ−1
∥∥ · ∥∥∥∥µ′CWNC

∥∥∥∥ ,
8Given the trace norm ‖A‖ := [trace(A′A)]1/2, the following relationships hold for any `× ` square matrices A and

B: ‖AB‖ ≤ ‖A‖ ‖B‖, ‖A+B‖ ≤ ‖A‖+ ‖B‖, and ‖A‖ = ‖A′‖.
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which is Op

(
1√
T

)
. Next we turn to (II). Given the block diagonal property of H ′−1 (lemma A2)

and Υ−1, we observe that Υ−1H ′−1 = H ′−1Υ−1. Let us compute:∥∥∥∥ 1√
T

1′post,jF

(
µ′CW

NC
Υ−1 −Υ−1H ′−1

)∥∥∥∥2

=

∥∥∥∥ 1√
T

1′post,jF

(
µ′CW

NC
Υ−1 −H ′−1Υ−1

)∥∥∥∥2

≤
∥∥∥∥ 1√

T
1′F

∥∥∥∥2 ∥∥∥∥µ′CWNC −H ′−1

∥∥∥∥2 ∥∥Υ−1
∥∥2

≤
∥∥∥∥1′1

T

∥∥∥∥ ‖F ′F‖ ∥∥∥∥µ′CWNC −H ′−1

∥∥∥∥2 ∥∥Υ−1
∥∥2

=

∥∥∥∥µ′CWNC −H ′−1

∥∥∥∥2

= op(1),

by (16) and Cauchy-Schwarz inequality. It follows that ‖(II)‖ is op(1). The proof is now completed.
(b) Using the decomposition wi = µ′iH + (wi − µ′iH), we have

1

NC
√
T

∑
i∈C

X ′iεiwi =
1

NC
√
T

∑
i∈C

X ′iεiµ
′
iH +

1

NC
√
T

∑
i∈C

X ′iεi(wi − µ′iH)

=: (I) + (II).

To evaluate (I), we first note that
µ′CW
NC

= Op(1) as

E

∥∥∥∥µ′CWNC
∥∥∥∥2

≤ E
∥∥∥∥µ′CµCNC

∥∥∥∥ ≤ c (18)

by Assumption FLC(i), Cauchy-Schwarz inequality and that W ′W/NC = I. It follows that

‖H‖ =

∥∥∥∥Υ−1F ′F
µ′CW

NC
V −1Υ−1

∥∥∥∥ ≤ ∥∥Υ−1F ′FΥ−1
∥∥ ∥∥∥∥µ′CWNC

∥∥∥∥∥∥V −1
∥∥ = Op(1), (19)

where the last step follows from Assumption F(i), equation (18), and that V is non-singular for large
NC and T by lemma A1. We thus obtain

‖(I)‖ =

∥∥∥∥∥ 1

NC
√
T

∑
i∈C

X ′iεiµ
′
iH

∥∥∥∥∥ =

∥∥∥∥∥ 1

NC
√
T

∑
i∈C

X ′iεiµ
′
i

∥∥∥∥∥ ‖H‖ = Op

(
1√
NC

)
Op(1)

by Assumption MX(vi). Now let us turn to (II). By Cauchy-Schwarz inequality, the (p, q)th element
of (II) is

1

NC
√
T

∑
i∈C

T∑
t=1

xpitεit(wiq − µ′ihq) ≤

 1

NC

∑
i∈C

(
1√
T

T∑
t=1

xpitεit

)2
1/2 [

1

NC

∑
i∈C

(wi − µ′ihq)2

]1/2

.

Since

E

 1

NC

∑
i∈C

(
1√
T

T∑
t=1

xpitεit

)2
 =

1

TNC

∑
i∈C

T∑
s=1

T∑
t=1

E(xpisxpitεisεit) ≤ c

by Assumption MX(v), lemma A3(a) implies that the elements of (II) are Op

(
1

min(
√
T ,
√
NC)

)
. Com-

bining the results, we conclude that all elements of 1
NC
√
T

∑
i∈C X

′
iεiwi are Op

(
1

min(
√
T ,
√
NC)

)
.
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(c) Let us decompose the term

1

NC
√
T

∑
i∈C

1′post,jMXiεiwiΥ
−1 =

1′post,jε
′
CW

NC
√
T

Υ−1 − 1

NC
√
T

∑
i∈C

1′post,jPXiεiwiΥ
−1

=: (I) + (II).

First, we evaluate supj∈E ‖(I)‖ :

sup
j∈E

∥∥∥∥1′post,jε
′
CW

NC
√
T

Υ−1

∥∥∥∥ ≤ ∥∥∥∥ 1′ε′CW

NC
√
T

Υ−1

∥∥∥∥ =

∥∥∥∥1′ε′CW

NCT

∥∥∥∥ ∥∥∥√TΥ−1
∥∥∥

≤
∥∥∥∥1′1

T

∥∥∥∥1/2 ∥∥∥∥W ′εCε′CWTN2
C

∥∥∥∥1/2 ∥∥∥√TΥ−1
∥∥∥

≤ Op
(

1

min(
√
T ,
√
NC)

)
,

which follows from Cauchy-Schwarz inequality, lemma A3(d) and (15). Next, let us compute supj∈E ‖(II)‖
as follows:

sup
j∈E

∥∥∥∥∥ 1

NC
√
T

∑
i∈C

1′post,jPXiεiwiΥ
−1

∥∥∥∥∥ =

∥∥∥∥∥ 1

NC

∑
i∈C

1′Xi

T

(
X ′iXi

T

)−1
X ′iεiwi√

T
Υ−1

∥∥∥∥∥
≤
∥∥∥∥sup
i∈C

1′Xi

T

∥∥∥∥∥∥∥∥ inf
i∈C

X ′iXi

T

∥∥∥∥−1
∥∥∥∥∥ 1

NC
√
T

∑
i∈C

X ′iεiwi

∥∥∥∥∥∥∥Υ−1
∥∥

≤
∥∥∥∥sup
i∈C

X ′iXi

T

∥∥∥∥1/2 ∥∥∥∥ inf
i∈C

X ′iXi

T

∥∥∥∥−1
∥∥∥∥∥ 1

NC
√
T

∑
i∈C

X ′iεiwiΥ
−1

∥∥∥∥∥∥∥Υ−1
∥∥

= Op(1)Op(1)Op

(
1

min(
√
T ,
√
NC)

)
Op

(
1√
T

)
,

where the last step is by Assumptions MX(i) and (ii) and part (b). The result follows immediately.
(d) By the decomposition F̂ = 1

NC

∑
i∈CMXi (Fµi + εi)wi, we obtain

sup
j∈E

∥∥∥∥∥1′post,jF̂√
T

Υ−1 − 1√
T

1′post,jFΥ−1H ′−1

∥∥∥∥∥
= sup

j∈E

∥∥∥∥∥ 1√
TNC

∑
i∈C

1′post,jMXi (Fµi + εi)wiΥ
−1 − 1√

T
1′post,jFΥ−1H ′−1

∥∥∥∥∥
≤ sup

j∈E

∥∥∥∥∥ 1

NC
√
T

∑
i∈C

1′post,jMXiFµiwiΥ
−1 − 1√

T
1′post,jFΥ−1H ′−1

∥∥∥∥∥
+ sup
j∈E

∥∥∥∥∥ 1√
TNC

∑
i∈C

1′post,jMXiεiwiΥ
−1

∥∥∥∥∥ ,
which is op(1) by parts (a) and (c).
(e) We decompose the term as follows:

X ′jF̂√
T

Υ−1 −
X ′jF√
T

Υ−1 =

(
1

NC
√
T

∑
i∈C

X ′jMXiFµiwiΥ
−1 −

X ′jF√
T

Υ−1

)
+

1

NC
√
T

∑
i∈C

X ′jMXiεiwiΥ
−1

=: (I) + (II).
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We first compute the first expression (I):

‖(I)‖ =

∥∥∥∥∥ 1

NC
√
T

∑
i∈C

X ′jMXiFµiwiΥ
−1 −

X ′jF√
T

Υ−1

∥∥∥∥∥
≤ sup
i∈C,j∈E

∥∥∥∥ 1√
T
X ′jMXiF

∥∥∥∥
∥∥∥∥∥ 1

NC

∑
i∈C

µiwi

∥∥∥∥∥∥∥Υ−1
∥∥

= sup
i∈C,j∈E

∥∥∥∥ 1√
T
X ′jMXiF

∥∥∥∥∥∥∥∥µ′CWNC
∥∥∥∥∥∥Υ−1

∥∥ .
First, note that

∥∥∥µ′CWNC ∥∥∥ =
∥∥H−1

∥∥ + op(1) = Op(1) by (16) and the fact that ‖H‖ > 0 (as H is

non-singular by lemma A2). Furthermore, we have

E sup
i∈C,j∈E

∥∥∥∥ 1√
T
X ′jMXiF

∥∥∥∥2

≤ E sup
j∈E

∥∥∥∥ 1√
T
X ′jF

∥∥∥∥2

≤ E sup
j∈E

∥∥∥∥X ′jXj

T

∥∥∥∥E ‖F ′F‖ ≤ c ‖Υ‖2
by Assumption MX(i). It follows that ‖(I)‖ = op(1).

Simplifying the second expression (II), we have

(II) =
1

NC
√
T

∑
i∈C

X ′jMXiεiwiΥ
−1

=
1

NC
√
T

∑
i∈C

X ′jεiwiΥ
−1 − 1

NC

∑
i∈C

X ′jXi

T

(
X ′iXi

T

)−1
X ′iεi√
T
wiΥ

−1

=
1

NC
√
T

∑
i∈C

X ′jεiµ
′
iHΥ−1 +

1

NC
√
T

∑
i∈C

X ′jεi(wi − µ′iH)Υ−1

− 1

NC

∑
i∈C

X ′jXi

T

(
X ′iXi

T

)−1
X ′iεi√
T
wiΥ

−1

=: (IIa) + (IIb) + (IIc)

where the last equality follows from the decomposition wi = µ′iH + (wi − µ′iH). First we evaluate
supj∈E ‖(IIa)‖. Applying Cauchy-Schwarz inequality, we can bound it as follows:

sup
j∈E
‖(IIa)‖ ≤ 1√

NC
sup
j∈E

∥∥∥∥∥ 1

T
X ′j

(
1√
NC

∑
i∈C

εiµ
′
i

)∥∥∥∥∥ ‖H‖ ∥∥∥√TΥ−1
∥∥∥

≤ 1√
NC

sup
j∈E

∥∥∥∥X ′jXj

T

∥∥∥∥1/2
 1

T

T∑
t=1

∥∥∥∥∥ 1√
NC

∑
i∈C

εitµi

∥∥∥∥∥
2
1/2

‖H‖
∥∥∥√TΥ−1

∥∥∥
= Op

(
1√
NC

)
Op(1)Op(1)Op(1)Op(1),

where the last step is obtained by Assumptions MX(i) and M(i), (15) and (19). Then we compute
supj∈E ‖(IIb)‖. By Cauchy-Schwarz inequality again, we have

sup
j∈E
‖(IIb)‖ ≤ sup

j∈E

∥∥∥∥∥ 1

T
X ′j

[
1

NC

∑
i∈C

εi(wi − µ′iH)

]∥∥∥∥∥∥∥∥√TΥ−1
∥∥∥

≤ sup
j∈E

∥∥∥∥X ′jXj

T

∥∥∥∥1/2 ∥∥∥∥ (W − µCH)′εCε
′
C(W − µCH)

TN2
C

∥∥∥∥1/2 ∥∥∥√TΥ−1
∥∥∥

= Op(1)Op

(
1

min(
√
T ,
√
NC)

)
Op(1),
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where the last step is obtained by Assumption MX(i) and lemma A3(c). Next we compute supj∈E ‖(IIc)‖.
By Cauchy-Schwarz inequality once again, we obtain

sup
j∈E
‖(IIc)‖ ≤ sup

j∈E

∥∥∥∥∥ 1

NC

∑
i∈C

X ′jXi

T

(
X ′iXi

T

)−1
X ′iεi√
T
wiΥ

−1

∥∥∥∥∥
≤ sup
i∈C,j∈E

∥∥∥∥X ′jXi

T

∥∥∥∥∥∥∥∥ inf
i∈C

X ′iXi

T

∥∥∥∥−1
∥∥∥∥∥ 1

NC
√
T

∑
i∈C

X ′iεiwi

∥∥∥∥∥∥∥Υ−1
∥∥

≤ sup
i∈C

∥∥∥∥X ′iXi

T

∥∥∥∥1/2

sup
j∈E

∥∥∥∥X ′jXj

T

∥∥∥∥1/2 ∥∥∥∥ inf
i∈C

X ′iXi

T

∥∥∥∥−1
∥∥∥∥∥∑
i∈C

X ′iεiwi

NC
√
T

∥∥∥∥∥∥∥Υ−1
∥∥

= Op(1)Op(1)Op(1)Op

(
1

min(
√
T ,
√
NC)

)
Op

(
1√
T

)
,

where the last step is obtained by Assumptions MX(i)-(ii), lemma A3(c) and (15). We thus see that

the elements of (II) are Op

(
1

min(
√
T ,
√
NC)

)
. The result immediately follows after combining all the

terms.
(f) We decompose the expression as follows:

Υ−1F̂ ′F̂Υ−1 =
1

N2
C

∑
i∈C

∑
j∈C

Υ−1w′i(Fµi + εi)
′MXiMXj (Fµj + εj)wjΥ

−1

=
1

N2
C

∑
i∈C

∑
j∈C

Υ−1w′iµ
′
iF
′MXiMXjFµjwjΥ

−1

+
1

N2
C

∑
i∈C

∑
j∈C

Υ−1w′iµ
′
iF
′MXiMXj εjwjΥ

−1

+
1

N2
C

∑
i∈C

∑
j∈C

Υ−1w′iε
′
iMXiMXjFµjwjΥ

−1

+
1

N2
C

∑
i∈C

∑
j∈C

Υ−1w′iε
′
iMXiMXj εjwjΥ

−1

=: (I) + (II) + (III) + (IV ).

Let us further decompose (I) as follows:

(I) = Υ−1W
′µC
NC

F ′F
µ′CW

NC
Υ−1

− 1

TN2
C

∑
i∈C

∑
j∈C

Υ−1w′iµ
′
iF
′Xi

(
X ′iXi

T

)−1
X ′iXj

T

(
X ′jXj

T

)−1

X ′jFµjwjΥ
−1

=: (Ia) + (Ib).

The norm of (Ia) is given by

‖(Ia)‖ =
∥∥Υ−1F ′FΥ−1

∥∥∥∥∥∥W ′µCNC

∥∥∥∥2

= Op(1)

by (18) and Assumption F(i). By (18) again and Cauchy-Schwarz inequality, the norm of (Ib) can be
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bounded from above as follows:

‖(Ib)‖

≤ 1

TN2
C

∑
i∈C

∑
j∈C

∥∥Υ−1w′iµ
′
i

∥∥ ‖F ′Xi‖
∥∥∥∥X ′iXi

T

∥∥∥∥−1 ∥∥∥∥X ′iXi

T

∥∥∥∥1/2 ∥∥∥∥X ′jXj

T

∥∥∥∥1/2 ∥∥∥∥X ′jXj

T

∥∥∥∥−1 ∥∥X ′jF∥∥∥∥µjwjΥ−1
∥∥

=
1

TN2
C

∑
i∈C

∑
j∈C

∥∥Υ−1w′iµ
′
i

∥∥ ‖F ′Xi‖
∥∥∥∥X ′iXi

T

∥∥∥∥−1/2 ∥∥∥∥X ′jXj

T

∥∥∥∥−1/2 ∥∥X ′jF∥∥ ∥∥µjwjΥ−1
∥∥

≤ 1

T

∥∥∥∥W ′µCNC

∥∥∥∥ sup
i∈C

∥∥∥∥Υ−1F
′Xi√
T

∥∥∥∥∥∥∥∥ inf
i∈C

X ′iXi

T

∥∥∥∥−1

sup
j∈C

∥∥∥∥X ′jF√T Υ−1

∥∥∥∥∥∥∥∥µ′CWNC
∥∥∥∥

= Op

(
1

T

)
Op(1)Op(1)Op(1)Op(1)Op(1),

where the last step is by (18) and Assumptions MX(ii) and (iii). We thus obtain

‖(I)‖ =
∥∥Υ−1H−1F ′FH ′−1Υ−1

∥∥+Op

(
1

T

)
.

The second expression (II) is rewritten as:

(II) = Υ−1W
′µC
NC

F ′ε′CW

NC
Υ−1

− 1√
TN2

C

∑
i∈C

∑
j∈C

Υ−1w′iµ
′
iF
′Xi

(
X ′iXi

T

)−1
X ′iXj

T

(
X ′jXj

T

)−1
X ′jεjwj√

T
Υ−1

=: (IIa) + (IIb).

The norm of (IIa) is

‖(IIa)‖ ≤
∥∥Υ−1

∥∥∥∥∥∥W ′µCNC

∥∥∥∥∥∥∥∥F ′ε′CWNC
Υ−1

∥∥∥∥ = Op

(
1√
T

)
Op(1)Op

(
1

min(
√
T ,
√
NC)

)
by (15), (18) and lemma A3(e). By Cauchy-Schwarz inequality, the norm of (IIb) is bounded from
above as follows:

‖(IIb)‖ ≤ 1√
T

∥∥∥∥W ′µCNC

∥∥∥∥ sup
i∈C

∥∥Υ−1F ′Xi

∥∥∥∥∥∥ inf
i∈C

X ′iXi

T

∥∥∥∥−1/2 ∥∥∥∥ inf
j∈C

X ′jXj

T

∥∥∥∥−1/2
∥∥∥∥∥∥
∑
j∈C

X ′jεjwj

NC
√
T

∥∥∥∥∥∥∥∥Υ−1
∥∥

≤ Op
(

1√
T

)
Op(1)Op(1)Op(1)Op(1)Op

(
1

min(
√
T ,
√
NC)

)
Op

(
1√
T

)
= Op

(
1

T min(
√
T ,
√
NC)

)
,

where the second-to-last step is obtained by (15), (18), Assumptions MX(ii) and (iii), and part (b).

We thus see that the elements of (II) are Op

(
1√

T min(
√
T ,
√
NC)

)
.

The third expression (III), being the transpose of (II), is of the same order.
The fourth expression (IV ) is rewritten as:

(IV ) = Υ−1W
′εCε

′
CW

N2
C

Υ−1 − 1

N2
C

∑
i∈C

∑
j∈C

Υ−1w
′
iεiXi√
T

(
X ′iXi

T

)−1
X ′iXj

T

(
X ′jXj

T

)−1
X ′jεjwj√

T
Υ−1

=: (IV a) + (IV b).

33



The norm of (IV a) is ‖(IV a)‖ =
∥∥∥Υ−1

√
T
∥∥∥ ∥∥∥W ′εCε′CWTN2

C

∥∥∥∥∥∥√TΥ−1
∥∥∥ = Op

(
1

min(T,NC)

)
by (15) and

lemma A3(d). By Cauchy-Schwarz inequality, the norm of (IV b) is bounded from above by:

‖(IV b)‖ =
∥∥Υ−1

∥∥2

∥∥∥∥∥∑
i∈C

w′iε
′
iXi

NC
√
T

∥∥∥∥∥
∥∥∥∥ inf
i∈C

X ′iXi

T

∥∥∥∥−1/2 ∥∥∥∥ inf
j∈C

X ′jXj

T

∥∥∥∥−1/2
∥∥∥∥∥∥
∑
j∈C

X ′jεjwj

NC
√
T

∥∥∥∥∥∥
≤ Op

(
1

T

)
Op

(
1

min(
√
T ,
√
NC)

)
Op(1)Op(1)Op

(
1

min(
√
T ,
√
NC)

)
= Op

(
1

T min(T,NC)

)
,

where the second-to-last step is obtained by (15), Assumption MX(ii) and part (b). We thus see that

the elements of (IV ) are Op

(
1

min(T,NC)

)
.

Combining all the terms, we have
∥∥∥Υ−1F̂ ′F̂Υ−1 −Υ−1H−1F ′FH ′−1Υ−1

∥∥∥2

= op(1). The result

immediately follows by noting that H−1Υ−1 = Υ−1H−1 (due to the block-diagonal nature of H) and
that ∥∥∥Υ−1F̂ ′F̂Υ−1 −H−1Υ−1F ′FΥ−1H ′−1

∥∥∥2

=
∥∥∥Υ−1F̂ ′F̂Υ−1 −Υ−1H−1F ′FH ′−1Υ−1

∥∥∥2

.

(g) We decompose the expression as follows:

ε′jF̂Υ−1 =
1

NC

∑
i∈C

ε′jMXiFµiwiΥ
−1 +

1

NC

∑
i∈C

ε′jMXiεiwiΥ
−1

=: (I) + (II).

We further decompose (I) and obtain

(I) =
1

NC

∑
i∈C

ε′jMXiFµiwiΥ
−1

=
1

NC

∑
i∈C

ε′jFµiwiΥ
−1 − 1√

TNC

∑
i∈C

ε′jXi√
T

(
X ′iXi

T

)−1

X ′iFµiwiΥ
−1

= ε′jF
µ′CW

NC
Υ−1 − 1√

TNC

∑
i∈C

ε′jXi√
T

(
X ′iXi

T

)−1

X ′iFµiwiΥ
−1

=: (Ia) + (Ib).

We evaluate supj∈E ‖(Ia)‖ as follows:

sup
j∈E
‖(Ia)‖ ≤ sup

j∈E

∥∥ε′jFΥ−1
∥∥ ∥∥∥∥µ′CWNC

∥∥∥∥ = Op(1)Op(1)

by (18) and Assumption M(ii). Next, we evaluate supj∈E ‖(Ib)‖ as follows:

sup
j∈E
‖(Ib)‖ ≤ 1√

T
sup

i∈C,j∈E

∥∥∥∥ε′jXi√
T

∥∥∥∥ ∥∥∥∥ inf
i∈C

X ′iXi

T

∥∥∥∥−1

sup
i∈C,j∈E

∥∥X ′iFΥ−1
∥∥ ∥∥∥∥µ′CWNC

∥∥∥∥
≤ Op

(
1√
T

)
Op(1)Op(1)Op(1)Op(1),

where the last step is by (18) and Assumption MX(ii), (iii) and (iv). We thus obtain

‖(I)‖ =

∥∥∥∥ε′jF µ′CWNC Υ−1

∥∥∥∥+ op(1).
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We further decompose (II) and obtain

(II) =
1

NC

∑
i∈C

ε′jMXiεiwiΥ
−1

=
1

NC

∑
i∈C

ε′jεiwiΥ
−1 − 1

NC

∑
i∈C

ε′jXi√
T

(
X ′iXi

T

)−1
X ′iεi√
T
wiΥ

−1

=
1

NC

∑
i∈C

[ε′jεi − E(ε′jεi)]µ
′
iHΥ−1 +

1

NC

∑
i∈C

E(ε′jεi)µ
′
iHΥ−1

+
1

NC

∑
i∈C

ε′jεi(wi − µ′iH)Υ−1 − 1

NC

∑
i∈C

ε′jXi√
T

(
X ′iXi

T

)−1
X ′iεi√
T
wiΥ

−1

=: (IIa) + (IIb) + (IIc) + (IId).

We evaluate supj∈E ‖(IIa)‖ as follows:

sup
j∈E
‖(IIa)‖ ≤ 1√

NC
sup
j∈E

∥∥∥∥∥ 1√
NCT

∑
i∈C

[ε′jεi − E(ε′jεi)]µ
′
i

∥∥∥∥∥ ‖H‖∥∥∥√TΥ−1
∥∥∥ = Op

(
1√
NC

)
by Assumption M(iv). Then, we simplify (IIb) as follows:

(IIb) =

√
T

NC

∑
i∈C

E(ε′jεi)

T
µ′iH(

√
TΥ−1) =

√
T

NC

∑
i∈C

γT (j, i)µ′iH(
√
TΥ−1). (20)

Let us compute supj∈E ‖(IIb)‖:

sup
j∈E
‖(IIb)‖ ≤

√
T

NC

(
sup
j∈E

∑
i∈C
|γT (j, i)|

)
sup
i∈C
‖µi‖

∥∥∥√TΥ−1
∥∥∥ ‖H‖

≤ Op

(√
T

NC

)
Op(1)Op(1)Op(1)Op(1),

where the last step follows from (15), (18) and Assumptions FLC(i) and IE(ii). Next, we evaluate
supj∈E ‖(IIc)‖ as follows:

sup
j∈E
‖(IIc)‖ = sup

j∈E

∥∥∥∥∥
T∑
t=1

εjt

[
1

NC

∑
i∈C

εit(wi − µ′iH)

]
Υ−1

∥∥∥∥∥
≤ sup

t

∥∥∥∥∥ 1

NC

∑
i∈C

εit(wi − µ′iH)

∥∥∥∥∥ sup
j∈E

∣∣∣∣∣ 1√
T

T∑
t=1

εjt

∣∣∣∣∣ ∥∥∥√TΥ−1
∥∥∥ . (21)

By Cauchy-Schwarz inequality, the first term in (21) is bounded in probability:

sup
t

∥∥∥∥∥ 1

NC

∑
i∈C

εit(wi − µ′iH)

∥∥∥∥∥ ≤ sup
t

(
1

NC

∑
i∈C

ε2it

)1/2(
1

NC

∑
i∈C
‖wi − µ′iH‖

2

)1/2

= Op

(
1

min(
√
T ,
√
NC)

)
, (22)

where the last step follows from lemma A3(a) and Assumption IE(i), which implies that 1
NC

∑
i∈C E(ε2it) ≤

c1 < ∞ uniformly over t. On the other hand, the second term in (21) is bounded in probability: by
Assumption IE(iii), there exists c2 <∞ such that

E

∣∣∣∣∣sup
j∈E

1

T

T∑
s,t=1

εjsεjt

∣∣∣∣∣ ≤ 1

T

T∑
s,t=1

|σst| ≤ c2.
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The last term in (21) is bounded by (15). We therefore have supj∈E ‖(IIc)‖ = Op

(
1

min(
√
T ,
√
NC)

)
.

At last, we compute supj∈E ‖(IId)‖ as follows:

sup
j∈E
‖(IId)‖ ≤ sup

i∈C,j∈E

∥∥∥∥ε′jXi√
T

∥∥∥∥∥∥∥∥ inf
i∈C

X ′iXi

T

∥∥∥∥−1
∥∥∥∥∥ 1

NC
√
T

∑
i∈C

X ′iεiwi

∥∥∥∥∥∥∥Υ−1
∥∥

≤ Op(1)Op(1)Op

(
1

min(
√
T ,
√
NC)

)
Op

(
1√
T

)
,

where the last step follows from (15), part (b), and Assumptions MX(i) and (ii).
Combining all the terms, we obtain

sup
j∈E

∥∥∥∥ε′jF̂Υ−1 − ε′jF
µ′CW

NC
Υ−1

∥∥∥∥ = Op

(√
T

NC

)
.

The result follows by noting that

sup
j∈E

∥∥∥ε′jF̂Υ−1 − ε′jFΥ−1H ′−1
∥∥∥ ≤ sup

j∈E

∥∥∥∥ε′jF̂Υ−1 − ε′jF
µ′CW

NC
Υ−1

∥∥∥∥+sup
j∈E

∥∥∥∥ε′jF µ′CWNC Υ−1 − ε′jFΥ−1H ′−1

∥∥∥∥
and that

sup
j∈E

∥∥∥∥ε′jF µ′CWNC Υ−1 − ε′jFΥ−1H ′−1

∥∥∥∥2

= sup
j∈E

∥∥ε′jF∥∥2
∥∥∥∥µ′CWNC Υ−1 −Υ−1H ′−1

∥∥∥∥2

= sup
j∈E

∥∥ε′jFΥ−1
∥∥2
∥∥∥∥µ′CWNC −H ′−1

∥∥∥∥2

= op(1),

where the last step follows from (16) and Assumption M(ii).

9.5 Proof of Lemma A5

Define the (`+ k)× (`+ k) block diagonal matrix Γ :=

(
Υ O

O′
√
TI

)
, where Υ = diag(T r1 , . . . , T r`)

and I is the k×k identity matrix. Denote H̃−1 :=

(
H−1 O
O I

)
, which is of dimension (`+k)×(`+k)

and is invertible for large T and NC by lemma A2.
(a) We compute

1

T
1′post,jM[F̂ ,Xj ]

1post,j

=
1

T
1′post,j1post,j −

(
1′post,jF̂√

T
,

1′post,jXj√
T

)
Γ−1

[
Γ−1

(
F̂ ′F̂ F̂ ′Xj

X ′jF̂ X ′jXj

)
Γ−1

]−1

Γ−1

( F̂ ′1post,j√
T

X′j1post,j√
T

)

=
1

T
1′post,j1post,j −

(
1′post,jF̂√

T
Υ−1,

1′post,jXj

T

) Υ−1F̂ ′F̂Υ−1 Υ−1 F̂
′Xj√
T

X′j F̂√
T

Υ−1 X′jXj
T

−1(Υ−1 F̂
′1post,j√
T

X′j1post,j

T

)

=
1′post,j1post,j

T
−
(

1′post,jF√
T

Υ−1,
1′post,jXj

T

)
H̃ ′−1

H̃−1

 Υ−1F ′FΥ−1 Υ−1 F
′Xj√
T

X′jF√
T

Υ−1 X′jXj
T

 H̃ ′−1

−1

× H̃−1

(Υ−1 F
′1post,j√
T

X′j1post,j

T

)
+ op(1)

=
1

T
1′post,jM[F,Xj ]1post,j + op(1).
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The third equality follows from lemma A4 (d), (e) and (f). The result holds by noting that the op(1)
term is uniform over all j ∈ E.

(b) We decompose as follows:

1√
T

1′post,jM[F̂ ,Xj ]
(Fµj +Xjβj + εj)

=
1′post,j(Fµj +Xjβj + εj)√

T
−

(
1′post,jF̂√

T
,

1′post,jXj√
T

)
Γ−1

×
[
Γ−1

(
F̂ ′F̂ F̂ ′Xj

X ′jF̂ X ′jXj

)
Γ−1

]−1

Γ−1

(
F̂ ′

X ′j

)[
(F,Xj)

(
µj
βj

)
+ εj

]
=

1′post,j(Fµj +Xjβj + εj)√
T

−
(

1′post,jF√
T

Υ−1,
1′post,jXj

T

)

×

 Υ−1F ′FΥ−1 Υ−1 F
′Xj√
T

X′jF√
T

Υ−1 X′jXj
T

−1(
Υ−1F ′

1√
T
X ′j

)[
(F,Xj)

(
µj
βj

)
+ εj

]
+Op

(√
T

NC

)

=
1′post,jεj√

T
−
(

1′post,jF√
T

Υ−1,
1′post,jXj

T

) Υ−1F ′FΥ−1 Υ−1 F
′Xj√
T

X′jF√
T

Υ−1 X′jXj
T

−1(
Υ−1F ′εj
X′jεj√
T

)
+Op

(√
T

NC

)

=
1√
T

1′post,jM[F,Xj ]εj +Op

(√
T

NC

)
. (23)

The second equality follows from lemma A4(d), (e), (f) and (g). The result holds by noting that the

Op

(√
T

NC

)
term is uniform over all j ∈ E.

9.6 Proof of Lemma A6

From the proofs of lemmas A5(b) and A4(d)-(g), it suffices to show that∥∥∥∥∥∥ 1√
NE

∑
j∈E

ε′jF̂Υ−1 − 1√
NE

∑
j∈E

ε′jFΥ−1

∥∥∥∥∥∥ = op(1). (24)

To this end, we evaluate the term

1√
NE

∑
j∈E

ε′jF̂Υ−1 =
1√

NENC

∑
j∈E

∑
i∈C

ε′jMXiFµiwiΥ
−1 +

1√
NENC

∑
j∈E

∑
i∈C

ε′jMXiεiwiΥ
−1

=:(I) + (II).

Simplifying the first expression (I), we have

(I) =
1√

NENC

∑
j∈E

∑
i∈C

ε′jMXiFµiwiΥ
−1

=
1√

NENC

∑
j∈E

∑
i∈C

ε′jFµiwiΥ
−1 − 1√

NENC

∑
j∈E

∑
i∈C

ε′jXi√
T

(
X ′iXi

T

)−1
X ′iF√
T
µiwiΥ

−1

=: (Ia) + (Ib).

The norm of (Ia) is bounded as follows:

‖(Ia)‖ =

∥∥∥∥∥∥ 1√
NE

∑
j∈E

ε′jFΥ−1

∥∥∥∥∥∥
∥∥∥∥µ′CWNC

∥∥∥∥ ≤ Op(1)Op(1)
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by (18) and Assumption MM(ii). The norm of (Ib) is bounded as follows:

‖(Ib)‖ =
1√

TNENC

∑
j∈E

∑
i∈C

∥∥∥∥ε′jXi√
T

∥∥∥∥∥∥∥∥X ′iXi

T

∥∥∥∥−1

‖X ′iF‖ ‖µiwi‖
∥∥Υ−1

∥∥
≤ 1√

T
sup

i∈C,j∈E

∥∥∥∥∥∥
∑
j∈E

ε′jXi√
NET

∥∥∥∥∥∥
∥∥∥∥ inf
i∈C

X ′iXi

T

∥∥∥∥−1

sup
i∈C

∥∥X ′iFΥ−1
∥∥ ∥∥∥∥µ′CWNC

∥∥∥∥
≤ Op

(
1√
T

)
Op(1)Op(1)Op(1)Op(1),

where the last step holds by (18) and Assumption MX(ii), (iii) and (vii).
Simplifying the second expression (II), we have

(II) =
1√

NENC

∑
j∈E

∑
i∈C

ε′jMXiεiwiΥ
−1

=
1√

NENC

∑
j∈E

∑
i∈C

ε′jεiwiΥ
−1 − 1√

NENC

∑
j∈E

∑
i∈C

ε′jXi√
T

(
X ′iXi

T

)−1
X ′iεi√
T
wiΥ

−1

=
1√

NENC

∑
j∈E

∑
i∈C

[ε′jεi − E(ε′jεi)]µ
′
iHΥ−1 +

1√
NENC

∑
j∈E

∑
i∈C

E(ε′jεi)µ
′
iHΥ−1

+
1√

NENC

∑
j∈E

∑
i∈C

ε′jεi(wi − µ′iH)Υ−1 − 1√
NENC

∑
j∈E

∑
i∈C

ε′jXi√
T

(
X ′iXi

T

)−1
X ′iεi√
T
wiΥ

−1

= (IIa) + (IIb) + (IIc) + (IId),

where the second-to-last equality follows from the decomposition wi = µ′iH + (wi − µ′iH). The norm
of (IIa) is

‖(IIa)‖ ≤ 1√
NC

∥∥∥∥∥∥ 1√
NENCT

T∑
t=1

∑
i∈C

∑
j∈E

[εitεjt − E(εitεjt)]µ
′
i

∥∥∥∥∥∥ ‖H‖
∥∥∥√TΥ−1

∥∥∥
≤ Op

(
1√
NC

)
Op(1)Op(1)Op(1)

by (15), (19) and Assumption MM(iii). The norm of (IIb) is

‖(IIb)‖ ≤
√

T

NC

1√
NENC

∑
j∈E

∑
i∈C

∣∣∣∣∣ 1

T

T∑
t=1

E(εjtεit)

∣∣∣∣∣ ‖µi‖ ‖H‖ ∥∥∥√TΥ−1
∥∥∥

≤
√

T

NC
sup
i∈C
‖µi‖

1√
NENC

∑
j∈E

∑
i∈C
|γT (j, i)| ‖H‖

∥∥∥√TΥ−1
∥∥∥

≤ Op

(√
T

NC

)
Op(1)Op(1)Op(1)Op(1)
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by (15), (19) and Assumptions FLC(i) and MM(i). The norm of (IIc) is

‖(IIc)‖ =

∥∥∥∥∥∥ 1√
NE

∑
j∈E

T∑
t=1

εjt

[
1

NC

∑
i∈C

εit(wi − µ′iH)

]
Υ−1

∥∥∥∥∥∥
≤ sup

t

∥∥∥∥∥ 1

NC

∑
i∈C

εit(wi − µ′iH)

∥∥∥∥∥
∣∣∣∣∣∣ 1√
NET

∑
j∈E

T∑
t=1

εjt

∣∣∣∣∣∣
∥∥∥√TΥ−1

∥∥∥
≤ Op

(
1

min(
√
T ,
√
NC)

)
Op(1)Op(1),

where the last step follows from (15), (22) and Assumption IE(iv), which implies that

1

NET

∑
i,j∈E

T∑
s,t=1

|E(εjsεjt)| ≤
1

NET

∑
i,j∈E

T∑
s,t=1

|σij,st| ≤ c <∞.

The norm of (IId) is

‖(IId)‖ ≤ sup
i∈C

∥∥∥∥∥∥
∑
j∈E

ε′jXi√
NET

∥∥∥∥∥∥
∥∥∥∥ inf
i∈C

X ′iXi

T

∥∥∥∥−1
∥∥∥∥∥ 1

NC
√
T

∑
i∈C

X ′iεiwi

∥∥∥∥∥∥∥Υ−1
∥∥

≤ Op(1)Op(1)Op

(
1

min(
√
T ,
√
NC)

)
Op

(
1√
T

)
= Op

(
1√

T min(
√
T ,
√
NC)

)
,

where the second-to-last step follows from (15), lemma A4(b) and Assumptions MX(i) and (vii).
Combining all the above terms, we obtain∥∥∥∥∥∥ 1√

NE

∑
j∈E

ε′jF̂Υ−1 − 1√
NENC

∑
j∈E

∑
i∈C

ε′jFµiwiΥ
−1

∥∥∥∥∥∥ = Op

(√
T

NC

)
.

The upper bound is op(1) provided that T/NC → 0. The claim (24) follows immediately by noting
that ∥∥∥∥∥∥ 1√

NE

∑
j∈E

ε′jF̂Υ−1 − 1√
NE

∑
j∈E

ε′jFΥ−1H ′−1

∥∥∥∥∥∥
≤

∥∥∥∥∥∥ 1√
NE

∑
j∈E

ε′jF̂Υ−1 − 1√
NENC

∑
j∈E

∑
i∈C

ε′jFµiwiΥ
−1

∥∥∥∥∥∥
+

∥∥∥∥∥∥ 1√
NENC

∑
j∈E

∑
i∈C

ε′jFµiwiΥ
−1 − 1√

NE

∑
j∈E

ε′jFΥ−1H ′−1

∥∥∥∥∥∥
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and that ∥∥∥∥∥∥ 1√
NENC

∑
j∈E

∑
i∈C

ε′jFµiwiΥ
−1 − 1√

NE

∑
j∈E

ε′jFΥ−1H ′−1

∥∥∥∥∥∥
2

≤

∥∥∥∥∥∥ 1√
NE

∑
j∈E

ε′jF

∥∥∥∥∥∥
2 ∥∥∥∥µ′CWNC Υ−1 −Υ−1H ′−1

∥∥∥∥2

=

∥∥∥∥∥∥ 1√
NE

∑
j∈E

ε′jFΥ−1

∥∥∥∥∥∥
2 ∥∥∥∥µ′CWNC −H ′−1

∥∥∥∥2

= Op(1)op(1) = op(1)

by Assumption MM(ii) and (16).

9.7 Proof of Lemma A7

Denote µ̄C := 1
NC

∑
i∈C µi. Assumption FLM enables us to apply the law of large numbers (Corollary

3.48 of White (2001)) on µ̄C , yielding

‖µ̄C − µ0‖ = op(1) (25)

as NC →∞. We will make use of this consistency result in various parts of the proof.
Let us prove (a). For fixed j ∈ E, we have

1

T 2r
ū′CM[1post,j ,Xj ]ūC =

1

N2
CT

2r

∑
i∈C

∑
i′∈C

(Fµi + εi)
′MXiM[1post,j ,Xj ]MXi′ (Fµi′ + εi′)

=
1

N2
CT

2r

∑
i∈C

∑
i′∈C

(Fµi + εi)
′(Fµi′ + εi′)

− 2

N2
CT

2r

∑
i∈C

∑
i′∈C

(Fµi + εi)
′PXi(Fµi′ + εi′)

+
1

N2
CT

2r

∑
i∈C

∑
i′∈C

(Fµi + εi)
′PXiPXi′ (Fµi′ + εi′)

− 1

N2
CT

2r

∑
i∈C

∑
i′∈C

(Fµi + εi)
′P[1post,j ,Xj ](Fµi′ + εi′)

+
2

N2
CT

2r

∑
i∈C

∑
i′∈C

(Fµi + εi)
′PXiP[1post,j ,Xj ](Fµi′ + εi′)

− 1

N2
CT

2r

∑
i∈C

∑
i′∈C

(Fµi + εi)
′PXiP[1post,j ,Xj ]PXi′ (Fµi′ + εi′)

=: (I)− 2(II) + (III)− (IV ) + 2(V )− (V I).

The first term is

(I) = µ̄′C
F ′F

T 2r
µ̄C + 2µ̄′C

1

NCT 2r

∑
i∈C

F ′εi +
1

N2
CT

2r

∑
i∈C

∑
i′∈C

ε′iεi′

= µ̄′C
F ′F

T 2r
µ̄C +

2µ̄′C√
NCT r

1√
NCT r

∑
i∈C

f ′εi +
1

NCT 2r−1

1

NC

∑
i∈C

∑
i′∈C

γT (i, i′)

= µ′0
F ′F

T 2r
µ0 +Op

(
1√

NCT r

)
+Op

(
1

NCT 2r−1

)
,
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where the last line follows from (25) and Assumptions MM(i) and (ii). The leading term is Op(1) by
the assumed hypothesis that r is the normalization order of Fµ0. The second expression is

(II) =
1

N2
CT

2r

∑
i∈C

∑
i′∈C

(Fµi + εi)
′Xi (X ′iXi)

−1
X ′i(Fµi′ + εi′)

=
1

N2
CT

∑
i∈C

∑
i′∈C

µ′i
F ′Xi

T r

(
X ′iXi

T

)−1
X ′iF

T r
µi′

+
2

N2
CT

r+0.5

∑
i∈C

∑
i′∈C

µ′i
F ′Xi

T r

(
X ′iXi

T

)−1
X ′iεi′√
T

+
1

N2
CT

2r

∑
i∈C

∑
i′∈C

ε′iXi√
T

(
X ′iXi

T

)−1
X ′iεi′√
T
,

which is Op
(

1
T

)
= op(1) by Assumptions MX(ii)-(iv). Similarly, the third expression is Op

(
1
T

)
= op(1)

by Assumptions MX(i)-(iv). The fourth expression is simplified into

(IV ) =
1

N2
CT

2r

∑
i∈C

∑
i′∈C

(
µ′iF

′1post,j + ε′i1post,j µ′iF
′Xj + ε′iXj

)
×
(

T1j 1′post,jXj

X ′j1post,j X ′jXj

)−1(
1′post,jFµi′ + 1′post,jεi′

X ′jFµi′ +X ′jεi′

)
=
(
µ̄′C

F ′1post,j
T r+0.5 +

∑
i∈C ε

′
i1post,j

NCT r+0.5 µ̄′C
F ′Xj
T r+0.5 +

∑
i∈C ε

′
iXj

NCT r+0.5

)
×

(
T1j

T

1′post,jXj
T

X′j1post,j
T

X′jXj
T

)−1( 1′post,jF

T r+0.5 µ̄C +
∑
i′∈C 1′post,jεi′

NCT r+0.5

X′jF

T r+0.5 µ̄C +
∑
i′∈C X

′
jεi′

NCT r+0.5

)

= µ′0
F ′P[1post,j ,Xj ]F

T 2r
µ0 +Op

(
1√

NCT r

)
,

where the last line follows from (25) and Assumptions E(iii), IE(iv) and MX(vii). The leading term
on the last line is Op (1) uniformly over j ∈ E by Assumptions E(iii), F and MX(i)-(iv). The fifth
and sixth expressions are Op

(
1
T

)
= op(1) by a similar reasoning. The result follows by combining the

above expressions.
Let us prove (b). For fixed j ∈ E, we have

1

T 2r
ū′CM[1post,j ,Xj ]Fµj =

1

NCT 2r

∑
i∈C

(Fµi + εi)
′MXiM[1post,j ,Xj ]Fµj

=
1

NCT 2r

∑
i∈C

(Fµi + εi)
′Fµj

− 1

NCT 2r

∑
i∈C

(Fµi + εi)
′PXiFµj

− 1

NCT 2r

∑
i∈C

(Fµi + εi)
′P[1post,j ,Xj ]Fµj

+
1

NCT 2r

∑
i∈C

(Fµi + εi)
′PXiP[1post,j ,Xj ]Fµj

=: (I)− (II)− (III) + (IV ).
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The first expression is

(I) =
µ̄′CF

′F

T 2r
µj +

1

NCT 2r

∑
i∈C

ε′iFµj

=
µ′0F

′F

T 2r
µj +Op

(
1√

NCT r

)
,

where the last line follows from (25) and Assumptions F(i) and MM(ii). The leading term is Op(1)
by the assumed hypothesis that r is the normalization order of Fµ0.. The second expression is

(II) =
1

NCT 2r

∑
i∈C

(Fµi + εi)
′Xi (X ′iXi)

−1
X ′iFµj

=
1

NCT

∑
i∈C

µ′i

(
F ′Xi

T r

)(
X ′iXi

T

)−1(
X ′iF

T r

)
µj

+
1

NCT r+0.5

∑
i∈C

(
ε′iXi√
T

)(
X ′iXi

T

)−1(
X ′iF

T r

)
µj ,

which is Op
(

1
T

)
= op(1) by Assumptions MX(ii)-(iv). The third expression is

(III) =
1

NCT 2r

∑
i∈C

(
µ′iF

′1post,j + ε′i1post,j µ′iF
′Xj + ε′iXj

)
×
(

T1j 1′post,jXj

X ′j1post,j X ′jXj

)−1(
1′post,jFµj
X ′jFµj

)
=
(
µ̄′C

F ′1post,j
T r+0.5 +

∑
i∈C ε

′
i1post,j

NCT r+0.5 µ̄′C
F ′Xj
T r+0.5 +

∑
i∈C ε

′
iXj

NCT r+0.5

)
×

(
T1j

T

1′post,jXj
T

X′j1post,j
T

X′jXj
T

)−1( 1′post,jF

T r+0.5 µj
X′jF

T r+0.5µj

)

= µ′0
F ′P[1post,j ,Xj ]F

T r+0.5
µj +Op

(
1√

NCT r

)
,

where the last line follows from (25) and Assumptions E(iii), IE(iv) and MX(vii). The leading term on
the last line is Op (1) by the assumed hypothesis and MX(i)-(iv). The fourth expression is Op

(
1
T

)
=

op(1) by a similar reasoning. The result follows by combining the above expressions.
Let us prove (c). We decompose the following term:

1√
NET r

∑
j∈E

ū′CM[1post,j ,Xj ]εj =
1

NC
√
NET r

∑
i∈C

∑
j∈E

(Fµi + εi)
′MXiM[1post,j ,Xj ]εj

=
1

NC
√
NET r

∑
i∈C

∑
j∈E

(Fµi + εi)
′εj

− 1

NC
√
NET r

∑
i∈C

∑
j∈E

(Fµi + εi)
′PXiεj

− 1

NC
√
NET r

∑
i∈C

∑
j∈E

(Fµi + εi)
′P[1post,j ,Xj ]εj

+
1

NC
√
NET r

∑
i∈C

∑
j∈E

(Fµi + εi)
′PXiP[1post,j ,Xj ]εj

=: (I)− (II)− (III) + (IV ).
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The first expression is

(I) =
∑
j∈E

µ̄′CF
′εj√

NET r
+

1

NC
√
NET r

∑
i∈C

∑
j∈E

ε′iεj

=
∑
j∈E

µ̄′CF
′εj√

NET r
+

1

T r−0.5

√
T

NC

1√
NCNE

∑
i∈C

∑
j∈E

γT (i, j)

=
∑
j∈E

µ′0F
′εj√

NET r
+Op

(
1

T r−0.5

√
T

NC

)
,

where the last line is obtained by (25) and Assumptions MM(ii). The second term on the last line
is op(1) when the factor is I(0) and T/NC → 0. The leading term on the last line is Op(1) by the
assumed hypothesis and Assumption MM(ii). The second expression is

(II) =
1

NC
√
NET r

∑
i∈C

∑
j∈E

(Fµi + εi)
′Xi (X ′iXi)

−1
X ′iεj

=
1

NC
√
T

∑
i∈C

µ′i

(
F ′Xi

T r

)(
X ′iXi

T

)−1
∑
j∈E

X ′iεj√
NET


+

1

NCT r

∑
i∈C

ε′iXi√
T

(
X ′iXi

T

)−1
∑
j∈E

X ′iεj√
NET

 ,

which is Op

(
1√
T

)
by Assumptions MX(ii), (iii) and (vii). The third expression is

(III) =
1

NC
√
NET r

∑
i∈C

∑
j∈E

(
µ′iF

′1post,j + ε′i1post,j µ′iF
′Xj + ε′iXj

)
×
(

T1j 1′post,jXj

X ′j1post,j X ′jXj

)−1(
1′post,jεj
X ′jεj

)
=

1√
NE

∑
j∈E

(
µ̄′C

F ′1post,j
T r+0.5 +

∑
i∈C ε

′
i1post,j

NCT r+0.5 µ̄′C
F ′Xj
T r+0.5 +

∑
i∈C ε

′
iXj

NCT r+0.5

)

×

(
T1j

T

1′post,jXj
T

X′j1post,j
T

X′jXj
T

)−1
 1′post,jεj√

T
X′jεj√
T


= µ′0

1√
NET r

∑
j∈E

F ′P[1post,j ,Xj ]εj +Op

(
1

T r
√
NC

)
.

The last line follows from (25) and Assumptions E(iii), IE(iv) and MX(vii). The leading term on the
last line is Op (1) by the assumed hypothesis and Assumptions MX(i)-(iv). The fourth expression (IV )

is Op

(
1√
T

)
= op(1) by a similar reasoning. The result follows by combining the above expressions.

9.8 Proof of Lemma A8

For simplicity, we give the proof for the case with a single factor.
First, note that S1ε := 1√

T
1′post,iεi and SXε := 1√

T
X ′iεi are asymptotically normal by Assumption

Di. To show the asymptotic normality of SFε := 1
T r

∑T
t=1 ftεit, we consider different specifications of

ft. The I(0) factor case is immediate from Assumption Di by setting ft = ut.

43



Suppose ft is an I(1) process generated by ut. More precisely, ft is defined by the recursion
ft = ft−1 + ut. Define the function

UT (a) =
1√
ωuuT

[Ta]∑
s=1

us, a ∈ [0, 1],

where ωuu := limT→∞ V ar(T−1/2
∑T
s=1 us) is finite and strictly positive (Assumption Di(iii)). Simi-

larly, define

WT (a) =
1√
ωεεT

[Ta]∑
s=1

εis, a ∈ [0, 1],

where ωεε := limT→∞ V ar(T−1/2
∑T
s=1 εis) is finite and strictly positive (Assumption Di(iii)). Intro-

duce the process ST (·) defined by

ST (a) =

[Ta]−1∑
t=0

UT

(
t

T

)[
WT

(
t+ 1

T

)
−WT

(
t

T

)]
, a ∈ [0, 1].

By FCLT for weakly dependent processes (DeJong and Davidson (2000)), we have

(UT ,WT , ST ) =⇒ (U ,W,S+λuε) , (26)

where U , W are Wiener processes, S :=
∫
UdW, and λuε := limT→∞ T−1

∑∑
s<tE(usεit).

Now let us simplify the sample mean SFε as follows:

SFε =
1

T

T∑
t=1

ftεit =
1

T

T∑
t=1

ft−1εit +
1

T

T∑
t=1

utεit

=
1

T

T∑
t=1

t−1∑
s=0

usεit +
1

T

T∑
t=1

utεit

=
√
ωuuωεεST (1) +

1

T

T∑
t=1

utεit,

where ST (1) = 1√
ωuuωεεT

∑T−1
t=0

∑t
s=0 usεi,t+1. Since (ut, εit) satisfies Assumption Di, the probability

limit µuε := plimT→∞ T−1
∑T
t=1 utεt exists. By (26), we have

SFε =⇒
∫ 1

0

UdW + λuε + µuε.

Strong exogeneity of ft with respect to εit implies that E(usεit) = 0 for all s, t, so that both λuε and
µuε are zero. Since W is a Gaussian process, we obtain asymptotic normality after conditioning on
F = {ft}t. More precisely, we have

SFε|F
d−→ N (0,ΩFε) , (27)

where ΩFε := limT→∞ V ar(SFε|F ). In the case of I(1) factor, we have ΩFε = ωuuωεε
∫ 1

0
U2(s)ds.

The above argument can be easily extended to the case with an I(r) factor for positive integers r.
Let U1, . . . ,Ur be r independent Wiener processes on [0, 1]. It follows that (27) holds for the sample

mean SFε = T−r
∑T
t=1 ftεit with ΩFε = ωu1u1

· · ·ωururωεε
∫ 1

0

∫ sr
0
· · ·
∫ s2

0
U2

1 (s1)ds1 · · · dsr.
Suppose ft is a deterministic trend with maximal polynomial order p. The sample mean becomes

SFε =
1

T p+1/2

T∑
t=1

ftεt =
1√
T

T∑
t=1

(
ft
T p

)
εt.
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It is easy to check that ftεit/T
p satisfies the conditions in Assumption Di: (i) is immediate as ft is

deterministic, while (ii) and the finiteness of ΩFε in (iii) follow because ft/T
p is uniformly bounded:

there exists M <∞ such that |ft/T p| < M for all t and T . Applying CLT to SFε conditional on F ,
we see that (27) remains valid, with ΩFε > 0 as guaranteed by the stated assumption.

9.9 Proof of Theorem 1

Fix i ∈ E throughout the proof.
(a) The estimator is

δ̂i = (1′post,iM[F̂ ,Xi]
1post,i)

−11′post,iM[F̂ ,Xi]
yi.

From the DGP, we obtain:

δ̂i − ∆̄i =
1′post,iM[F̂ ,Xi]

(Fµi +Xiβi + εi)/T

1′post,iM[F̂ ,Xi]
1post,i/T

=
1′post,iM[F,Xi]εi/T

1′post,iM[F,Xi]1post,i/T
+ op(1),

where the last step is by lemmas A5(a) and (b). The probability limit of the denominator is strictly
positive a.s. by Assumption AIi(i). Let us turn to the numerator. Denote ηit the residuals from the
time series regression of 1{t>T0i) on ft and xit. Since 1{t>T0i), ft, xit and εit as stochastic processes
satisfy the mixing condition in Assumption Di, so do ηit and hence ηitεit. It follows from Assumption
D that the numerator converges in probability as follows: as T →∞,

1

T
1′post,iM[F,Xi]εi =

1

T

T∑
t=1

ηitεit
p−→ E(ηitεit),

but then the limit is zero because E(ηitεit) = E[ηitE(εit|ft, xit)] = 0 by Assumption E(i). The result
follows.

(b) Define STi := 1√
T

1′post,iM[F,Xi]εi and RTi := 1
T 1′post,iM[F,Xi]1post,i. By lemma A5(a) and (b), we

have the following approximation
√
T (δ̂i − ∆̄i) = STi/RTi + op(1) (28)

as NC , T →∞ and
√
NC/T → 0.

Let us first study the denominator RTi. Assumption AIi(i) ensures that RTi
p−→ ρi and that RTi

is strictly positive a.s. for all sufficiently large T .
Now let us turn to the numerator STi. By Assumption Di, the random terms S1ε := 1√

T
1′post,iεi

and SXε := 1√
T
X ′iεi have a limiting normal distribution. Furthermore, conditional on G̃i, we deduce

from (27) that SFε := Υ−1F ′εi is asymptotically normal. This implies that, conditional on G̃i, STi,
being a linear combination of S1ε, SXε and SFε with Op(1) coefficients, has a normal distribution in
the limit (by lemma A8). More precisely, we have

STi|G̃i
d−→ N(0, ξ2

i ) (29)

as T → ∞. The limiting conditional distribution has mean zero (by Assumption ES) and variance
ξ2
i := plimT→∞ ξ2

Ti, which is strictly positive a.s. (by Assumption AIi(ii)).
Now, for a given T , define the conditional variance ξ2

Ti := V ar(STi|G̃i). Assumption AIi(ii)
ensures that ξ2

i := plimT→∞ ξ2
Ti > 0 a.s., which implies that there exists c > 0 uniformly over T such

that ξ2
Ti ≥ c w.p.a.1 as T → ∞. Normalizing STi by the conditional standard deviation, we obtain

ξ−1
Ti STi

∣∣
G̃i

d−→ N(0, 1) as T →∞. As the limiting distribution is independent of G̃i, the conditioning
set may be dropped, yielding

ξ−1
Ti STi

d−→ N(0, 1) (30)

as T →∞. The result immediately follows from (28)-(30) and by noting that σ2
Ti = ξ2

Ti/R
2
Ti.
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9.10 Proof of Theorem 2

(a)(i) Assume homogeneous ITET. From the DGP, we obtain:∣∣∣δ̂mg − ¯̄∆
∣∣∣ =

∣∣∣∣∣ 1

NET

∑
i∈E

1′post,iM[F̂ ,Xi]
(Fµi +Xiβi + εi)

1′post,iM[F̂ ,Xi]
1post,i/T

∣∣∣∣∣
=

∣∣∣∣∣ 1

NET

∑
i∈E

1′post,iM[F̂ ,Xi]
(Fµi +Xiβi + εi)

1′post,iM[F,Xi]1post,i/T

∣∣∣∣∣+ op (1)

≤ 1√
NET

∣∣∣ 1√
NET

∑
i∈E 1′post,iM[F,Xi]εi

∣∣∣
infi 1′post,iM[F,Xi]1post,i/T

+ op (1)

= Op

(
1√
NET

)
,

where the second step follows from lemma A5(a), the third step from lemma A6, and the last step
from Assumptions AImg(i) and (ii). The remainder term has mean zero in the limit by Assumption
E(i).

(a)(ii) After normalization, the simple mean-group estimator is decomposed as follows:√
NET (δ̂mg − ¯̄∆) =

1√
NE

∑
i∈E

STi
RTi

+ op(1) (31)

as NC , T →∞ and T/NC →∞. Denote G̃ := {G̃i}i∈E . The key step is to show that

1√
NE ς̄NE ,T

∑
i∈E

STi
RTi

∣∣∣∣∣
G̃

d−→ N(0, 1) (32)

as NE , T →∞ jointly, where ς̄2NE ,T := V ar[
√
NET (δ̂mg − ¯̄∆)|G̃]. To this end we check the conditions

behind Liapounov’s theorem (Theorem 5.10 of White (2001)):

• For each i ∈ E, E(STi/RTi|G̃) = 0 by Assumption ESS.

• For some p > 2, there exists 0 < C <∞ (uniformly over i ∈ E and T ) such that E(|STi/RTi|p|G̃) ≤
C w.p.a.1 as T → ∞. To show this, we first note from the proof of Theorem 2(a) that
E(|STi|p|G̃) ≤ C̃ < ∞ w.p.a.1 as T → ∞. By Assumption AImg(i), we note that RTi > 0

uniformly over i ∈ E as T → ∞. More precisely, for any fixed i ∈ E and given G̃, there exists
c̃ > 0 such that RTi ≥ c̃ for all sufficiently large T . It follows that E(|STi/RTi|p|G̃) ≤ C̃/c̃p <∞
w.p.a.1 as T →∞. The result is proved by setting C = C̃/c̃p, which is independent of i and T .

• There exists c > 0 uniformly over NE and T such that ς̄2NE ,T ≥ c w.p.a.1 as NE , T → ∞. To

show this, we first compute ς̄2NE ,T as

ς̄2NE ,T =
1

NE

∑
i∈E

ζ̄2
Ti

R2
Ti

+ op(1).

Since RTi ≤ 1 unformly over i, we have

1

NE

∑
i∈E

ζ̄2
Ti

R2
Ti

≥ 1

NE

∑
i∈E

ζ̄2
Ti = ζ̄2

NE ,T ≥ c w.p.a.1 (33)

as NE , T → ∞. Assumption AImg(ii) guarantees that such a lower bound c > 0 exists and is
uniform over NE and T .
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By Liapounov’s theorem, the Lindeberg condition is satisfied, i.e., for all ε > 0, we have

lim
NE ,T→∞

1

NE ς̄2NE ,T

∑
i∈E

E

[(
STi
RTi

)2

1{|STi/RTi|>ε
√
NE ς̄NE,T }

∣∣∣∣∣ G̃
]

= 0 a.s..

Applying the joint CLT result (Theorem 2 of Phillips and Moon (1999)) yields (32).
Since ς̄2NE ,T is strictly positive as observed above, we can thus normalize (31) by its conditional

standard deviation, meanwhile using (32), and obtain√
NET ς̄

−1
NE ,T

(δ̂mg − ¯̄∆)
∣∣∣
G̃

d−→ N(0, 1)

as NE , NC , T →∞ jointly and T/NC →∞. The conditioning set G̃ may be dropped as the limiting
distribution is independent of G̃.

(b)(i) Assume heterogeneous ITET. From the DGP, we obtain:

δ̂mg − ¯̄∆ =
1

NE

∑
i∈E

1′post,iM[F̂ ,Xi]
(1post,iυi + Fµi +Xiβi + εi)

1′post,iM[F̂ ,Xi]
1post,i

=
1

NE

∑
i∈E

υi +
1

NET

∑
i∈E

1′post,iM[F̂ ,Xi]
(Fµi +Xiβi + εi)

1′post,iM[F̂ ,Xi]
1post,i/T

= E(υi|i ∈ E) +Op

(
1√
NET

)
,

where the last step follows from part (a)(i) and Assumption RTmg. Note that E(υi|i ∈ E) = 0 by
construction.

(b)(ii) After normalization, the simple mean-group estimator is decomposed as follows:√
NE(δ̂mg − ¯̄∆) =

1√
NE

∑
i∈E

υi + op(1)

as T,NC →∞ and T
NC
→ 0. By Assumption RTmg(iii), the variance ¯̃ς2NE ,T = V ar(N

−1/2
E

∑
i∈E υi) >

0 for some c > 0 for sufficiently large NE . The conditions in Assumption RTmg enable us to apply
CLT for mixing sequences (Theorem 5.20 of White (2001)), yielding√

NE ¯̃ς−1
NE ,T

(δ̂mg − ¯̄∆)
d−→ N(0, 1)

as T,NE , NC →∞ and T
NC
→ 0.

9.11 Proof of Theorem 3

(a)(i) Assume homogeneous ITET. From the DGP, we obtain:

∣∣∣δ̂pool − ¯̄∆
∣∣∣ ≤ 1√

NET

∣∣∣ 1√
NET

∑
i∈E 1′post,iM[F̂ ,Xi]

(Fµi +Xiβi + εi)
∣∣∣

1
NET

∑
j∈E 1′post,jM[F̂ ,Xj ]

1post,j

=
1√
NET

∣∣∣ 1√
NET

∑
i∈E 1′post,iM[F,Xi]εi

∣∣∣
1

NET

∑
j∈E 1′post,jM[F,Xj ]1post,j

+ op(1)

= Op

(
1√
NET

)
,
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where the second step is by lemmas A5(a) and A6, and the last step follows from Assumptions AIpl(i)
and (ii). The remainder term has mean zero in the limit by Assumption E(i).

(a)(ii) Denote G̃ := {G̃i}i∈E . The key step of the proof involves showing

1√
NE ζ̄NE ,T

∑
i∈E

STi

∣∣∣∣∣
G̃

d−→ N(0, 1) (34)

as NE , T →∞ jointly, where ζ̄2
NE ,T

:= V ar(N
−1/2
E

∑
i∈E STi|G̃). To this end, we proceed by checking

the conditions behind the Liapounov’s theorem (Theorem 5.10 of White (2001)):

• For each i ∈ E, E(STi|G̃) = 0 by Assumption ESS.

• For some p > 2, there exists 0 < C <∞ (uniformly over i ∈ E and T ) such that E(|STi|p|G̃) ≤ C
w.p.a.1 as T → ∞. To show this, we first fix NE and i ∈ E. By a similar argment that leads
to (29) in the proof of Theorem 1 (except that the conditioning set is now set to G̃), we have

STi|G̃
d−→ N(0, ζ2

i ) as T → ∞, where ζ2
i ≥ 0 is the asymptotic conditional variance (may

be zero, in which case the limiting distribution is degenerate). Denote µ
(p)
z = E |Z|p where

Z ∼ N(0, 1). Since all moments exist for the standard normal distribution, for any p > 2 and
c1 > 0, there exists T̃ = T̃ (c1, p, i, NE) such that for all T > T̃ , we have

E(|STi|p|G̃) ≤ ζpi µ
(p)
z + c1 a.s.. (35)

Set ˜̃T = ˜̃T (c1, p,NE) = maxi∈E T̃ (c1, p, i, NE). Then we see that the inequality (35) holds for all

T > ˜̃T . By Assumption D(ii), there exists C2 > 0 such that maxi∈E ζ
2
i ≤ C2ζ

2 for sufficiently
large NE , where ζ2 := plimNE→∞N−1

E

∑
i∈E ζ

2
i is well defined according to Assumption AIpl(ii).

It follows from (35) that

max
i∈E

E(|STi|p|G̃) ≤ max
i∈E

ζpi µ
(p)
z + c1 ≤ Cp/22 ζpµ(p)

z + c1.

This holds for all p > 2. The upper bound is independent of NE and T and is finite (as ζ2 exists

by Assumption AIpl(ii)). The claim holds by setting C = C
p/2
2 ζpµ

(p)
z + c1, which is independent

of i and T .

• There exists c > 0 uniformly over NE and T such that ζ̄2
NE ,T

≥ c w.p.a.1 as NE , T →∞. This
follows immediately from Assumption AIpl(ii).

By Liapounov’s theorem, the Lindeberg condition is satisfied, i.e., for all ε > 0, we have

lim
NE ,T→∞

1

NE ζ̄2
NE ,T

∑
i∈E

E(S2
Ti1{|STi|>ε

√
NE ζ̄NE,T }

|G̃) = 0 a.s..

Applying the joint CLT result in Theorem 2 of Phillips and Moon (1999), we obtain (34).
Denote R̄NE ,T := N−1

E

∑
i∈E RTi. Next, lemmas A5(a) and A6 imply that, as NC , T → ∞ and

T/NC → 0, √
NET (δ̂pl − ¯̄∆) =

1√
NE

∑
i∈E STi

R̄NE ,T
+ op(1)

=
ζ̄NE ,T
R̄NE ,T

1√
NE ζ̄NE ,T

∑
i∈E

STi + op(1). (36)

To normalize (36) we obtain the conditional variance as follows:

σ̄2
NE ,T = V ar

(
1√
NE

∑
i∈E STi

R̄NE ,T

∣∣∣∣ G̃)+ o(1) =
ζ̄2
NE ,T

R̄2
NE ,T

+ o(1).
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For large NE and T , we see that σ̄2
NE ,T

> 0 because ζ̄2
NE ,T

> 0 (Assumption AIpl(ii)) and R̄NE ,T ≤ 1.
After normalization by the conditional standard deviation, it follows from (36) that

√
NET σ̄

−1
NE ,T

(δ̂pl − ¯̄∆)
∣∣∣
G̃

=
1√

NE ζ̄NE ,T

∑
i∈E

STi + op(1)

∣∣∣∣∣
G̃

d−→ N(0, 1)

as NE , NC , T → ∞ jointly and T/NC → ∞. We may drop the conditioning set G̃ as the limiting
distribution is independent of G̃.

(b)(i) Assume heterogeneous ITET. From the DGP, we obtain:

δ̂pool − ¯̄∆ =

∑
i∈E 1′post,iM[F̂ ,Xi]

(Fµi +Xiβi + υi1post,i + εi)∑
i∈E 1′post,iM[F̂ ,Xi]

1post,i

=
1√
NE

1√
NET

∑
i∈E 1′post,iM[F,Xi]1post,iυi

1
NET

∑
i∈E 1′post,iM[F,Xi]1post,i

+
1√
NET

1√
NET

∑
i∈E 1′post,iM[F,Xi]εi

1
NET

∑
i∈E 1′post,iM[F,Xi]1post,i

+ op(1)

=: (I) + (II) + op(1).

From part (a)(i), the second term (II) is of order Op

(
1√
NET

)
, so it remains to study (I). Let

RTi := 1′post,iM[F,Xi]1post,i/T , so that

(I) =
1
NE

∑
i∈E RTiυi

1
NE

∑
i∈E RTi

.

Assumption AIpl(i) implies that there exists some c1 > 0 such that the denominator of (I) is
1
NE

∑
i∈E RTi ≥ c1 w.p.a.1 for all sufficiently large NE and T . Let us turn to the numerator.

The conditional mean E
(

1√
NE

∑
i∈E RTiυi

∣∣∣MSRT

)
= 0 a.s. by Assumption RTpl(i), and the con-

ditional variance V ar
(

1√
NE

∑
i∈E RTiυi

∣∣∣MSRT

)
≤ c2 w.p.a.1 for all large NE and T by Assump-

tion RTpl(iv). This implies that V ar
(

1√
NE

∑
i∈E RTiυi

)
≤ c2 for all large T and NE , and so

1√
NE

∑
i∈E RTiυi is Op(1). It follows that (I) = Op

(
1√
NE

)
, and hence δ̂pool − ¯̄∆ = op (1).

(b)(ii) After normalization, the pooled estimator is decomposed as follows:

√
NE(δ̂pl − ¯̄∆) =

1√
NE

∑
i∈E RTiυi

1
NE

∑
i∈E RTi

+ op(1). (37)

Denote
¯̃
ζ2
NE ,T

:= V ar(N
−1/2
E

∑
i∈E RTiυi|MSRT ). As a core step, we show that the numerator in the

above decomposition is asymptotically normal. To this end we check the following conditions:

• Assumption RTpl(i) implies that E(RTiυi) = 0 for all i ∈ E and all T .

• Assumption RTpl(ii) implies that, for some p ≥ 2, there exists 0 < C < ∞ (uniformly over all
i ∈ E and T ) such that E(|RTiυi|p |MSRT ) ≤ E(|υi|p |MSRT ) ≤ C w.p.a.1 as T → ∞. The
first inequality follows from RTi ≤ 1 uniformly over all T and i.

• Assumption RTpl(iii) implies that, conditional on MSRT , the sequence {RTiυi : i ∈ E} (T
fixed) is mixing with properties as stated in the assumption.

• Assumption RTpl(iv) entails that there exists c > 0 (uniform over all sufficiently large NE and
T ) such that

¯̃
ζ2
NE ,T ≥ c w.p.a.1 (38)

as NE , T →∞.
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By CLT for mixing sequences (Theorem 5.20 of White (2001)), we obtain

1
√
NE

¯̃
ζNE ,T

∑
i∈E

RTiυi

∣∣∣∣∣
MSRT

d−→ N(0, 1) (39)

as NE →∞.
Next, in order to normalize (37) we compute its conditional variance:

¯̃σ2
NE ,T := V ar[

√
NE(δ̂pl − ¯̄∆)|MSRT ] =

¯̃
ζ2
NE ,T /R̄

2
NE ,T + op(1).

We have 0 < ¯̃σ2
NE ,T

<∞ w.p.a.1 as NE , T →∞, which follows from:

• ¯̃σ2
NE ,T

> 0 w.p.a.1 as NE , T →∞, by (38) and that RTi ≤ 1 for all T and i.

• ¯̃σ2
NE ,T

<∞ w.p.a.1 as NE , T →∞, by the fact that R̄NE ,T > 0 w.p.a.1 (Assumption AIpl(i)),
and that

¯̃
ζ2
NE ,T ≤

1

NE

∑
i,j∈E

|E(RTiRTjυiυj |MSRT )|

≤ 1

NE

∑
i,j∈E

|E(υiυj |MSRT )| ≤ C <∞ w.p.a.1..

The second inequality follows from RTi ≤ 1, and the third one from Assumption RTpl(iii), which
implies 1

NE

∑
i,j∈E |Cov(υi, υj |MSRT )| ≤ C for some C <∞ uniformly over NE and T .

We can therefore normalize (37), meanwhile applying (39), and obtain a non-degenerate limiting
distribution: √

NE ¯̃σ−1
NE ,T

(δ̂pl − ¯̄∆)
∣∣∣
MSRT

d−→ N(0, 1)

as NE , NC , T → ∞ jointly and T/NC → ∞. The conditioning set can be dropped as the limiting
distribution is independent of MSRT .

9.12 Proof of Theorem 4

Using the notations in Theorems 2 and 3, we have the relationships:

σ2 = plim
NE ,T→∞

σ̄2
NE ,T , σ̃2 = plim

NE ,T→∞
¯̃σ2
NE ,T ,

ς2 = plim
NE ,T→∞

ς̄2NE ,T , ς̃2 = plim
NE ,T→∞

¯̃ς2NE ,T .

(a) Rewrite the weighted mean-group estimator as

δ̂mg,(ω) − ¯̄∆ =
∑
i∈E

ωi
1′post,iMGiεi

1′post,iMGi1post,i
+ op(1).

Since the errors εit are iid(0, σ2
ε ) by the stated assumption, the conditional variance of δ̂mg,(ω) is:

V := V ar[
√
NET (δ̂mg,(ω) − ¯̄∆)|G̃] = NET

∑
i∈E

ω2
i

σ2
ε

1′post,iMGi1post,i
+ op(1).

The solution to the constrained minimization problem

min
{ωi}

V subject to
∑
i∈E

ωi = 1 (40)

50



is

ω∗i =
1′post,iMGi1post,i∑
i∈E 1′post,iMGi1post,i

,

but then δ̂mg,(ω
∗) = δ̂pl. It follows that V ≥ V ar[

√
NET (δ̂pl − ¯̄∆)|G̃] =: σ̄2

NE ,T
for all NE and T . In

particular, when we choose ωi ≡ N−1
E , δ̂mg,(ω) reduces to δ̂mg, and V = ς̄2NE ,T . By optimality, we have

ς̄2NE ,T ≥ σ̄2
NE ,T

. Letting NE , T → ∞ yields ς2 ≥ σ2, which becomes an equality iff ρi are identical
over i ∈ E.

(b) Under the stated assumption on υi, the following inequality holds a.s.:

V ar[
√
NE(δ̂pl − ¯̄∆)|G̃] =

σ2
υ

(
1
NE

∑
i∈E R

2
Ti

)
(

1
NE

∑
i∈E RTi

)2 ≥ σ
2
υ = V ar[

√
NE(δ̂mg − ¯̄∆)].

In the above we applied Jensen’s inequality, which achieves equality iff RTi are identical over i ∈ E.
Since the inequality holds for all NE and T , the conclusion follows by taking probability limit as
NE , T →∞.

9.13 Proof of Theorem 5

(a) To show consistency, we decompose âmg as follows:

âmg =
1

NE

∑
i∈E

âi =
1

NE

∑
i∈E

ū′CM[1post,j ,Xi]yi

ū′CM[1post,i,Xi]ūC

=
1

NE

∑
i∈E

ū′CM[1post,j ,Xi]Fµi

ū′CM[1post,i,Xi]ūC
+

1

NE

∑
i∈E

ū′CM[1post,j ,Xi]εi

ū′CM[1post,i,Xi]ūC
(41)

=: (I) + (II).

We analyze the two terms as follows. The first term on the last line can be rewritten as

(I) =
1

NE

∑
i∈E

ū′CM[1post,j ,Xi]Fµi/T
2r

ū′CM[1post,i,Xi]ūC/T
2r

=
1

NE

∑
i∈E

µ′0F
′M[1post,j ,Xi]Fµi/T

2r

µ′0F
′M[1post,i,Xi]Fµ0/T 2r

+ op(1).

as NC , T →∞, where the second equality utilizes lemmas A7(a)-(b). The term (II) can be bounded
from above as follows:

|(II)| =

∣∣∣∣∣ 1

NE

∑
i∈E

ū′CM[1post,j ,Xi]εi/T
2r

ū′CM[1post,i,Xi]ūC/T
2r

∣∣∣∣∣
≤

∣∣∣ 1
NE

∑
i∈E ū

′
CM[1post,j ,Xi]εi/T

2r
∣∣∣

infi
∣∣µ′0F ′M[1post,i,Xi]Fµ0/T 2r

∣∣ + op(1)

≤ 1

c

∣∣∣∣∣ 1

NET 2r

∑
i∈E

ū′CM[1post,j ,Xi]εi

∣∣∣∣∣+ op(1)

=
1

c

1√
NET r

∣∣∣∣∣ 1√
NET r

∑
i∈E

µ′0F
′M[1post,j ,Xi]εi

∣∣∣∣∣+ op(1)

= Op

(
1√

NET r

)
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as NE , NC , T →∞ and T/NC → 0, where the second inequality holds for some c > 0 by Assumption
AIα(i), and the last equality follows from lemma A7(c). Substituting into (41) and subtracting one
from both sides, we obtain

âmg − 1 =
1

NE

∑
i∈E

µ′0F
′M[1post,j ,Xi]F (µi − µ0)/T 2r

µ′0F
′M[1post,i,Xi]Fµ0/T 2r

+Op

(
1√

NET r

)
.

Applying Assumption AIα(i) again, there exists c > 0 such that

|âmg − 1| ≤ 1

cNET 2r

∑
i∈E

∣∣µ′0F ′M[1post,j ,Xi]F (µi − µ0)
∣∣+ op(1)

≤ 1

c
‖µ0‖

∥∥∥∥F ′FT 2r

∥∥∥∥ · 1

NE

∑
i∈E
‖µi − µ0‖+ op(1),

but then the dominant term on the last line is op(1) by the finiteness of µ0, by Assumption F(i) and

by Assumption FLM, which implies N−1
E

∑
i∈E µi

p−→ E(µi|i ∈ E) = µ0.

(b) Under the weak parallel trend hypothesis, we have the decomposition as NE , NC , T →∞ jointly
and T/NC →∞: √

NE(âmg − 1) =
1√
NE

∑
i∈E

h′Ti(µi − µ0) + op(1), (42)

where hTi :=
F ′M[1post,i,Xi]

Fµ0

µ′0F
′M[1post,i,Xi]

Fµ0
.

Our goal is to show that

1√
NEϕ̄NE ,T

∑
i∈E

h′Ti(µi − µ0)

∣∣∣∣∣
G̃

d−→ N(0, 1) (43)

as NE , T → ∞ jointly, where ϕ̄2
NE ,T

= V ar[N
−1/2
E

∑
i∈E h

′
Ti(µi − µ0)|G̃]. To this end we check the

conditions for applying Liapounov’s theorem:

• For each i ∈ E, E[h′Ti(µi − µ0)|G̃] = 0 a.s. by Assumption FLM2(i) and that hTi is measurable
with respect to G̃.

• For some p > 2, there exists C < ∞ (uniformly over i ∈ E and independent of T ) such that
E(‖h′Ti(µi − µ0)‖p |G̃) ≤ C w.p.a.1 as T →∞. To see this, we rewrite E(‖h′Ti(µi − µ0)‖p |G̃) =
‖hTi‖pE(‖µi − µ0‖p |G̃). First, we have E(‖µi − µ0‖p |G̃) ≤ C1 < ∞ a.s. by Assumption
FLM2(ii). On the other hand, by Assumption AIα(i), there exists c2 > 0 uniformly over i ∈ E
such that µ′0F

′M[1post,i,Xi]Fµ0/T
2r ≥ c2 > 0 for all sufficiently large T , which implies

‖hTi‖p ≤ c−p2

∥∥F ′M[1post,i,Xi]Fµ0/T
2r
∥∥p ≤ c−p2 ‖µ0‖p

∥∥F ′F/T 2r
∥∥p .

But then
∥∥F ′F/T 2r

∥∥ ≤ ∥∥Υ−1F ′FΥ−1
∥∥ ≤ C3 < ∞ w.p.a.1 as T → ∞ (as

∥∥Υ−1F ′FΥ−1
∥∥ is

bounded in probability by Assumption F(i)), and ‖µ0‖ is bounded (as µ0 = E(µi|i ∈ E) is finite
by hypothesis). The claim then follows by picking C = c−p2 Cp3C1 < ∞. Note that the upper
bound C is independent of i and T .

• By Assumption FLM2(iii), we see that, conditional on G̃, {h′Ti(µi − µ0) : i ∈ E} is a mixing
sequence with mixing coefficient as given in the assumption.
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• There exists c > 0 such that ϕ̄2
NE ,T

≥ c w.p.a.1 as NE , T → ∞. To show this, we observe

that µ′0F
′M[1post,i,Xi]Fµ0/T

2r ≤
∥∥F ′F/T 2r

∥∥ ‖µ0‖2 ≤ C1 <∞ uniformly over i ∈ E w.p.a.1 as
NE , T →∞. On the other hand, Assumption AIα(ii) implies that

E

∥∥∥∥∥N−1/2
E T−r

∑
i∈E

µ′0F
′M[1post,i,Xi]F (µi − µ0)

∥∥∥∥∥
2
∣∣∣∣∣∣ G̃
 ≥ c2

w.p.a.1 as NE , T →∞. The claim holds by setting c = C−1
1 c2 > 0.

By Liapounov’s theorem, the Lindeberg condition is satisfied, i.e., for all ε > 0, we have

lim
NE ,T→∞

1

NEϕ̄2
NE ,T

∑
i∈E

E
[
|h′i(µi − µ0)|2 1{|h′i(µi−µ0)|>ε√NEϕ̄NE,T }

∣∣∣ G̃] = 0 a.s..

Applying the joint CLT result (Theorem 2 of Phillips and Moon (1999)) yields (43).
Finally, applying (43) to the decomposition (42) and normalizing by ϕ̄NE ,T , we obtain√

NEϕ̄
−1
NE ,T

(âmg − 1)
∣∣∣
G̃

d−→ N(0, 1)

as NE , NC , T → ∞ and T/NC → ∞. The conditioning set G̃ may be dropped as the limiting
distribution is independent of G̃.

9.14 Proof of Proposition S1

Condition (2) implies9 that 1post is not spanned by the columns of F , i.e.,

1post 6= Fv for all v 6= 0. (44)

Furthermore, condition (2) implies that G = G0 + G1 is of full column rank (G1 is the same as G

except that the first T0 rows set to zero), so that G′G
T is invertible and positive definite for any finite

T . It follows that there exists Ψ :=
(
G′G
T

)−1/2

exists such that ΨΨ =
(
G′G
T

)−1

.

Now, decompose 1′postPG1post/T as follows:

1′postPG1post

T
=

(
1′postG

T

)(
G′G

T

)−1(
G′1post
T

)
. (45)

Applying Cauchy-Schwarz inequality, we have

1′postG

T
<

(
1′post1post

T

)1/2(
G′G

T

)1/2

=

(
T1

T

)1/2

Ψ−1.

The inequality is strict because of (44).10 Substituting into the decomposition (45), we obtain

1′postPG1post

T
<

(
T1

T

)1/2

Ψ−1(ΨΨ)Ψ−1

(
T1

T

)1/2

=
T1

T
,

which implies condition (3). The proof is completed.

9Suppose 1post is in the range space of F , i.e., there exists a vector v such that 1post = Fv. Then, there is

multicollinearity: 1′postPF 1post = 1′post1post = T1 and δ̂pcdidi is undefined. Importantly, 1post = Fv implies 0T0×1 =

F0v, which implies that v′F ′0F0v. This implies that F ′0F0 does not have full rank and the factor loading estimate in
GSC estimator is undefined as well.

10Equality is achieved iff 1post is proportional to some linear combinations of the columns of F .
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9.15 Proof of Proposition S2

Consider the decomposition

G′G

T
=
G′0G0

T
+
G′1G1

T
=
T0

T

G′0G0

T0
+
T1

T

G′1G1

T1
. (46)

Both terms on the right are positive semidefinite in the limit. By (4) and κ < 1, the first term on the

right is positive definite in the limit, and hence Σ := plimT→∞
G′G
T exists and is invertible.

Next, we study
1′postPG1post

T
=

1′postG

T

(
G′G

T

)−1
G′1post
T

.

By Cauchy-Schwarz inequality, the term
G′1post
T is bounded from above:

∥∥∥G′1postT

∥∥∥ ≤ (T1

T

)1/2 ∥∥∥G′GT ∥∥∥1/2

.

Taking probability limits both sides, we have

plim
T1,T→∞

∥∥∥∥G′1postT

∥∥∥∥ ≤ κ1/2 ‖Σ‖1/2

Note that condition (4) implies that 1post is not in the column span of F in the limit as T, T1 → ∞.
Coupled with the assumption κ > 0, it follows that the weak inequality is a strict one:

plim
T1,T→∞

∥∥∥∥G′1postT

∥∥∥∥ < κ1/2 ‖Σ‖1/2 .

We thus have

plim
T1,T→∞

1′postPG1post

T
= plim
T1,T→∞

∥∥∥∥1′postG

T

∥∥∥∥ plim
T→∞

∥∥∥∥G′GT
∥∥∥∥−1

plim
T1,T→∞

∥∥∥∥G′1postT

∥∥∥∥
< κ1/2 ‖Σ‖1/2 Σ−1 ‖Σ‖1/2 κ1/2

= κ,

which implies that

plim
T1,T→∞

1′postMG1post

T
= κ− plim

T1,T→∞

1′postPG1post

T
> 0.

The proof is completed.

9.16 Proof of Lemma S1

First, let us decompose the estimator δ̂gscit . For each i ∈ E, we have

δ̂gscit −∆it = yit − β̂0 − λ̂′if̂t −∆it

= (β0 − β̂0) + (λ′ift − λ̂′if̂t) + ε̃it

= (β0 − β̂0) + (λ′iH
′−1H ′ft − λ̂′if̂t) + ε̃it

= (β0 − β̂0)− λ̂′i(f̂t −H ′ft)− (λ̂i −H−1λi)
′H ′ft + ε̃it.

where H is an `× ` invertible rotation matrix.
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Next, let us evaluate the estimation error of δ̂gsci . Recall that the target parameter is ∆̄i. Since
∆it = ∆̄i + ∆̃it and εit = ε̃it + ∆̃it, we obtain

δ̂gsci − ∆̄i

=
1

T1

∑
t>T0

(δ̂gscit −∆it) +
1

T1

∑
t>T0

∆̃it

= (β0 − β̂0)− λ̂′i

[
1

T1

∑
t>T0

(f̂t −H ′ft)

]
− (λ̂i −H−1λi)

′H ′

(
1

T1

∑
t>T0

ft

)
+

1

T1

∑
t>T0

(ε̃it + ∆̃it)

= (β0 − β̂0)− λ̂′i

[
1

T1

∑
t>T0

(f̂t −H ′ft)

]
− (λ̂i −H−1λi)

′H ′

(
1

T1

∑
t>T0

ft

)
+

1

T1

∑
t>T0

εit. (47)

First note that β0 − β̂0 is Op

(
1√
T

)
. To proceed, let us evaluate the estimation error of λ̂i. From the

way the factor loadings are constructed, we see that the factor loading estimator λ̂i is given by

λ̂i =

(
T0∑
s=1

f̂sf̂
′
s

)−1 T0∑
s=1

f̂sy
0
is.

From the DGP of y0
is, and the observation that ∆̃it = 0 for t ≤ T0, we can decompose it as follows:

λ̂i =

(
T0∑
s=1

f̂sf̂
′
s

)−1 T0∑
s=1

f̂sf
′
sλi +

(
T0∑
s=1

f̂sf̂
′
s

)−1 T0∑
s=1

f̂sεis.

=

(
T0∑
s=1

f̂sf̂
′
s

)−1 T0∑
s=1

f̂s(f
′
sH)(H−1λi) +

(
T0∑
s=1

f̂sf̂
′
s

)−1 T0∑
s=1

f̂sεis

= H−1λi −

(
T0∑
s=1

f̂sf̂
′
s

)−1 T0∑
s=1

f̂s(f̂
′
s − f ′sH)(H−1λi) +

(
T0∑
s=1

f̂sf̂
′
s

)−1 T0∑
s=1

f̂sεis,

The estimation error of λ̂i is thus given by

λ̂i −H−1λi = −

(
T0∑
s=1

f̂sf̂
′
s

)−1 T0∑
s=1

f̂s(f̂
′
s − f ′sH)(H−1λi) +

(
T0∑
s=1

f̂sf̂
′
s

)−1 T0∑
s=1

f̂sεis.

We have the uniform bound result due to Bai (2003, Proposition 2):

max
t

∥∥∥f̂t −H ′ft∥∥∥ = Op

(
1√
T

)
+Op

(√
T

NC

)
. (48)

Using (48), we obtain a uniform bound (over i) on the bias of λ̂i:

‖biasλi‖ =

∥∥∥∥∥∥
(

T0∑
s=1

f̂sf̂
′
s

)−1 T0∑
s=1

f̂s(f̂
′
s − f ′sH)(H−1λi)

∥∥∥∥∥∥ ≤ Op
(

1√
T

)
+Op

(√
T

NC

)
.

Provided that T/NC → 0 and T →∞, we have

λ̂i −H−1λi =

(
T0∑
u=1

f̂uf̂
′
u

)−1 T0∑
s=1

f̂sεis,
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and hence

1

NE

∑
i∈E

(λ̂i −H−1λi) =

(
T0∑
u=1

f̂uf̂
′
u

)−1

1

NE

∑
i∈E

T0∑
s=1

f̂ ′sεis.

Substituting back into (47), we have

δ̂gsci − ∆̄i

= − λ̂′i

[
1

T1

∑
t>T0

(f̂t −H ′ft)

]
−

(
T0∑
s=1

εisf̂
′
s

)(
T0∑
s=1

f̂sf̂
′
s

)−1

H ′

(
1

T1

∑
t>T0

ft

)

+
1

T1

∑
t>T0

εit +Op

(
1√
T

)
+Op

(√
T

NC

)

= −

(
T0∑
s=1

εisf̂
′
s

)(
T0∑
s=1

f̂sf̂
′
s

)−1

H ′

(
1

T1

∑
t>T0

ft

)
+

1

T1

∑
t>T0

εit +Op

(
1√
T

)
+Op

(√
T

NC

)
,

where we use (48) in the last step.
We may express the last line in matrix form:

δ̂gsci − ∆̄i =
1

T1
1′postεi −

1

T1
1′postFH(F̂ ′0F̂0)−1F̂ ′0εi +Op

(
1√
T

)
+Op

(√
T

NC

)

=
1

T1
1′postεi −

1

T1
1′postF (F ′0F0)−1F ′0εi +Op

(
1√
T

)
+Op

(√
T

NC

)
.

where we use (48) again in the last step. The result follows immediately.

9.17 Proof of Proposition S3

Since E(ft) = 0, it follows that
(1− κ)b0 + κb1 = 0. (49)

Moreover, the assumptions imply that

σ2
f := V ar(ft) = E[V ar(ft|1{t > T0})] + V ar[E(ft|1{t > T0})]

= vf (1− κ) + vfκ+ b20(1− κ) + b21κ− [b0(1− κ) + b1κ]2

= vf + b20(1− κ) + b21κ (by (49)). (50)

Define m(k) := 1
T

∑
t f

k
t , m

(k)
pre := 1

T

∑
t≤T0

fkt , and m
(k)
post := 1

T

∑
t>T0

fkt . By LLN, we have

m(1) → 0, m
(1)
pre → (1−κ)b0, m

(1)
post → κb1, m(2) → σ2

f , m
(2)
pre → (1−κ)(vf +b20) and m

(2)
post → κ(vf +b21)

as T, T0, T1 →∞. Denote A :=
b21
vf

and B :=
b21
σ2
f

.

Let G be a T × 2 matrix with tth row given by [1, ft], and G0 be the same as G except that all the
entries in the last T1 rows are set to zero. Now let us compute
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1′postG(G′0G0)−1G′1post

T1
=

1

T1

T 2
1 (
∑
t≤T0

f2
t )− 2T1(

∑
t≤T0

ft)(
∑
t>T0

ft) + T0(
∑
t>T0

ft)
2

T0(
∑
t≤T0

f2
t )− (

∑
t≤T0

ft)2

=
T1

T m
(2)
pre − 2m

(1)
pre ·m(1)

post + T0

T1
(m

(1)
post)

2

T0

T m
(2)
pre − (m

(1)
pre)2

→
κ(1− κ)(vf + b20)− 2κ(1− κ)b0b1 + 1−κ

κ κ2b21
(1− κ)2(vf + b20)− (1− κ)2b20

=
κ

1− κ

vf +
(

κ
1−κ

)2

b21 + 2
(

κ
1−κ

)
b21 + b21

vf

=
κ

1− κ

[
1 +

(
κ

1− κ
+ 1

)2

A

]
,

where the second-to-last equality is obtained by using (49). Next we compute

1′postPG1post

T1
=

1′postG(G′G)−1G′1post

T1

=
1

T1

T 2
1 (
∑
t f

2
t )− 2T1(

∑
t ft)(

∑
t>T0

ft) + T (
∑
t>T0

ft)
2

T (
∑
t f

2
t )− (

∑
t ft)

2

=
T1

T m
(2) − 2m(1) ·m(1)

post + T
T1

(m
(1)
post)

2

m(2) − (m(1))2

→
κσ2

f + 1
κκ

2b21
σ2
f

= κ (1 +B) = κ

1 +
A

1 +
(
κ2

1−κ

)
A+ κA

 , (51)

where the last line is obtained by (52), which is based on (50):

B =
A

1 +
(
κ2

1−κ

)
A+ κA

⇐⇒ A =
B

1−
(
κ2

1−κ

)
B − κB

. (52)

Denote θ := κ
1−κ . The asymptotic variance of GSC estimator is:

plimV gsc = plimσ2
ε

T

T1

(
1 +

1′postG(G′0G0)−1G′1post

T1

)

= σ2
ε

1

κ

(
1 + θ

[
1 + (θ + 1)

2
A
])
. (53)

The asymptotic variance of PCDID estimator is:

plimV pcdid = plim
Tσ2

ε

1′postMG1post
= plim

T

T1

σ2
ε

1− 1′postPG1post/T1

= σ2
ε

1

κ

1

1− κ
(

1 + A
1+κθA+κA

) . (54)

When b1 = b0 = 0, we have A = B = 0 and therefore plimV gsc = plimV pcdid = σ2
ε

1
κ(1−κ) .

57



When b1 6= 0 (b0 6= 0), we have plimV gsc > plimV pcdid. To deduce this, observe that θ > 0 (by
0 < κ < 1) and A > 0 (by b21 > 0 and vf > 0).11 It follows by simple algebra that

plimV gsc − plimV pcdid = σ2
ε

1

κ

(1 + θ
[
1 + (θ + 1)

2
A
])
− 1

1− κ
(

1 + A
1+κθA+κA

)


= σ2
ε

1

κ

1 + θ + θ(θ + 1)2A− 1

1− κ
(

1+(κθ+κ+1)A
1+κθA+κA

)


= σ2
ε

1

κ

[
1 + θ + θ(θ + 1)2A− 1 + κθA+ κA

1− κ

]
= σ2

ε

1

κ

[1 + θ + θ(θ + 1)2A](1− κ)− (1 + κθA+ κA)

1− κ

= σ2
ε

1

κ

θ(θ + 1)2A(1− κ)− (θ + 1)κA

1− κ

= σ2
ε

1

κ

(1− κ)θ3 + 2(1− κ)θ2 − κθ
1− κ

A

= σ2
ε

1

κ
θ2(θ + 1)A > 0, (55)

where the third, the fifth and the sixth steps are obtained from θ − θκ− κ = 0 (as θ = κ
1−κ ).

9.18 Proof of Proposition A

There are `+1 unknowns αj , v1j , v2j , . . . , v`j to be solved for. Condition (i) implies v1j = −
∑`
s=2 v2j ,

thus reducing the number of unknowns to `. Now we may express (10) as a system of equations:
µ1j

µ2j

...
µ`j

 =


E(µ1i|i ∈ C) −1 · · · −1
E(µ2i|i ∈ C) 1 O

...
. . .

E(µ`i|i ∈ C) O 1




αj
v2j

...
v`j

 .

Let M be the `× ` coefficient matrix with column vectors denoted by m1, . . . ,m`. It remains to show
that restrictions (i) and (ii) hold iff M is invertible.

(⇒): Restriction (ii) implies that vj and E(µi|i ∈ C) are linearly independent. Restriction (i)
implies that vj is in the linear space spanned bym2, . . . ,m`, which are linearly independent `×1 vectors
and have zero column sum. It follows that m2, . . . ,m` and E(µi|i ∈ C) are linearly independent, and
hence M is invertible.

(⇐): Suppose the contrary that (i) holds but (ii) is violated, i.e., there exists γj 6= 0 such that
vj = γjE(µi|i ∈ C). It follows that the elements of E(µi|i ∈ C) = (1/γj)vj sum to zero. Since
E(µi|i ∈ C) has zero column sum, it is expressible as a linear combination of m2, . . . ,m`, and hence
M is of rank `− 1 and is singular.

9.19 Proof of Proposition H

(a) We first note that, under the given DGP, the 2wfe estimator is equivalent to the simple DID
estimator, given by

δ̂2wfe :=
1

NE

∑
i∈E

âi −
1

NC

∑
i∈C

âi,

11Moreover, 0 < B < A because b21 > 0 and σ2
f > vf ; by equation (52) and A,B > 0, we must have

(
κ2

1−κ

)
B+κB < 1,

which implies κ (1 +B) < 1.
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where âi be the OLS estimators of the simple regression yi = b0i1 + ai1post + ei. We may now
decompose the 2wfe estimator as follows:

âi = (1′postM11post)
−11′postM1yi

= (1′postM11post)
−11′postM1(ςi1 + f + ¯̄∆1post1{i∈E} + εi)

= ¯̄∆1{i∈E} + (1′postM11post)
−11′postM1(f + εi). (56)

Define ε̄E = 1
NE

∑
i∈E εi, ε̄C = 1

NC

∑
i∈C εi. The 2wfe estimator takes the following decomposition:

δ̂2wfe − ¯̄∆ = (1′postM11post)
−11′postM1(ε̄E − ε̄C)

= (ε̄E,post − ε̄C,post)− (ε̄E,pre − ε̄C,pre).

Since V ar(εi) = σ2
ε I, where I is the T × T identity matrix, we have

V ar(ε̄E − ε̄C) = E[(ε̄E − ε̄C)(ε̄E − ε̄C)′]

= E(ε̄E ε̄
′
E) + E(ε̄C ε̄

′
C)

= σ2
ε

(
1

NE
+

1

NC

)
I.

The variance of δ̂2wfe is given by

V ar(δ̂2wfe) = E[(δ̂2wfe − ¯̄∆)(δ̂2wfe − ¯̄∆)′]

= (1′postM11post)
−11′postM1V ar(ε̄E − ε̄C)M11post(1

′
postM11post)

−1

= σ2
ε

(
1

NE
+

1

NC

)
(1′postM11post)

−1

= σ2
ε

(
1

NE
+

1

NC

)(
1

T0
+

1

T1

)
.

(b) The DGP for the control panel in matrix form is given by yC = µCf
′+εC . Define the control-group

averages ȳC := y′C1/NC (the factor proxy) and µ̄C := µ′C1/NC . We rescale the factor loading and

factor by setting µ̃C := µC/µ̄C and f̃ = µ̄Cf . The DGP now becomes yC = µCf
′ + εC = µ̃C f̃

′ + εC .
Note that µ̃′C1/NC = 1. It follows that

ȳC = fµ̄C + ε̄C = f̃ + ε̄C ,

so that we can solve for the rescaled factor f̃ :

f̃ = ȳC − ε̄C .

Using the factor proxy ȳC , the PCDID estimator δ̂i is given as follows: for i ∈ E,

δ̂i = (1′postM[1,ȳC ]1post)
−11′postM[1,ȳC ]yi

= (1′postM[1,ȳC ]1post)
−11′postM[1,ȳC ](ςi1 + f̃ + δi1post + εi)

= (1′postM[1,ȳC ]1post)
−11′postM[1,ȳC ](ςi1 + ȳC − ε̄C + ¯̄∆1post + εi)

= ¯̄∆ + (1′postM[1,ȳC ]1post)
−11′postM[1,ȳC ](εi − ε̄C).

It follows that the simple mean-group estimator has the decomposition:

δ̂mg = ¯̄∆ + (1′postM[1,ȳC ]1post)
−11′postM[1,ȳC ](ε̄E − ε̄C).
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The variance of δ̂mg is given by

V ar(δ̂mg) = E[(δ̂mg − ¯̄∆)(δ̂mg − ¯̄∆)′]

= (1′postM[1,ȳC ]1post)
−11′postM[1,ȳC ]V ar(ε̄E − ε̄C)M[1,ȳC ]1post(1

′
postM[1,ȳC ]1post)

−1

= σ2
ε

(
1

NE
+

1

NC

)
(1′postM[1,ȳC ]1post)

−1.

Note that V ar(ε̄C) = V ar(ε′C1/NC) = σ2
ε /NC .

(c) It suffices to compute the covariance between δ̂mg and δ̂2wfe. Since M[1,ȳC ]M1 = M[1,ȳC ], we
obtain

Cov(δ̂mg, δ̂2wfe) = E[(δ̂mg − ¯̄∆)(δ̂2wfe − ¯̄∆)′]

= (1′postM[1,ȳC ]1post)
−11′postM[1,ȳC ]V ar(ε̄E − ε̄C)M11post(1

′
postM11post)

−1

= σ2
ε

(
1

NE
+

1

NC

)
(1′postM11post)

−1

= V ar(δ̂2wfe).

As a result,

V ar(δ̂mg − δ̂2wfe) = V ar(δ̂mg) + V ar(δ̂2wfe)− 2Cov(δ̂mg, δ̂2wfe)

= V ar(δ̂mg)− V ar(δ̂2wfe).
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