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Abstract

We develop a theory of optimal collusive intertemporal price dispersion. Dispersion

clouds consumer price awareness, encouraging firms to coordinate on dispersed prices.

Our theory generates a collusive rationale for price cycles and sales. Patient firms can

support optimal collusion at the monopoly price. For less patient firms, monopoly prices

must be punctuated with fleeting sales. The most robust structure involves asymmetric

price cycles resembling Edgeworth cycles. Low consumer attentiveness enhances the

effectiveness of price dispersion by reducing the payoff to deviations involving price re-

ductions. However, for sufficiently low attentiveness, price rises are also a concern, lim-

iting the power of obfuscation.

JEL Classification: L13, D83

Keywords: Collusion, obfuscation, price dispersion.

*We are grateful to Murali Agastya, Jim Albrecht, Michelle Bergemann, Sergey Izmalkov, Eric Maskin, Mark

Melatos, Ariel Pakes, David Pearce, Debraj Rey, John Romalis, Abhijit Sengupta, Kunal Sengupta, Andy Skrzy-

pacz, Juuso Välimäki, Jeroen van de Ven, Andrew Wait, and anonymous referees for useful comments, sugges-

tions and encouragement. We thank attentive seminar audiences at the University of Bielefeld, the Australian

National University, the University of New South Wales, the University of Sydney, the University of Queensland,

Georgetown University, the Stern School of Business at NYU, Harvard University, Boston College, New York

University, the Free University of Amsterdam, the University of Amsterdam, the University of Mannheim, the

University of Groningen, and the New Economic School.
†School of Economics, Merewether Building H04, University of Sydney, NSW 2006, Australia, e-mail: nico-

las.deroos@sydney.edu.au, phone: +61 (2) 9351 7079, fax: +61 (2) 9351 4341.
‡School of Economics, Merewether Building H04, University of Sydney, NSW 2006, Australia, e-mail:

vladimir.smirnov@sydney.edu.au.

1



The nagging presence of competitors is an inescapable fact of life for most firms. To

understand pricing behaviour, we must therefore consider the implications of repeated in-

teraction. The theory of repeated games offers some insights; notably, repeated play opens

up opportunities for punishments and rewards, permitting higher prices to be supported.

However, non-trivial price dynamics are also a common outcome of repeated play. For ex-

ample, using scanner data covering 1.4 million goods in 54 geographic markets, Kaplan and

Menzio (2015) find that close to half the variation in prices is intertemporal.1 An even larger

role is typically played by intertemporal price variation in retail gasoline markets subject to

regular price cycles known as Edgeworth cycles.2

The rationale for these pricing patterns is not obvious in a repeated game setting. If the

threat of punishment is available, why don’t firms employ it to support the highest feasible

fixed price? Complicated pricing patterns may be both more difficult to coordinate on and

less profitable. In this paper we develop a theory of coordinated price dispersion that pro-

vides an intuitive explanation. Our theory rationalises commonly observed pricing patterns

including sales, price cycles, and fixed prices. Our starting point is the consumer.

Pretend for a moment that you are a consumer. Think of a few products that may be in

your shopping basket; for example, milk, coffee, petrol, breakfast cereals. What is the cur-

rent price of these items at your local store? What is the current price at other stores? Would

you recognise a bargain? Your answers to these questions may vary by product; frequency of

purchase and prominence of display are obvious factors. We conjecture that the complexity

of pricing patterns also plays a role. A consumer who routinely observes a single price may

become accustomed to that price and recognise immediately a departure from this simple

pricing pattern. By contrast, complicated price paths are more difficult to absorb, making

price changes less obvious.3 If consumer price perceptions are influenced by pricing pat-

terns in this manner, they may be ripe for manipulation by firms. We consider the optimal

1Kaplan and Menzio (2015) use the Kilts-Nielsen Consumer Panel Dataset, which records the shopping

behaviour of approximately 50,000 consumers over the period 2004-2009, and contains over 300 million trans-

actions. The authors decompose the variation in prices into that due to variation across stores, across products

at a given store, and across transactions over time for a specific product-store pair, finding that intertemporal

variation in prices accounts for close to half the variation.
2For example, in the Perth gasoline market studied by Wang (2009) and de Roos and Katayama (2013), a

similar decomposition reveals that in 2003, approximately 54% of the variation in retail margins is accounted

for by intertemporal variation in margins at a given retail station. If we condition only on stations participating

in the cycle (the majority of stations), this rises to around 97%. Further details are available on request.
3This line of reasoning is supported by the concepts of rehearsal and associativeness that Mullainathan

(2002) draws from the literature on memory research. Taken together, these two principles may imply a con-

stant price would become a well established reference for comparison, while an intertemporally dispersed

price path might be less amenable to these memory processes.
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pricing problem of a cartel faced with this prospect.

In our model, each consumer accumulates pricing information about a specific product

both when she is shopping for the product and when she is not. While she is not actively en-

gaged in search, information gathering is a background process subject to limited memory.

We incorporate bounded recall and finite memory in a manner reminiscent of the sampling

process used in a substantial literature on adaptive play (Young, 1993). Each consumer re-

calls only a subset of the current price vector, with prices that are unusually low more sus-

ceptible to recall. In our base specification, she recalls all prices below a threshold y , while

prices above y are recalled with probability less than one. The threshold is based on the

lowest price observed by consumers in the previous m periods. When the need to purchase

becomes her focus, she engages in a process of costly sequential search with this partial price

information as a starting point.

Firms compete in the market for a homogeneous product by simultaneously setting price

over an infinite horizon. The immediate problem for any cartel is to maintain incentives for

internal discipline. In our model, the price path chosen by the cartel determines the prices

experienced by consumers and thus the incentive to deviate. If prices are intertemporally

dispersed and consumers are accustomed to seeing prices over a wide interval, then most

prices will be above y and demand may not be responsive to price differences. By contrast,

if prices are fixed over time, even modest price cuts might trigger consumer attention. Price

dispersion then plays a useful role for the cartel as an obfuscation device. With dispersion,

consumers are less responsive to price changes, the payoff to deviating from cartel policies

is reduced, and the cartel’s internal incentive constraints are relaxed. The optimal dynamic

price path for the cartel then emerges as a trade off between profitability and obfuscation.

In addition to cartel manipulation, innate market characteristics influence a consumer’s

tendency to perceive and recall price information. We parameterise our model by the level of

consumer attentiveness, ranging from perfect awareness to complete inattentiveness. At one

extreme, our specification approaches the Bertrand model and obfuscation is futile. Con-

sumers are aware of all prices and an undercutting firm captures the whole market inde-

pendent of the extent of intertemporal price dispersion. At the other extreme, if consumers

are not aware of any specific prices when search begins, our model replicates the Diamond

(1971) paradox: if all firms were to set a price below the monopoly price in a single-period

version of our model, then there would be an incentive to raise price.

Let us briefly preview some of our main findings. Our most fundamental result is that

symmetric collusive equilibria exist for a greater range of discount factors with an intertem-

porally dispersed price path than with a fixed price. The optimal price path reflects a com-

promise between profitability and the obfuscation properties of the path. Every sequence
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begins with the monopoly price and then follows a weakly decreasing trajectory; each subse-

quent period involves either monopoly pricing or a strict price reduction. If cartel members

are sufficiently patient, setting a fixed price at the monopoly level is optimal. However, for

lower values of the discount factor, intertemporally dispersed prices are required to dampen

the market share benefits for potential deviators.

Two specific equilibrium outcomes of our model are closely related to commonly ob-

served pricing dynamics. First, for a range of parameter values, we observe sales: pro-

longed periods of monopoly pricing interspersed with large temporary price reductions.

One-period sales present the cheapest means of delivering price dispersion. If firms are

less patient, the length and depth of sales must increase in order to satisfy the incentive

constraints of the cartel. Second, sales of maximum length and depth afford the greatest

protection against deviation. These pricing paths resemble asymmetric price cycles known

as Edgeworth cycles.

In markets with alert consumers the benefits of price dispersion for cartel sustainabil-

ity are minimal. As attentiveness is reduced, obfuscation becomes more effective and cartel

sustainability is improved. However, there is a limit to this process. For low levels of atten-

tiveness and high search costs, the primary threat to cartel stability is not the temptation to

undercut, but rather the incentive to raise prices above the levels dictated by the cartel. If

consumers pay little heed to prices, then the penalty for doing so may be minimal. Conse-

quently, if attentiveness levels are sufficiently low, the relationship between cartel sustain-

ability and attentiveness may be reversed: as attentiveness is reduced, upward price devia-

tions become more attractive and the cartel becomes harder to sustain.

The idea that consumers are imperfectly informed about prices is not new. For exam-

ple, a substantial literature on consumer search demonstrates that imperfect information

can have dramatic consequences for pricing.4 If consumers are imperfectly informed, this

disturbs a fundamental pricing trade-off faced by firms: prices balance the lure of extracting

rents from consumers with the incentive to wrest consumers from competitors and defend

against rival behaviour. If consumers are poorly informed, the balance may be tilted towards

rent extraction and higher prices. Our departure is to allow a consumer’s price awareness to

be coloured by her experience with prices. Unusual or attractive prices, relative to experi-

4See Baye et al. (2006) for a recent survey. Note that the interplay between collusion and price dispersion

in our model is richer than in a typical consumer search setting. Contemporaneous price dispersion is poten-

tially harmful for a cartel because it raises the benefits of search, improving consumer price awareness and

making the cartel’s incentive constraints more difficult to satisfy. This mechanism also applies in our theory.

In addition, intertemporal price dispersion reduces consumer price awareness, relaxing the cartel’s incentive

constraints.
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ence, are more likely to trigger consumer attention. Firms can then collectively adjust the

pricing trade-off by influencing the history of prices consumers experience.

In the theory of rational inattention (Sims, 1998, 2003), consumers have limited informa-

tion processing capacity, and optimally deploy this capacity.5 For example, in the discrete

choice problem of Matějka and McKay (2015), consumers decide how to sharpen their prior

beliefs about the value of n alternatives based on the costs of obtaining information. The

information acquisition strategy is specific to the current decision problem. Our model of-

fers an alternative interpretation in which the attention process stems from the accumulated

experience of consumers over time and across markets. Nevertheless, the advantage of our

simple threshold rule in the immediate problem is clear. Unusually low prices are of the

greatest benefit in costly sequential search, and it may be advantageous to apportion costly

memory resources to these prices. In extensions to our main model (Section 4.1), we show

that our conclusions are not sensitive to our specification of the attention process.

Our work has antecedents in Range Theory (Volkmann, 1951), which suggests that the

attractiveness of a specific market price is relative to the lower and upper bound of price

expectations consumers form through experience.6 Similarly, consumers in our model are

more likely to retain the price information of a specific vendor if the offered price is unusual

relative to their experience.

We contribute to a growing literature on obfuscation in oligopoly. Obfuscation operates

by hampering consumer efforts to directly compare competing products. For example, ob-

fuscation could take the form of additional noise in the price process (Spiegler, 2006), the

choice of price formats with different comparability properties (Piccione and Spiegler, 2012;

Chioveanu and Zhou, 2013), the shrouding or emphasis of product attributes (Gabaix and

Laibson, 2006; Bordalo et al., 2013), or attempts to raise the cost of consumer search (Ellison

and Wolitzky, 2012; Wilson, 2010).7 Our principal conceptual departure from this literature

5Recent examples suggest inattention can be extreme. Clerides and Courty (2017) document that some

consumers do not make basic price comparisons even when the information is right before them. Monroe

and Lee (1999) argue that consumers often do not remember specific prices for products they have purchased,

but they nevertheless have an intuitive understanding about prices. Mazar et al. (2014) present experimental

evidence suggesting revealed preferences depend on price experience unless subjects are explicitly prompted

to evaluate their decision making.
6Range Theory has some recent observational support. For example, Janiszewski and Lichtenstein (1999)

present experimental evidence that variation in the width of the price range affects price-attractiveness judg-

ments, independent of changes to a consumer’s reference price. Relatedly, Moon and Voss (2009) find that a

model based on range theory provides additional explanatory power in the presence of reference price theories

in a panel data setting.
7Our search mechanism is most closely related to the setting considered by Spiegler (2006), in which con-

sumers adopt a simple search heuristic: they sample the price of each firm, identify the cheapest offering, and
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is to offer a motivation for intertemporal obfuscation. Coordination on price may be insuffi-

cient to satisfy the incentive constraints of a cartel. We show that coordination on obfusca-

tion may relax these incentive constraints. In our theory, intertemporal price variation acts

as the obfuscation mechanism; we expect alternative mechanisms to yield similar insights.

The problem of a cartel with opportunities to exploit imperfections in the consumer

choice process is also explored by de Roos (2018) and de Roos and Smirnov (2015). In de Roos

and Smirnov (2015), we extend our current theme by considering a cartel with incomplete

membership. Faced with a fringe competitor, the cartel has an additional motivation for ob-

fuscation: to limit the ability of the fringe to undercut the cartel price and steal market share.

de Roos (2018) adopts a different approach. Cartel members choose the manner in which

their product is presented or framed to consumers, lending the cartel the collective ability

to manipulate the propensity of consumers to compare competing products. Obfuscation

aids the cartel by reducing the effectiveness of deviation, but may also constrain the severity

of punishment. de Roos (2018) analyses the resulting trade-off between deviation and pun-

ishment. By contrast, in the current article, consumer choice is impacted by the history of

prices, and we examine the cartel’s optimal dynamic pricing problem.

We are not the first to examine cartel pricing dynamics. However, most explanations

for cartel pricing dynamics involve exogenous market processes; examples include demand

side dynamics (Green and Porter, 1984; Rotemberg and Saloner, 1986), and entry, exit, and

investment dynamics (Fershtman and Pakes, 2000; de Roos, 2004). Nava and Schiraldi (2014)

provide a recent exception. The authors show that sales are optimal for a cartel if consumers

can store for future consumption.8 In this setting, sales reduce the incentive to deviate from

cartel prices in both non-sale periods (if some consumers have storage constraints) and sale

periods (because prices are lower and consumers anticipate a price war following devia-

tion).9 In our model, the desire for obfuscation rather than consumer storage gives rise to

price dynamics, and sales and Edgeworth cycles emerge as special cases.10

then return to buy from this firm. Unfortunately (for consumers), firms adopt dispersed prices in equilibrium,

and the firm consumers return to may no longer offer the cheapest price.
8Another example of cartel price dynamics in a stationary environment is the cartel’s optimal pricing prob-

lem in the presence of an anti-trust authority (Harrington, 2004, 2005). In that case, price dynamics are tem-

porary as the cartel transitions towards optimal collusive pricing under the watchful eyes of the anti-trust au-

thority. By contrast, we observe lasting intertemporal price variation.
9In Section 4.3, we allow a measure of consumers to time their purchases; equivalently, they have access

to free storage. This impacts the optimal path by accentuating the depth of sales, but does not influence the

sustainability of collusion.
10In our theory, firms are intertemporal optimisers and consumers behave myopically. Fershtman and Fish-

man (1992) demonstrate that non-trivial price dynamics can arise when these roles are reversed.
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Sales are also associated with price discrimination.11 For example, Sobel (1984) suggests

sales as a method to discriminate between customers with high and low reservation prices,

while in Varian (1980), sales discriminate between informed and uninformed consumers. We

suggest obfuscation as an alternative motivation.12 A brief sale can generate a wide interval

of prices, hampering consumer efforts at price comparison at minimal cost to the cartel.

We also provide an explanation for price cycles. Asymmetric cycles that resemble Edge-

worth cycles provide the greatest internal stability for the cartel. Edgeworth cycles are a strik-

ing feature of retail petrol markets in a number of countries including Canada (Noel, 2007b;

Eckert and West, 2004), the United States (Lewis, 2012), Australia (Wang, 2009), and Norway

(Foros and Steen, 2008). The most commonly cited explanation for Edgeworth cycles is the

price commitment model of Maskin and Tirole (1988).13 Asynchronous price setting and the

restriction to Markov strategies are central to the predictions of their model, restrictions that

are absent in our model. However, coordination and simultaneous play are attracting grow-

ing empirical support in retail petrol markets subject to cyclical pricing. First, the limited

evidence on the timing of play suggests simultaneous price setting (de Roos and Katayama,

2013). Second, evidence of collusion has emerged. Explicit communication is evident in Bal-

larat, Australia (Wang, 2008) and Québec (Clark and Houde, 2013), while Byrne and de Roos

(2015) provide evidence of tacit collusion in Perth, Australia.

The rest of the paper is structured as follows. In Section 1, we introduce the model and

describe the implications of consumer inattention for demand. We begin the analysis in

Section 2 with a restricted problem in which the cartel seeks the optimal infinitely repeated

cyclical pricing strategies. Our main results for the paper are contained in Lemma 4, where

we provide a detailed characterisation of the optimal price path. In Section 3, we confirm

that cyclical strategies are optimal when consumer memory is finite. The discussion in Sec-

tion 4 examines robustness to alternative specifications of consumer attentiveness, asym-

metric and mixed strategies, and forward-looking consumers. All proofs are in Appendix A.

11Albrecht et al. (2013) also highlight the role of search frictions in generating sales. Other explanations

include demand anticipation (Salop and Stiglitz, 1982), introductory offers for experience goods (Doyle, 1986),

loss aversion (Heidhues and Kőszegi, 2014), and manipulation of consumer reference prices (Bordalo et al.,

2013).
12While there is no role for price discrimination in our model, obfuscation and price discrimination motives

for sales could be complementary.
13A class of alternative explanations for the cycle includes the original Edgeworth (1925) model of capacity

constrained price competition. The principle components are a discontinuity in residual demand and positive

residual demand above the discontinuity. A potential limitation of this class of explanation is that, to explain a

cycle as an equilibrium phenomenon, we must assume that firms play a myopic best response to their rivals’

previous prices. See de Roos (2012) for details.
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1 The model

A market comprises a set of n firms, indexed by j = 1, . . . ,n, selling an undifferentiated prod-

uct to a continuum of consumers with unit mass, indexed by i ∈ [0,1]. In each period t =
0, . . . ,∞, firms simultaneously choose prices, leading to a price vector p = (p1, . . . , pn). Each

consumer then chooses between the n offerings. Figure 1 summarises the sequence of events

taking place each period, to be detailed below. In the following sections, we discuss the con-

sumer decision-making process, the dynamic problem faced by firms, and the definition of

equilibrium.

Figure 1: Sequence of events in each period

t yt updated firms choose

prices

passive

search

active search t +1

1.1 Consumers

Consumers are not strategic players; they myopically maximise surplus in the current period.

Each consumer is willing to buy a single unit of the good up to a choke price of 1.14 She makes

her selection according to a two-stage search process.

First, while potentially engaged in other activities, she accumulates background infor-

mation about prices in a stage we label passive search. Due to direct observation, word of

mouth, or advertising, she is exposed to the current price vector.15 Because product selec-

tion is not her current focus, she does not retain all of this information. Her propensity to

recall each price depends on the salience of the price given her recent price experience. In

our base specification, the probability of recalling price p is determined by the salience rela-

tion φ(p, y) given by

φ(p, y) =
β if p > y ;

1 if p ≤ y,
(1)

14The assumption of unit demand is not required. Equivalently, we could specify download-sloping

consumer-level demand with a unique monopoly price.
15In our main specification, consumers are exposed to all prices. This assumption simplifies the analysis,

but is not required for our main conclusions. The relevant detail for analysis is consumer exposure to the

prices of deviating firms, and we might expect undercutting firms to make a greater effort to expose consumers

to their prices. For example, firms may advertise their prices when undercutting. Example 5 in Section 4.1 is

consistent with partial price exposure.
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where β ∈ (0,1) is a constant and the period t cut-off price yt depends on prices in the previ-

ous m periods according to

yt = min
τ∈{t−m,...,t−1}, j

p j
τ. (2)

Thus, her attention gravitates towards unusually low prices.16 The parameter β captures

the latent attentiveness of consumers towards prices while engaged in other activities. The

parameter m determines the limits to consumer memory.

Following passive search, active search begins, involving costly sequential search with

free recall. Initially, a consumer can either purchase from any of the stores with salient prices

(if there were any), or search for another store at a cost of c > 0. In each subsequent round,

she can either accept the price of a previously visited or salient store, or continue searching

at a further cost of c. Ties are resolved by randomisation. This two stage search process

matches that of Robert and Stahl (1993), except that the initial price information retained by

consumers is determined by salience rather than the intensity of advertising.17

Consumer search decisions are based on a comparison of search costs with expected

search benefits. Let Ft be the period t distribution of prices in equilibrium, and suppose

that through passive and active search, p is the lowest price recalled by consumer i up to the

current round of search (with p =∞ if no prices are recalled).18 Her expected benefit from

searching and then buying from the lowest price available is

Wt (p) =
∫ p

0

(
p −x

)
dFt (x),

Her indifference point defines her reservation price as a function of search costs, zt (c):

Wt (zt ) =
∫ zt

0
(zt −x) dFt (x) = c. (3)

Consumer choices are then summarised by the sequence of reservation prices {zt }∞t=0. It is

well known that zt is independent of the number of remaining unsearched stores (see, for

16It is worth emphasising that our results are not overly sensitive to this specification of consumer attentive-

ness. In early versions of the paper, consumer attention was piqued by unusually low and high prices, with no

qualitative impact on model predictions. In Section 4.1, we consider alternative generalisations of consumer

attentiveness.
17Haan and Moraga-Gonzàlez (2011) also consider the relationship between salience and search. Con-

sumers are more likely to begin search at firms with advertising that is salient to them. In their setting, salience

is determined by the intensity of advertising, while salience is determined by price in ours.
18In a symmetric equilibrium, consumers sample from the same distribution Ft in each round of search

in period t . When we consider asymmetric equilibria in Section 4.2, we shut down active search by imposing

sufficiently high search costs.
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Figure 2: Market shares by attentiveness, n = 4

α1

α2

α3

α4

0 1

1

1/n

β

αr

example, Stahl (1989) and Kohn and Shavell (1974)).19

We now consider the implications of consumer search for demand. Let p(r ) be the r th

lowest price in p. It follows directly from (1) that, if firm j uniquely sets price p(1) and p(1) ≤ y ,

then she obtains a market share of 1. When instead p(1) > y , we use the notationαr to denote

the market share of a firm uniquely setting price p(r ), for r = 1, . . . ,n. If all firms price below

the reservation price z, then

αr = (1−β)r−1β+ (1−β)n/n. (4)

A consumer will purchase at a price p(r ) if the r − 1 lower prices are not salient and either

p(r ) is salient or none of the prices are salient. In the latter case, the consumer engages in

additional rounds of active search, selecting with equal probability each store setting a price

no higher than z.

Figure 2 illustrates market shares for a range of attentiveness parameters, β. For markets

with a high degree of attentiveness, there is a greater market share payoff to undercutting

the prices of one’s rivals (α1 is higher), and a smaller payoff to being a high-priced outlier

(αn is lower). When β= 1, our model collapses to a reduced form of the perfect information

case with α1 = 1 and αr = 0, r = 2, . . . ,n. When β = 0, consumers are completely inattentive

towards prices above the threshold, and αr = 1/n for all r .

Lemma 1 summarises the discussion. As is standard in repeated games, we consider uni-

lateral deviations; and as is standard in consumer search, firms have no incentive to price

above the reservation price. The market shares αr in (4) are therefore sufficient for analy-

19Alternatively, if search is without recall, reservation prices (i) are higher than under the free recall case and

(ii) increase as the number of unsearched firms dwindles, with no qualitative implications for our results.
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sis. For completeness, in the lemma we resolve ties uniformly and detail the implications of

pricing above the reservation price.

Lemma 1. Given p ∈ [0,1]n , reservation price z, and cut-off price y, the market share of firm j

is given by

s j (p, y, z) =



0 if p j > z or
(
p(1) ≤ y and p j > p(1)

)
;

(∑q+l−1
r=q αr

)
/l if


p(1) > y and p j = p(q) = p(q+l−1) and(
q = 1 or p(q−1) < p(q)

)
and(

q + l −1 = n or p(q) < p(q+l )
)

;

1/l if p j = p(1) = p(l ) ≤ y and
(
l = n or p(l ) < p(l+1)

)
,

(5)

where, for r = 1, . . . ,n,

αr =
(1−β)r−1β+ (1−β)n/n if p(n) ≤ z;

(1−β)r−1β+ (1−β)q /q if p(q) ≤ z < p(q+1), r ≤ q < n.
(6)

Remark 1. All remaining analysis holds for any market shares {αr }n
r=1 such that: i)αr >αr+1,

r = 1, . . . ,n−1 and
∑n

r=1αr = 1; ii)αn(β) ∈ [0,1/n] andα1(β) ∈ [1/n,1]; iii)αn(0) =α1(0) = 1/n;

iv) αn(1) = 0 and α1(1) = 1; and v) α′
n(β) < 0 and α′

1(β) > 0.

Lemma 1 implies that we can focus on the market share function described in (4) as the

elementary description of consumer behaviour. Remark 1 clarifies that our analysis does not

rely on the model of consumer search, but also encompasses alternative processes for mar-

ket shares that satisfy the above properties. For symmetric cartels, the viability of collusion

depends only on the market share of a firm undercutting the cartel price, α1, and the mar-

ket share of a firm deviating by raising price, αn . Thus, an alternative theory of consumer

behaviour need only specify α1 and αn . For example, a minor perturbation to the Bertrand

rationing rule in which the lowest priced firm does not capture the entire market would be

consistent with our analysis.

1.2 Firms

Firms discount the future at the common rate δ ∈ (0,1) and have constant marginal costs

which we normalise to zero. Profits for firm j are given by

π j (p, y, z) = p j s j (p, y, z). (7)
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Each firm j simultaneously chooses a price p j ∈ A j = ℜ+, with set of pure action profiles

A = ∏
j A j . A pure strategy for firm j is a mapping from the set of all possible histories to

the set of actions. Let H t = At be the set of t-period histories, and H 0 = {;} define the

initial history. The set of possible histories is then H = ⋃∞
t=0 H t , and a strategy for firm j

is a mapping σ j : H → A j .20 Given the strategy profile σ, let a j
t (σ) be the period t action

for firm j induced by σ, and let at (σ) be the associated action profile. We denote by σ|h the

continuation strategy profile induced by history h.

1.3 Equilibrium

To close the model, we must specify how the cut-off price y and the reservation price z

are determined. In equilibrium, the strategy profile σ induces a distribution of prices that

matches the understanding held by consumers in each t , Ft , and is consistent with the con-

sumer reservation price, zt , according to (3). Given the memory parameter m, (2) deter-

mines the cut-off price yt . In Section 3 we initialise y0 =∞, while in Section 2 we abstract

from initial conditions.

Given a sequence of consumer reservation prices {zt }∞t=0, payoffs for firm j are given by

V j (
σ, {zt }∞t=0

)= ∞∑
t=0

δtπ j (
at (σ), yt (σ), zt

)
. (8)

Equilibrium is defined formally below. We focus on market equilibria that are optimal for the

cartel.

Definition 1. The collection {σ, {yt , zt ,Ft }∞t=0} is a market equilibrium if:

(1) given any history h ∈H , V j (σ|h, {zt }∞t=0) ≥V j ((σ′ j ;σ− j )|h, {zt }∞t=0) for all j and σ′ j ; and

(2) for all t , the cut-off price yt is given by (2), the distribution Ft is induced by at (σ), and the

consumer reservation price zt is determined by (3).

In Sections 2 and 3, we consider pure symmetric strategies. In Section 4.2, we discuss

asymmetric and mixed strategies. As we shall see, Definition 1 gives rise to an analytic so-

lution for optimal cartel pricing policies. It is worth noting that qualitative features of this

solution survive adjustments to this setup. For example, in Section 2.2, we discuss the role

of Ft and argue alternative mechanisms for consumer price understanding are possible; and

in Section 4.1, we show that our results are robust to alternative forms of (2) and (1).

20Strictly, the firms play a dynamic game with state vector given by the most recent m market minimum

prices (see (2)). Because the state is a subset of the current history, we economise on notation by omitting the

dependence of strategies on the state.
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2 Infinitely repeated cycles

To aid exposition, we temporarily consider two methodological shortcuts which we resolve

in Section 3. First, we consider equilibria in a restricted class of strategies in which firms

adopt infinitely repeated symmetric k-period sequences of prices with k ≤ m, defined below.

The strategy σ(k) is a variation of the grim-trigger strategy allowing for a time-varying equi-

librium path. On the equilibrium path, each firm repeats the finite sequence {p1, p2, . . . , pk }.

Definition 2. In a k-period cycle σ(k), in period t firm j sets price

p j
t =

p(t ) if t = 0 or p i
τ = p(τ) ∀ τ< t , ∀ i ;

0 otherwise,
(9)

where

p(t ) = ps if t − s +1 is divisible by k, s = 1, . . . ,k, (10)

and ps ∈ [0,1], s = 1, . . . ,k.

Second, we abstract from the initial k periods of play and focus on a cartel with a mature

history. With cyclical strategies σ(k) and k ≤ m, this allows us to consider a constant cutoff,

yt = mins ps for all t . It then follows directly from (1) that punishment under (9) represents

an optimal penal code with value 0.

A special case of σ(k) is a constant price path in which ps = p, s = 1, . . . ,k, for constant p.

As a benchmark, the following lemma handles this case.

Lemma 2. There exists a market equilibrium in which firms play σ(k) with ps = p ∈ (0,1] for

s = 1, . . . ,k if and only if δ≥ (n −1)/n.

To consider strategies with time-varying prices, we introduce additional notation. Where

the context is clear, subscripts refer to periods within a k-period cycle, rather than time. De-

fine vs , s = 1, . . . ,k, to be the continuation value for each cartel member starting from period

s of the strategy σ(k):

v1 = π1 +δπ2 +·· ·+δk−1πk

1−δk
, v2 = π2 +δπ3 +·· ·+δk−1π1

1−δk
, . . . , vk = πk +δπ1 +·· ·+δk−1πk−1

1−δk
,

where πs ≡π j (as(σ(k)), ys(σ(k)), zs) = ps/n, and notice that

v1 = δv2 +p1/n, v2 = δv3 +p2/n, . . . , vk = δv1 +pk /n. (11)
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Assign pk to be the lowest point in the firm’s price sequence:

pk = min
s∈{1,...,k}

ps ,

and define v as follows:

v = max{v1, . . . , vk }.

Notice that if v is the cartel’s objective, assigning the minimum point of the cycle to position

k in the price sequence is without loss of generality. That is, it is equivalent to considering v1

as the cartel objective and allowing the position of the minimum price to be unrestricted.

We now set up the cartel’s problem through Lemma 3.

Lemma 3. Suppose δ< (n −1)/n. Then, for k ≤ m, the optimal k-period cycle σ(k) consistent

with market equilibrium is given by the solution to the following program:

max
p1,...,pk∈[0,1]

v (12)

subject to

vs ≥α1ps , s = 1, . . . ,k −1, and vk ≥ pk , (13)

vs ≥ pk , s = 1, . . . ,k −1, (14)

vs ≥αn min{1, zs}, s = 1, . . . ,k −1. (15)

With k ≤ m, limited consumer memory plays no role and the cut-off price is time-invariant,

ys = pk , s = 1, . . . ,k. The cartel maximises the discounted value of the joint profit stream sub-

ject to three sets of incentive compatibility constraints that correspond to three kinds of devi-

ation. First, suppose firm j considers marginally undercutting the current prescribed price.

For any period s < k of the cycle in which ps > pk , this deviation is above the lowest price in

the cycle, ys = pk . Deviation therefore yields market share α1 and profit α1ps . In period k,

marginal undercutting is below yk = pk and is observed by all consumers, leading to profits

pk . The constraints in (13) therefore deter any deviation of this type. Second, according to

(5), deeper price cuts do not yield a larger market share unless firm j sets a price below pk .

The constraints in (14) prevent this form of deviation. Third, firm j also considers deviating

by raising price. In period k, pk = yk , and an upward deviation is ineffective. In any other

period, any price between the current cartel price and the consumer reservation price leads

to market share αn . Therefore, the most profitable price rise in any period s ≤ k −1 involves

p = min{1, zs}. The constraints in (15) deter this deviation. For future reference, number the

constraints in (13) by 1, . . . ,k, where constraint s involves vs .
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With Lemma 3 in hand, we need only solve the program (12) - (15) to identify a market

equilibrium that is jointly optimal for firms. We consider non-trivial solutions with a strictly

positive cartel value, v > 0. The nature of the problem faced by the cartel depends on the

nature of deviations that must be guarded against. In high salience environments (i.e. “high”

β environments), deviations are more often observed and recalled by consumers, and the

greatest danger to the cartel is the temptation to undercut. We deal with this case in Section

2.1 below. Alternatively, if salience is low and search costs are high, another threat to cartel

discipline arises from the temptation to raise price above the prescribed level, secure in the

understanding that consumers are unlikely to notice that a deviator’s price is unusually high.

We turn to this case in Section 2.2.

2.1 High salience environments

In this section we characterise the optimal cartel price path for parameter vector (β,δ,n,k,c)

if the salience parameter β is sufficiently high, as we later define in Lemma 8. The workhorse

of the paper is Lemma 4, in which we solve for the optimal k-period cycle that is impervious

to undercutting. The remaining results provide additional detail for our solution. Lemma 5

demarcates ranges of values of the discount factor that give rise to equilibria with different

properties. Lemma 6 then provides an explicit solution to the cartel’s optimal price path.

We first define the critical discount factor

δ1(β,n,k) ≡
(
α1n −1

α1n

) k−1
k

(
n −1

n

) 1
k

. (16)

As we show in Lemma 4, δ1 is the lowest discount factor amenable to collusive equilibria in

high salience environments.

Lemma 4. For k ≤ m, there exists a k-period cycle σ(k) that solves the program (12) - (14) if

and only if δ≥ δ1. The cycle is unique. If δ ∈ [
δ1, n−1

n

)
, the cycle has the following properties:

(i) prices decline monotonically over the cycle: p1 ≥ ·· · ≥ pk−1 > pk , with p1 = 1;

(ii) ps = min
{

1, δα1n
α1n−1 ps+1

}
, s = 2, . . . ,k −2, pk−1 = min

{
1, δn

α1n−1 pk

}
, and pk = δn

n−1 v1;

(iii) v = v1 is an increasing function of δ;

(iv) vs = min{1/n +δvs+1, δα1n
α1n−1 vs+1}, s = 1, . . . ,k −1, and vk = δn

n−1 v1.

An implication of Lemma 4 is that ps is increasing in δ for s = 1, . . . ,k. This allows us to

offer the following definitions, which are useful for our discussion of the Lemma.

Definition 3. The knot discount factor δi connects two regions: if δ < δi the equilibrium

path has pi < 1; if δ≥ δi the equilibrium path has pi = 1, for i = 2, . . . ,k −1.

14



Definition 4. i) An equilibrium price path is a pure sales path if ps = 1 > pk for s = 1, . . . ,k−1.

ii) An equilibrium price path is a distinct cycle path if ps < 1 for s = 2, . . . ,k −1.

Lemma 4 implies that there is a range of discount factors, [δ1, (n −1)/n), for which col-

lusion is sustainable with a dispersed price path, but not with a fixed price. In this range,

firms optimally coordinate on dispersed prices to reduce the visibility of any potential devi-

ation, thereby relaxing the incentive constraints of the cartel. If β (and hence α1) is smaller,

consumers have greater difficulty penetrating the haze of price dispersion and the cartel is

sustainable for a greater range of discount factors. Intuitively, if consumers have greater dif-

ficulty recalling specific prices that are within their realm of experience, then intertemporally

dispersed prices provide a greater shield against deviation by undercutting. Notice also that

in the limit, as consumer attentiveness approaches the ideal, the sustainability of collusive

price paths converges towards the perfect information environment. That is, δ1 converges

towards (n −1)/n as α1 approaches 1.

The optimal price path is described by a set of complementary slackness conditions. If

constraint s is not binding, firms set the choke price; if it is binding, prices must decline to

uphold the incentive constraints in (13). Because pk is the lowest price, a firm undercutting

in period k receives a market share of 1. Therefore constraint k is the most difficult to satisfy,

and it is always binding for δ< (n −1)/n. For δ ∈ [δk−1,δk ), constraint k is the only binding

constraint, and a pure sales path is observed. Sales obfuscate the price process in the eyes

of consumers by generating a range of observed prices, and achieve this at minimum cost.

That is, firms can charge the choke price in every period of the cycle except the last.

For lower values of δ, pk must be reduced to satisfy the binding constraint k. Within

the region [δk−1,δk ), the other constraints in (13) remain slack. At δ= δk−1, constraint k −1

becomes binding, and this constraint can only be satisfied in the face of a lower discount

factor by lowering pk−1. As the discount factor is reduced below successive knot discount

factors, successive prices must be lowered to satisfy the incentive constraints. In the limit of

this process, all prices except the first in the sequence must be lowered. A distinct cycle path

occurs for δ ∈ [δ1,δ2).

The following two Lemmas complete our characterisation of equilibrium in high salience

environments. Lemma 5 describes the knot discount factors associated with the comple-

mentary slackness conditions in part (ii) of Lemma 4.

Lemma 5. The knot discount factors δs , s = 2, . . . ,k −1, are determined by the following equa-

tions:

δk
s +

1

α1n

s−1∑
i=1

δk−i
s =

(
α1n −1

α1n

)k−s (
n −1

n

)
. (17)
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Figure 3: Equilibrium price paths
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Part (ii) of Lemma 4 implies that the optimal price path is completely determined by the

price in the last period of the cycle, pk . We solve for this in Lemma 6. This permits an explicit

solution for the optimal price path and accompanying value of the objective function.

Lemma 6. For s = 1, . . . ,k −1, if δ ∈ [δs ,δs+1), then a k-period cycle solving the program (12) -

(14) yields

v1 = (n −1)(1−δs)

n(1−δ)

(
n

(
1−

(
α1n
α1n−1

)k−s−1
δk

)
−1

) , pk = δ(1−δs)(
n

(
1−

(
α1n
α1n−1

)k−s−1
δk

)
−1

)
(1−δ)

, (18)

where v1 and pk are continuous in δ for δ ∈ [δs ,δs+1).

Together, Lemmas 4 - 6 constitute a complete description of equilibrium in high salience

environments. Example 1 illustrates the equilibrium.

Example 1. There are n = 5 firms who pursue strategies with cycle length k = 4. Withβ= 0.3,

(5) and (4) lead to market shares α1 = 0.334 and αn = 0.106. Figure 3 depicts the resulting

equilibrium price path for a range of possible discount factors. Price is on the vertical axis

and the horizontal axis indexes discount factors. For a given discount factor, we can read the

picture vertically to reveal prices at each point of the cycle. Recall that p1 = 1 and that each
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knot discount factor δs delineates regions where ps = 1 and ps < 1. The knot discount factors

are indicated with δ1 ≈ 0.477, δ2 ≈ 0.491, δ3 ≈ 0.521, and δ4 = 0.8. For δ> δ4 = 0.8, a constant

price path is sustainable. A price cycle equilibrium exists for δ ∈ [δ1,δ4). For δ ∈ [δ3,δ4) we

observe a pure sales path. As δ falls, p4 falls, until we hit the knot discount factor δ3, at which

point, p3 begins falling as well. For δ ∈ [δ2,δ3) we then observe more extensive sales with two

periods of monopoly pricing in each cycle and two periods of discounted prices in between.

Finally, in the region δ ∈ [δ1,δ2), we observe distinct cycle paths. For our chosen parameters,

the constraints in (15) play no role.

Figure 4 illustrates the path of prices for different discount factors. In each panel, prices

are shown on the vertical axis and the horizontal axis indexes time. δ= δ1 is the lowest dis-

count factor conducive to a collusive equilibrium, and this case is shown in the top left panel.

We observe a distinct cycle path, with prices varying between 1 and approximately 0.2 in an

asymmetric cycle. With the higher discount factor of δ = δ2 shown in the top right panel, a

more profitable path is sustainable. We can see that constraint 2 is now slack, permitting a

2-period spell of monopoly pricing, and a slightly higher cycle minimum of p4 ≈ 0.22. The

bottom left panel shows an example of a sales path with δ = δ3. A regular sale is observed

every 4th period. As the discount factor is raised further, the depth of the sale is reduced. In

the limit (that is for δ ≥ δ4), no sale is required to maintain the incentives for cooperation,

and a constant price path is observed. This case is shown in the bottom right panel. �

2.2 General salience environments

In Section 2.1, we solved the cartel’s problem under the presumption that the only threat to

cartel discipline came from the temptation to undercut. When salience is low and search

costs are high, the temptation to deviate by raising price may also be a threat. A firm setting

a higher price than her rivals loses fewer customers if consumers are less attentive. This

increases the incentive to raise price, particularly when cartel policies call for a low price.

We first use Lemma 7 to clarify the role of search costs and consumer beliefs about the

current price distribution, Fs . Let

γ(n,β,c) =
αn/α1 if c ≥ 1−αn ;

αn c
(1−αn )α1

if c < 1−αn .
(19)

Lemma 7. Suppose {ps}k
s=1 solve the program (12) -(14). Then the constraints in (15) are sat-

isfied iff pk−1 ≥ γ, where γ is defined in (19).

Recall that in period k, pk = yk and upward price deviations are ineffective. The most

challenging relenting constraint for the cartel is in period k −1. Search costs influence the
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Figure 4: Price cycles
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relenting constraint by determining the optimal upward deviation. If c is sufficiently high,

then for any price below the choke price, consumers will not search. The optimal upward de-

viation is therefore to the choke price and deviation profits are given by αn . For lower values

of c, the optimal upward deviation is to the reservation price, zs(c). Because the reservation

price is increasing in c, lower search costs actually aid collusion in low-salience settings by

reducing the profits of upward price deviations.

If Fs reflects the current price distribution induced by σ(k) in period s, then zs(c) = ps +
c, giving rise to the specific form of (19). Alternative specifications of Fs are possible. For

example, Fs may depend on a consumer’s price observations over her finite memory. We can

trace through the implications of alternative definitions by adjusting zs(c).

Lemma 8 describes the optimal price path for general salience environments.

Lemma 8. Suppose {ps}k
s=1 solve the program (12) -(14).

i) There exists β1(n,k,c) such that for any β ≥ β1, {ps}k
s=1 also satisfy the constraints in (15),

where β1 solves

γ(n,β1,c) = pk−1(β1,δ1(β1)). (20)

ii) Ifβ<β1, then there exists δ̂(β,n,k,c) such that for δ< δ̂, there is no solution to the program
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(12) - (15) with positive prices, while for δ ≥ δ̂, {ps}k
s=1 also solve the program (12) - (15). In

particular, δ̂ solves

γ(n,β,c) = pk−1(β, δ̂). (21)

iii) For any β> 0, there exists c > 0 such that ∀ c < c, {ps}k
s=1 also solve the program (12) - (15).

In the presence of price dispersion, the attentiveness of consumers impacts the prof-

itability of deviation in two ways. For low values of β, consumers may not notice the at-

tractiveness of a low-priced firm, reducing the payoffs to undercutting the cartel price. In

addition, a high-priced firm may still attract some custom, increasing the profitability of

deviations that involve price rises. As the value of β rises, both factors increase the attrac-

tiveness of undercutting deviations relative to relenting deviations. This feature allows us to

divide the parameter space into a high-attentiveness region in which the cartel is primarily

concerned with undercutting deviations, and a low-attentiveness region in which relenting

is also a concern.

Part i) of Lemma 8 suggests that, for given values of (n,k,c), if β is above a critical value,

raising price is never a profitable deviation. In Part ii) we argue that if consumer attentive-

ness does not meet this threshold, collusive profits can still be salvaged if firms are suffi-

ciently patient. Further, if the relenting constraints (15) are met, the optimal price path is

entirely unaffected by them. In Part iii), we highlight the role of search costs. Because search

costs do not enter the undercutting constraints, they have no impact on the shape of the

optimal path. Instead, they influence the sustainability of the optimal path through the re-

lenting constraints. For low c, the reservation price is close to the prescribed cartel price and

the value of a relenting deviation is minimal. The relenting constraints can then be ignored

if c is sufficiently low.

Lemma 8 brings into focus the contrasting roles of the three sets of incentive compati-

bility constraints. The constraints in (13) prevent marginal undercutting. These constraints

determine the shape of the price path and, in high salience settings, also determine the sus-

tainability of the cartel. The constraints in (14) ensure firms have no incentive to undercut

below the cut-off price. These constraints are always satisfied when (13) holds. We can see

this by comparing the two sets of constraints. An optimal price path that satisfies (13) yields

a cartel continuation value that decreases over time within each price sequence. Therefore,

if constraint k in (13) is satisfied, then all constraints in (14) will also hold.

Finally, the relenting constraints in (15) play a binary role. In markets with attentive con-

sumers, these constraints can be ignored. With inattentive consumers, these constraints de-

termine the sustainability of collusion, but have no effect on the shape of the optimal price

path if collusion is sustainable. This last result arises from a direct conflict between the two
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sets of constraints (13) and (15). To ease concerns about undercutting, the cartel must lower

prices to reduce the current payoffs to deviation. By contrast, to mitigate the incentive to re-

lent, the cartel must raise prices in order to raise the continuation value of the cartel relative

to the monopoly profit that a deviator would receive. An optimal cartel seeks to maximise

cartel value. Therefore, prices will be maximised subject to the marginal undercutting con-

straints in (13). If the constraints in (15) are also satisfied, then collusion is feasible. If they

are not, then there is no further scope to raise prices.

The following example illustrates the determination of the optimal price path in low-

salience environments.

Example 2. As in Example 1, there are n = 5 firms who choose an optimal cycle of length

k = 4. We set β = 0.1, leading to market shares α1 = 0.218 and αn = 0.184. Figure 5 depicts

the resulting equilibrium price path for a range of possible discount factors. The vertical

axis describes price and the horizontal axis indexes discount factors. For a given discount

factor, we read the picture vertically to show prices at each point of the cycle. For high search

costs (c ≥ 1−αn), γ = αn . This is illustrated by the upper horizontal line. The intersection

of γ and p3 determines the sustainability of collusion; equilibrium exists only to the right of

this intersection. Lower search costs lead to a reduced payoff to upward price deviations as

suggested by the lower horizontal γ line. Thus, collusion is sustainable for a greater range of

discount factors when search costs are lower. �

Lemma 8 implies that collusion requires cartel vigilance towards both undercutting and

relenting. A sufficiently patient cartel can overcome both obstacles. For β ≥ β1, Lemmas 4

and 8 demonstrate that collusion is sustainable if and only if δ ≥ δ1. For β < β1, collusion

is sustainable for δ≥ δ̂ where δ̂ is determined by (21). Combining these results, collusion is

sustainable if and only if δ≥ δ∗ where the critical discount factor δ∗ is defined as

δ∗(β,n,k,c) =
δ1(β,n,k) if β≥β1;

δ̂(β,n,k,c) if β<β1.
(22)

Following on from our discussion of Lemma 4, let us reconsider comparative statics with

respect to β. By Lemma 1, as β converges to 0, α1 approaches 1/n; with extreme consumer

inattentiveness, the market share benefits of undercutting are minimal. This is reflected in

δ1, which converges to 0 asα1 converges to 1/n. For low values ofβ and high search costs, the

cartel may also be vulnerable to deviations involving price rises. The constraint δ≥ δ̂ applies

in these cases. However, if both c and β are arbitrarily small, then the critical discount factor

δ∗ could also be arbitrarily small.
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Figure 5: Price paths with low attentiveness
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When β < β1, the salience parameter β has qualitative implications for the shape of the

price path. The following result demarcates values of β for which alternative shapes are op-

timal.

Lemma 9. Suppose the prices {pi }k
i=1 solve the program (12) - (14). Then, for s = 1, . . . ,k −2,

there exists βs(n,k,c) such that if β>βs , the constraints in (15) are satisfied if δ≥ δs .

Recall that the knot discount factors δs determine the shape of the cycle in terms of the

number of distinct prices observed on the equilibrium path. Lemma 9 places restrictions

on which of these cycle shapes could be optimal depending on β. Taking Lemmas 8 and 9

together, we can summarise the effect of the constraints (15) on the cartel’s program for dif-

ferent salience parameters. If salience is sufficiently high (β≥β1), then these constraints are

always satisfied, and we can rely on the solution we discussed in Section 2.1. For β ∈ (β2,β1),

there is a range of discount factors for which the distinct cycle equilibria are impacted by (15).

At β ≤ β2, no distinct cycle paths satisfy these constraints optimally. For β ≤ βs , all optimal

paths involve at most k − s +1 distinct prices. For β≤ βk−1, the only optimal equilibria that

survive these constraints are sales paths.

To illustrate how this process works, re-examine Example 2 as depicted in Figure 5. β1 is

determined by the intersection of γ and p3. If c = 0.1, γ intersects p3 for δ < δ1. For all δ,
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equilibria are unaffected by the constraints (15). When c = 1, γ intersects p3 for δ > δ3. No

equilibria to the program (12) - (15) exist for δ < δ̂. The only optimal equilibria that remain

(for δ≥ δ̂) involve pure sales paths.

We illustrate the manner in which β influences cartel sustainability and the shape of the

price path with the following example.

Example 3. Reconsider the setting of Examples 1 and 2 with n = 5, k = 4 and c = 1, and

consider all β ∈ [0,1]. Figure 6 illustrates the determination of critical discount factors. The

vertical axis depicts the discount factor and the horizontal axis indexes the salience param-

eter β. We can read this figure vertically. Fixing a particular value of β determines the knot

discount factors δs and the critical value of the discount factor. Equilibrium exists if and

only if δ ≥ δ∗ as defined in (22). The line δ̂ delineates discount factors consistent with the

relenting constraints (15).

We can use the example to illustrate comparative statics with respect to attentiveness, β.

If β ≥ β1, then δ ≥ δ1 is required and cartel sustainability becomes harder for higher values

of β. That is, δ1 is increasing in β and δ1 converges to (n − 1)/n as β approaches 1. For

β < β1, δ̂ > δ1 and the relenting constraints in (15) determine the critical discount factor δ̂.

Observe also that we must have δ̂ ≤ δ3. This can be seen from Figure 5: δ̂ is determined by

the condition p3 = αn/α1 (as per Lemma 8), and δ3 is determined by the condition p3 = 1

(as per Lemma 4). As β approaches zero, the ratio αn/α1 approaches 1, and δ̂ approaches

δ3 from below. Note that both δ1 and δ3 approach zero with β. Because δ̂ is sandwiched

between these knot discount factors, the critical discount factor must also approach zero.

Thus, the cartel becomes arbitrarily easy to sustain as attentiveness dissipates. �

We close this section by collecting our main results into the following proposition. Part (a)

describes the requirements for existence of a non-trivial collusive equilibrium; Part (b) dis-

cusses the role of search costs; and Part (c) characterises the resultant equilibria.

Proposition 1. (a) For k ≤ m, there exists a market equilibrium with positive payoffs using

strategies σ(k) if and only if δ≥ δ∗(β,n,k,c) as defined in (16), (19), (21), and (22).

(b) For any β> 0, there exists c > 0 such that ∀c < c, δ∗(β,n,k,c) = δ1(β,n,k).

(c) An optimal market equilibrium with the strategies σ(k) has the following price path:

(i) if δ≥ (n −1)/n, then ps = 1 for s = 1, . . . ,k;

(ii) ifδ∗ ≤ δ< (n−1)/n, then pk is given by (18), pk−1 = min
{

1, δn
αn−1 pk

}
, ps = min

{
1, δαn

αn−1 ps+1

}
for s = 2, . . . ,k −2, and p1 = 1.
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Figure 6: Attentiveness and discounting
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3 Finite memory

In this section, we relax the restriction to cyclical strategies and consider the initial condi-

tions of the market. In Proposition 2, we show that cyclical strategies are optimal when con-

sumer memory is finite. Let the optimal k period cycle σ(k) be defined by the equilibrium

path price sequence {ps}k
s=1, as specified in Proposition 1, and define σ̃(k) analogously by the

reconfigured sequence {pk , p1, p2, . . . , pk−1}.

Proposition 2. Suppose consumers have m-period memory and y0 =∞. Then

(a) there exists a market equilibrium with positive payoffs if and only if δ≥ δ∗(β,n,m +1,c);

(b) the optimal market equilibrium has the following properties:

(i) if δ≥ (n −1)/n, then ps = 1 for all s;

(ii) if δ∗(β,n,m +1,c) ≤ δ < (n −1)/n, then σ̃(k) are optimal market equilibrium strategies,

where k = m +1.

We use the following definition in the proof of Proposition 2. Condition 1) ensures that

the price pq is the lowest in memory in period s, and condition 2) implies that without ob-

fuscation there would be an incentive to deviate in period s.

Definition 5. Given prices ps and pq , we say that

1) pq supports ps if ys = pq ; and
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2) ps relies on pq if ys = pq and vs < ps .

A price is said to be supporting if it supports at least one other price.

According to Proposition 2, the optimal path is an infinitely repeated m +1 period cycle.

Let us explain the intuition behind this result. Obfuscation allows the cartel to set higher

prices by relaxing the constraints arising from the incentive to marginally undercut the cartel

price. With finite consumer memory, periodic low supporting prices are required to provide

obfuscation. For an optimal path, any price that does not play a supporting role must be

maximised subject to the undercutting constraint. This ensures complementary slackness

conditions mirroring those of Lemma 4, leading to a decreasing trajectory of prices between

supporting prices.

Partition the optimal path into a sequence of subpaths defined as follows. For any two

consecutive supporting prices pr and ps , define the subpath {pr , . . . , ps−1}. We show that

supporting prices are not reliant, conferring a degree of autonomy to each subpath. It fol-

lows that the value of a path can be improved while maintaining all incentive constraints by

replacing less profitable subpaths with more profitable ones. Optimality then dictates that

each subpath must be identical. This implies that the optimal path is an infinitely repeated

cycle.

Longer cycles are preferable because they afford obfuscation protection and therefore

permit higher prices for a greater fraction of the path. With the exception of periods contain-

ing a supporting price, every price in a cycle requires the supporting price to be in memory.

The optimal cycle is therefore of length m +1 periods.

Finally, to deal with the initial condition y0 =∞, the initial price is supporting. The cycle

therefore kicks off with the lowest price, establishing obfuscation protection for the remain-

ing prices.

4 Discussion and extensions

In this section we discuss generalisations of our model in several dimensions. We begin by

arguing, in Section 4.1, that our qualitative conclusions survive adjustments in the salience

relation (1). In Section 4.2, we ask whether strategies involving contemporaneous price

dispersion could improve the value of the cartel. Section 4.3 examines the implications of

forward-looking consumers. Finally, in Section 4.4, we sketch potential explanations for ob-

served price dynamics in two prominent markets.

24



4.1 Consumer attentiveness

In Section 2, we learned that the determinants of the optimal price path are discounting and

the profits from undercutting the current cartel price. As long as deviation payoffs increase

with the cartel price, the essential features of the path will be retained. We illustrate with

three generalisations of the salience relation (1).

First, note that discontinuity in (1) is not required. For example, suppose that salience

transitions linearly between 1 and β in the neighbourhood [y, y +ε]. Then we can show that

market equilibrium is unaffected as long as the transition is sufficiently fast (i.e. ε is suffi-

ciently small).

Second, consider an attentiveness process in which consumers are more likely to recall

lower prices in a more graduated manner. Given a decreasing price path {ps}k
s=1 with k ≤ m,21

define the cut-off price levels {ys}k
s=1 by ys = ps , s = 1, . . . ,k, and redefine

φ
(
p, {ys}k

s=1

)
=

β(s) if p ∈ (ys+1, ys], s = 1, . . . ,k −1;

1 if p ≤ yk ,
(23)

where β(s) ∈ (0,1) increases in s for s = 1, . . . ,k −1. Thus, consumers are more likely to recall

a specific price p the less often prices of that level or lower are observed.

We examine optimal symmetric equilibria. Given (23) and a strictly decreasing price path

{ps}k
s=1 with ps ≤ zs for s = 1, . . . ,k, if firm j deviates from the price path in period s by setting

pr ≤ zs instead of ps , she obtains the market share

α(r,s)
i =β(r )(1−β(s))i−1 + (1−β(r ))(1−β(s))n−1/n, r, s = 1, . . . ,k, (24)

where i = 1 if pr < ps and i = n if pr > ps . Ties are resolved uniformly as in (5). We will write

α(s)
i =α(s,s)

i .

We set up Proposition 3 with the following definitions. Define the price and value paths

{ps}k
s=1 and {vs}k

s=1 by the following relationships:

p1 = 1, ps = min

{
1,
δα(s+1)

1 n

α(s)
1 n −1

ps+1

}
, s = 2, . . . ,k −1, pk = δnv1

n −1
; (25)

vs = min

{
1/n +δvs+1,

δα(s)
1 n

α(s)
1 n −1

vs+1

}
, s = 1, . . . ,k −1, vk = δnv1

n −1
, (26)

implicitly define the relenting constraints,

vs ≥α(r,s)
n min{pr , zs}, r < s, s = 1, . . . ,k, (27)

21If k > m, the cut-off price levels become time-varying. This requires additional notation without providing

additional insight.
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and define the discount factors δ1(β,n,k), δa(β,n,k), and δb(β,n,k) by

δ1 =
k∏

s=1

(
α(s)

1 n −1

α(s)
1 n

) 1
k

, δa = α(k−1)
1 n −1

n
, δb = max

s=1,...,k−2

α(s)
1 n −1

α(s)
1 n

α(s+1,s)
1

α(s+1)
1

, (28)

where β= (β1, . . . ,βk−1).

Proposition 3. If δ ∈ [max{δ1,δa ,δb}, (n − 1)/n) and {ps}k
s=1 and {vs}k

s=1 satisfy (27), then in

the optimal market equilibrium, the price and value paths are determined by (25) and (26).

The condition δ ≥ max{δa ,δb} ensures the price path (25) is decreasing. If the path is

strictly decreasing, then deviating in period s to the price pr with r < s gives the market

share α(r,s)
n . In the event that there exists q > r with pr = pq > ps , the constraint vs ≥

α
(q,s)
n min{pq , zs} implies the constraint vs ≥ α(r,s)

n min{pr , zs}. The constraints in (27) there-

fore deter all upward price deviations for all decreasing paths. These constraints can be sat-

isfied, for example, by setting c sufficiently low.

By imposing (27), we focus attention on the incentive to undercut. With a decreasing

path, for any δ ≥ δ1, there is no incentive to marginally undercut the cartel price. The ex-

pression for δ1 in (28) is a natural generalisation of (16). With the salience relation (23), car-

tel members may also be tempted to undercut more aggressively to attract a higher market

share. The condition δ≥ δb is sufficient to prevent undercuts of this nature. This condition

arises from comparing the incentive to marginally undercut the price ps with the incentive

to undercut by a full cut-off level to the price ps+1. If δ ≥ δb , then the period s +1 marginal

undercutting constraint implies the “one-step” undercutting constraint in period s, for any s.

With the market shares in (24), if a one-step undercut is deterred, then all q-step undercuts

are also deterred, for q > 1.

Thus, for δ ≥ δb , marginal undercutting constraints determine the shape of the optimal

price path, and (25) and (26) suggest an optimal path that is closely related to that of the

main model. For δ ∈ [δ1,max{δa ,δb}), collusion may still be viable with a dispersed price

path. However, the optimal path is impacted if either i) δ< δa and monotonicity is violated

by (25); or ii) δ< δb and there is an incentive to undercut by at least one cut-off level with the

path (25). Example 4 below provides an illustration of i). Example 8 in Section 4.4 illustrates

ii).

Example 4 (Extended sale). Let n = 5, k = 4, and (β(1),β(2),β(3)) = (0.2,0.4,0.8). Figure 7

illustrates the equilibrium price path for a range of discount factors. With these parameters,

δa > δ1 > δb . For δ ≥ δa , the optimal price path described by Proposition 3 is qualitatively

similar to that of the main model (see Figure 3). The main difference is the proximity of the
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Figure 7: An extended sale
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p3 and p4 lines. With β(3) close to 1, obfuscation does not provide much protection in the

range (p4, p3]. Examining (25), we see that the gap between p3 and p4 narrows for lower

δ. For δ < δa , (25) violates the monotonicity of prices. The optimal path departs from (25)

and dictates instead that p3 = p4, where the prices p3 and p4 are determined by the binding

constraint v3 ≥ p(1). The equilibrium path then involves an extended sale in which the lowest

price is offered for two consecutive periods. �

Third, we consider an alternative adjustment to the salience relation (1):

φ(p, y) =
β(1) if p > y,

β(2) if p ≤ y,
(29)

where 0 ≤ β(1) < β(2) < 1. Under (29), consumers do not remember unusually low prices for

sure, but merely with a higher probability. We discuss the implications of this specification

using the following example.

Example 5 (Inattention towards all prices). Let n = 5, k = 4, and (β(1),β(2)) = (0.4,0.8). Figure

8 illustrates the resulting price path. For β(2) < 1, the profitability of deviation and punish-

ment are both affected by limited attentiveness. Undercutting below the lowest price no

longer delivers the entire market to the deviating firm. This reduces the profitability of un-

dercutting at the bottom of the cycle. At the same time, a deviating firm can no longer be held
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Figure 8: Inattention towards all prices
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to a zero-value punishment regime.22 Even if all rivals set a price of zero, positive profits are

possible for a firm with a positive price. The sustainability of collusion with a fixed price is

also affected. Collusion with a constant price of 1 is viable for δ≥ α(2,1)
1 n−1

α(2,1)
1 n−α(1,2)

n n
≈ 0.752 < n−1

n .

�

4.2 Asymmetric and mixed strategies

We have restricted attention to strategies that are symmetric, coordinated, and pure. Two

factors might limit the applicability of more general strategies. First, they complicate the

cartel’s problem by requiring coordination on the role of each member in addition to the

price path itself. In the case of mixed strategies, it is also difficult to verify adherence to car-

tel strategies. Second, such paths introduce contemporaneous price dispersion, a feature

absent from the main model. This presents an incentive for consumers to pay greater atten-

tion to prices by providing contemporaneous search benefits.

In this section, we discuss asymmetric strategies and then mixed strategies. For simplic-

ity, we focus primarily on two-player games, and we maintain c = 1, effectively ruling out

active search. Throughout, we define α=α1 and γ=α2.

22In Appendix B, we present a detailed construction of the optimal penal code that covers this case.
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4.2.1 Asymmetric strategies

Proposition 4 compares the use of symmetric and asymmetric pure strategies.

Proposition 4. If n = 2 and c = 1, there is no contemporaneous price dispersion in the market

equilibrium that maximises the average value of cartel members.

The proof relies on the following argument. In periods that do not contain supporting

prices, a price path involving contemporaneous price dispersion endows a higher market

share to the lower priced firm and a positive share to the higher priced rival. Therefore,

we can construct a symmetric price path of greater aggregate value by adopting the average

price in these periods. In periods with supporting prices, we assign the minimum price in the

current period to the symmetric price path. Because a high-priced firm receives no market

share in these periods, this leads to no loss in aggregate value. We show that all the required

incentive constraints are satisfied with this symmetric price path, leading to a sustainable

path of greater value.

With the following example, we show that it is possible to construct an asymmetric path

with higher average value for n > 2.

Example 6. Let n = 3, k = 3, β = 0.2, c = 1, and δ = 0.2. This results in α1 = 0.3707, α2 =
0.3307, α3 = 0.2987. The optimal symmetric price path has p1 = 1, p2 ≈ 0.6082, p3 ≈ 0.1135,

and value v1 ≈ 0.3784.

On the optimal asymmetric price path, all firms set p1 = 1 and p3 ≈ 0.113, while firms

set different prices in period 2: p1
2 = 0.6733 and p2

2 = p3
2 = 0.6033. This path has value for

each player of v1
1 ≈ 0.3781 and v2

1 = v3
1 ≈ 0.3802, yielding average value v1 = (v1

1 +v2
1 +v3

1)/3 ≈
0.3795.

The average value of the asymmetric path is higher than the symmetric path. Relative to

the symmetric path, one of the firms has a higher price in period 2 and a lower value of the

path, while the other two firms set a lower price in period 2 and receive a higher value. If a

cartel is contemplating whether to adopt the symmetric or asymmetric path, transfers may

be required if the asymmetric path is chosen. �

As in our main model, the price path is determined by undercutting constraints. When

n = 2, in periods benefitting from obfuscation, each undercutting constraint involves a mar-

ket share ofα in both the symmetric and asymmetric programs. However, for n = 3, this is no

longer the case. In the asymmetric program, some undercutting constraints involve market

shares of α1, while others involve α2. With α2 <α1, this permits a relaxation of the incentive

constraints and higher attendent prices in the asymmetric case, leading to a higher average

value.
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4.2.2 Mixed strategies

The following example illustrates the potential benefit of (symmetric) mixed strategies.

Example 7. Let n = 2, k = 3, β = 0.375, c = 1, and δ = 0.2. This results in α = 0.5703, γ =
0.4297. The optimal pure strategy path involves price pp

1 = 1, pp
2 ≈ 0.6539 and pp

3 ≈ 0.2298

and value v p
1 ≈ 0.5746, where the p superscript makes explicit the restriction to pure strate-

gies.

Now consider the use of mixed strategies. In order to provide the certain protection of

obfuscation, p3 must be fixed. We can also show that p1 = 1 is optimal. Thus, the opportunity

for mixing is confined to the intermediate price p2. Let G(p2) describe the cdf of p2. Every

price in the support of G must be equally profitable. On the optimal path, p3 ≈ 0.238 and G

has support [γ/α,1] with G(p2) = αp2−γ
p2(α−γ) . Note also that E [p2] = ∫ 1

γ/α
γ

p(α−γ) d p = γ
α−γ ln α

γ
≈

0.865. This results in a higher value v1 ≈ 0.596. We illustrate the distribution of p2 and the

other prices on the pure strategy and mixed strategy paths in Figure 9.

Because firms mix on the continuous support [γ/α,1], undercutting in the range (p3,γ/α)

offers no discrete jump in market share. Therefore, the marginal undercutting constraints

no longer apply in period 2. The expected value of p2 is higher under the mixed strategy

path. This relaxes all incentive constraints and allows a higher value of p3 relative to the

pure strategy path. �

4.3 Forward-looking consumers

In our model, consumers purchase every period. An alternative possibility is that some con-

sumers learn and exploit the intertemporal variation in prices by timing their purchases. In

this section, we consider an example with this feature.

Suppose that in each period, a unit measure of consumers enters the market. A fraction

1−θ of these consumers behave as before. They are impatient, and purchase in the current

period. The remaining fraction θ are patient and forward-looking consumers. In particular,

these consumers have discount factor δ= 1 and are able to anticipate perfectly the dynamic

path of prices. On the equilibrium path, they stay in the market until they observe the lowest

price in a cycle, in period k. Consequently, in period s of a cycle, there will be a measure

1−θ of impatient consumers and a measure sθ of forward-looking consumers. The impact

on cartel policies is then summarised by Proposition 5.

Proposition 5. Suppose δ< (n−1)/n. Let {p0
s }k

s=1 solve the program (12) to (15), and let {v0
s }k

s=1

be the associated cartel continuation values. Then the solution to the corresponding problem
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Figure 9: Mixed strategies
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with fraction θ of forward looking consumers involves optimal cartel prices of

ps = p0
s , s = 1, . . . ,k −1, pk =

(
1+ kθ

1−θ
)−1

p0
k .

The associated continuation values are

vs = (1−θ)v0
s , s = 1, . . . ,k.

Forward-looking consumers wait until the low point in the cycle to purchase, leading

to a build-up of consumers in period k. For a given price pk , this raises the profitability

of deviation in period k, placing greater strain on the incentive compatibility constraints of

the cartel. The remedy is to have a deeper sale that exactly offsets the increased demand

in period k. There is no other impact on the optimal price path, and there is no impact on

cartel sustainability. Notice also that forward-looking consumers are of no benefit to the

cartel. Their contribution to market demand is exactly offset by the need for a deeper sale.

However forward-looking consumers do offer an external benefit to their impatient peers,

leading to lower prices for those impatient consumers fortunate enough to enter the market

in period k.

The same argument extends to more general forms of forward-looking consumer be-

haviour. If some consumers are patient and anticipate lower prices, demand will rise as

prices fall through a cycle. To balance internal incentive constraints, the cartel simply needs

to accelerate price cutting during the cycle.
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4.4 Pricing dynamics and market characteristics

In this section, we discuss the implications of our model for comparison across markets. The

obfuscation properties of a price path are summarised by the salience relation φ(p, y) and

the attentiveness parameter β. In markets requiring frequent purchases, consumers may

develop a clearer understanding of the price distribution. Markets with highly visible prices

may also foster consumer price awareness. We can capture such variation across markets in

our model by adjusting β.

In a more general framework, the power to obfuscate may depend on other properties of

the price path such as the complexity of the path or the number of distinct prices in a cy-

cle. More complicated paths may achieve greater obfuscation. For example, pure sales paths

may be more transparent to consumers than distinct cycle paths. This opens up the pos-

sibility that firms may be able to overcome the attentiveness of consumers through greater

efforts at obfuscation. We could see more intricate price paths in market settings with highly

visible prices and frequent purchases.

We illustrate this point with two industry examples. Asymmetric cycles that resemble

distinct cycle paths are a common feature of retail petrol markets, while sales are endemic

in the market for retail groceries.23 Let us discuss first the market for petrol. In this market,

consumers purchase frequently and prices are prominently displayed on billboards that are

easily observed while driving. One might suspect that these conditions are unsuitable for

obfuscation. Nevertheless, coordinated asymmetric cycles are common. Consider two po-

tential explanations that are consistent with our model. First, the attentiveness parameter

may depend on the complexity of the price path. If β decreases in the length or complex-

ity of price cycles, then distinct cycle paths may be easier to sustain than sales paths. Such

paths are quite opaque to consumers while also minimising the contemporaneous benefits

of consumer search. Second, if attentiveness varies over the distribution of prices as in (23),

then distinct cycle paths may provide greater protection against deviation relative to pure

sales paths. We illustrate with the following example.

Example 8. Let n = 5, k = 4, and (β(1),β(2),β(3)) = (0.25,0.5,0.75). Figure 10 depicts the equi-

librium price path. For δ ≥ δb , the solution is described by Proposition 3 and the prices

p2, p3, and p4 are determined by binding marginal undercutting constraints. When δ ≤ δb ,

the one-step undercutting constraint v2 ≥ α(3,2)
1 p3 binds and determines p3 instead of the

23Explaining the source of pricing dynamics in these markets is beyond the scope of the current paper, and

we do not claim to do so here. For a discussion of coordination of asymmetric cycles in retail petrol markets,

see Byrne and de Roos (2015). On the relationship between retail petrol price dynamics and cost and demand

variation, see, for example, Noel (2007a).
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Figure 10: Edgeworth cycles
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marginal undercutting constraint v3 ≥ α(3)
1 p3. The marginal undercutting constraint v2 ≥

α(2)
1 p2 also binds and determines the value of p2. As a result, p2 and p3 are directly propor-

tional, p2/p3 =α(3,2)
1 /α(2)

1 .

For δ ∈ [δ1,δ2), the optimal path is a distinct cycle path.24 Comparing this solution to

that of Example 1 in Figure 3, we see that distinct cycle paths account for a much greater

range of discount factors. This is because distinct cycle paths provide greater obfuscation if

attentiveness varies according to (23). In a pure sales path, φ(ps , {yi }4
i=1) = β(3) for s = 1,2,3.

In a distinct cycle path, φ(ps , {yi }4
i=1) =β(s) for s = 1,2,3. �

The market for retail groceries is markedly different. When consumers decide where to

purchase groceries, the price comparison exercise is a complicated one. Many products are

included in the grocery bundle, and the price of each product may not be surveyed on each

shopping excursion. In addition, only a single retailer is typically observed at a time. In

these circumstances, only modest efforts may be required from retailers to obfuscate the

consumer price comparison exercise. Occasional sales for a subset of the product space

may be sufficient to hinder consumers in these efforts. Moreover, such sales may not need

to be synchronised between firms.

24Notice that for δ< δb , δ1 ≈ 0.59 is not determined by marginal undercutting constraints as in (28).
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Appendices

A Proofs

Proof of Lemma 1

Proof. If all prices are distinct and p(1) > y , a consumer will purchase at a price p(r ) if the r −1

lower prices are not salient and either p(r ) is salient or no prices are salient. If no prices are

salient, the consumer searches until she observes a price no higher than z. Thus, (1) implies

that αr is determined by (6).

Next, consider the cases in (5). If p j = p(1) = p(l ) ≤ y , then by (1), the l lowest prices

are salient and s j = 1/l . If p j > z, consumers will continue searching after observing p j .

If p(1) ≤ y and p j > p(1), then consumers recall the price p(1) and therefore purchase from

a store setting price p(1) without further search. Otherwise, we must have p(1) > y . If p j =
p(q) = p(q+l−1), then this price is shared between l competitors and s j =∑q+l−1

r=q αr /l .

Proof of Lemma 2

Proof. Suppose the k-period cycle σ(k) prescribes the constant price path ps = p ∈ (0,1], s =
1, . . . ,k. Then y = p. A deviation involving a higher price attracts a market share of 0 and is

unprofitable. Deviation by undercutting yields a market share of 1. The strategy σ(k) gives

value p/(n(1−δ)), while deviation by marginally undercutting yields payoff approaching p.

This deviation is unprofitable if and only if δ≥ (n −1)/n.

Proof of Lemma 3

Proof. It follows directly from (1) and (2) that σ(k) specifies an optimal penal code of zero

value. A standard application of the one-shot deviation principle is also possible. See, for

example, Fudenberg and Tirole (1991). We restrict attention to one-shot deviations below.

We first show that the prevention of marginal undercutting leads to the constraints in (13).

Suppose following history ht , σ(k) calls on players to choose price ps with ps ≥ pk . Then

the continuation value induced by σ(k) following ht is vs . If ps > pk , a marginal undercut of

rival prices yields market share α1. The restriction vs ≥ απs is therefore sufficient to deter

this deviation. If instead ps = pk , undercutting leads to market share 1 rather than α1, and

this case is dealt with in the constraints (14). Similarly, marginal undercutting of the price

associated with pk leads to a market share of 1, leading to the last constraint in (13).
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Next, we show that no other deviations involving undercutting the current price vector

are possible if the constraints in (14) are satisfied. Supposeσ(k) calls on ps to be played in the

current period with ps > pk . Any deviation p ′ ∈ [pk , ps) will yield market share α1, making a

marginal undercut the most profitable deviation. Alternatively, undercutting below pk will

yield market share of 1. This deviation is not profitable if vs ≥ pk , leading to the constraints

in (14).

Finally, consider a deviation p ′ > ps in period s. If p ′ > 1, consumers will not purchase,

and if p ′ > zs , consumers will continue searching. The optimal upward deviation is therefore

p ′ = min{1, zs}. This deviation is never profitable if vs ≥αn min{1, zs}. The constraints in (15)

thus ensure that there is no incentive to raise prices.

Proof of Lemma 4

Proof. 1) Initially, disregard the constraints in (14). Once we have described the equilibrium,

we show that in equilibrium these constraints are satisfied. Number the constraints in (13)

1, . . . ,k, where constraint s involves vs .

2) As a preliminary step let us prove that the multi-price equilibrium exists only if δ> α1n−1
α1n .

Add up all constraints in (13) to derive

((p1 +p2 +·· ·+pk )(1+δ+·· ·+δk−1))/(1−δk ) ≥α1n(p1 +p2 +·· ·+pk )+ (1−α1)npk .

Simplify the above expression

(p1 +p2 +·· ·+pk ) (1/(1−δ)−α1n) ≥ (1−α1)npk .

Given that prices are positive it follows that 1
1−δ >α1n, which means that δ> α1n−1

α1n .

3) Show that for each s = 1, . . . ,k, constraint s is either binding or ps = 1. Consider constraint

s and suppose otherwise that the constraint is not binding and that ps < 1. By increasing ps

until either ps = 1 or constraint s is binding, the objective function v is increased and all the

constraints in (13) are satisfied, leading to a contradiction.

4) Observe that constraint k must be binding. Suppose otherwise that pk = 1. Then (11)

and the last constraint imply vk = δv1 +1/n ≥ 1. With δ < n−1
n , this means that v ≥ v1 > 1.

Notice that setting price ps = 1 for all s yields value 1
n(1−δ) < 1, leading to a contradiction.

Consequently, pk < 1 and the last constraint is satisfied with equality, vk = pk . Using (11),

note that pk = δn
n−1 v1.

5) Next, we show that for each s = 2, . . . ,k, if ps = 1 then ps−1 = 1. If ps = 1 then constraint s

becomes vs ≥α1. Constraint s−1 stipulates vs−1 ≥α1ps−1. Using equality vs−1 = δvs+ps−1/n
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from (11), transform this to vs ≥ α1n−1
nδ ps−1. With δ > α1n−1

α1n , this implies that α1n > α1n−1
δ .

Consequently ps−1 = 1 satisfies constraint s −1.

6) We now show that pk−1 = min
{

1, δn
α1n−1 pk

}
. Using (11) to transform constraint k −1, we

obtain δvk + pk−1/n ≥ α1pk−1. Observing that constraint k is binding and rearranging, we

obtain pk−1 ≤ δn
α1n−1 pk . Applying point 3) above yields our desired result.

7) Similarly, we show that ps = min
{

1, δα1n
α1n−1 ps+1

}
, s = 2, . . . ,k−2. First, note that if constraint

s+1 is not binding then ps = 1. Alternatively, suppose constraint s+1 is binding. We can use

(11) to transform constraint s to obtain δvs+1 +ps/n ≥ α1ps . Using the fact that constraint

s+1 is binding, we obtain δα1ps+1+ps/n ≥α1ps or ps ≤ δα1n
α1n−1 ps+1. Applying point 3) above

yields our desired result.

8) Let us prove that v = v1. Note that points 6) to 7) and the fact that δ > α1n−1
α1n imply p1 ≥

p2 ≥ ·· · ≥ pk−1 > pk ; this result follows immediately.

9) We now show that p1 = 1. Notice that all constraints are homogeneous of degree one with

respect to prices. We first prove by contradiction that maxi pi = 1. With a choke price of

1, pi ≤ 1 ∀ i . Suppose that maxi pi < 1. Introduce the variables p ′
s = ps/maxi pi ∀ s ≤ k.

Because of first degree homogeneity, our transformed variables must satisfy the constraints.

Given that p ′
s > ps ∀ i , this means that v ′ > v . Consequently, there is a contradiction and

maxi pi = 1. Monotonicity of ps in s then ensures that p1 = 1.

10) Next, we show that in equilibrium the constraints in (14) are satisfied. Consider two

separate cases: pk−1 < 1 and pk−1 = 1. If pk−1 < 1 then from point 6) pk−1 = δn
α1n−1 pk .

This implies that α1pk−1 > pk . Combined with the fact that p1 ≥ p2 ≥ ·· · ≥ pk−1 and the

constraints in (13), this proves that the constraints in (14) hold. If pk−1 = 1 then using 5),

p1 = p2 = ·· · = pk−1 = 1. This means vk < vs for any s. Combined with the constraint k in

(13), this implies that the constraints in (14) hold.

11) Let us show that ∀ δ, the optimal sequence {pi }k
i=1, if it exists, must be unique. Assume

the opposite that there are two sequences. v1 must be the same for both sequences, other-

wise the one with the lower v1 is dominated. This will uniquely determine the value of pk

and then, recursively, pk−1,. . . , p1. The optimal sequence is therefore unique.

12) Next, derive δ1. Consider the situation when all constraints are binding. From constraint

k −1 it follows that vk−1 =α1pk−1. Using (11) it follows that vk = α1n−1
δα1n vk−1. Continuing this

process results in

vk =
(
α1n −1

δα1n

)k−i

vi , i = 1, . . . ,k −1. (30)

In particular, vk =
(
α1n−1
δα1n

)k−1
v1. Then, using (11) and vk = pk from constraint k, we obtain

δ1 =
(
α1n−1
α1n

) k−1
k (n−1

n

) 1
k .
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13) Next, note that v1(δ) is strictly increasing in δ, where v1(δ) is the value of v1 associated

with the optimal price sequence for discount factor δ. Consider any two discount factors

δ and δ′ with δ′ > δ. Let pk = {pi }k
i=1 be the optimal price sequence associated with δ

and p ′k be the corresponding sequence for δ′. Then, abusing notation slightly, v1(δ′, p ′k ) >
v1(δ′, pk ) > v1(δ, pk ), as required.

14) We now show that a multi-price equilibrium exists if and only if δ1 ≤ δ< n−1
n . Recall that

when δ = δ1, constraint 1 in (13) is binding and v1 = α1. Because v1 is strictly increasing in

δ, if δ< δ1 then v1 <α1, leading to violation of constraint 1. Similarly, if δ> δ1 then v1 >α1

and all constraints are satisfied.

15) Finally, we characterise the optimal path in terms of values rather than prices. Using

constraint k and (11), we obtain vk = nδ
n−1 v1. Next, consider the constraints for each period

s for s < k. Noting that ps ≤ 1 and using (11) yields vs ≤ 1/n +δvs+1. Using constraint s and

(11) leads to vs ≤ δα1n
α1n−1 vs+1. Employing the complementary slackness conditions of 3) then

yields vs = min{1/n +δvs+1, δα1n
α1n−1 vs+1}.

Proof of Lemma 5

Proof. At the knot discount factor δs , ps = 1, and constraint s is binding so that vs = α1.

Using equation (39), we can then show v1 = vk (n−1)
nδ =

(
α1n−1
α1n

)k−s
n−1

n
α1

δk−s+1 . On the other

hand, recursively employing (11), v1 can be represented as v1 = δv2 + 1/n = ·· · = δs−1vs +
δs−2/n +·· ·+1/n =α1δ

s−1 +δs−2/n +·· ·+1/n. Combining both relationships gives

δk + 1

α1n

s−1∑
i=1

δk−i =
(
α1n −1

α1n

)k−s (
n −1

n

)
.

The lemma therefore is proved.

Proof of Lemma 6

Proof. First let s = k − 1, that is consider the range δ ∈ [δk−1,δk ) and recall that there is a

sales path in this range. Using (11), note that v1 = (n−1)pk
nδ . Also, applying the definition

of v1 directly gives v1 = 1+δ+···+δk−2+δk−1pk

n(1−δk )
. Combining results in pk = δ(1−δk−1)

(n(1−δk )−1)(1−δ)
and

v1 = (n−1)(1−δk−1)
n(1−δ)(n(1−δk )−1)

.

Now using a similar approach let us prove the statement for any s = 1, . . . ,k − 2. That

is, consider the range δ ∈ [δs ,δs+1). In this case condition v1 = (n−1)pk
nδ still holds, while the

second condition transforms to v1 = 1+δ+···+δs−1+δs ps+1+···+δk−1pk

n(1−δk )
. Note that for δ ∈ [δs ,δs+1),

the following condition holds: pk < pk−1 < ·· · < ps+1 < 1. From Lemma 4 it then follows that
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pk−1 = δn
α1n−1 pk , pk−2 = δn

α1n−1
δα1n
α1n−1 pk , . . . , ps+1 = δn

α1n−1

(
δα1n
α1n−1

)k−s−2
pk . Combining these

conditions results in pk = δ(1−δs )
(n(1−(

α1n
α1n−1 )k−s−1δk )−1)(1−δ)

and v1 = (n−1)(1−δs )
n(1−δ)(n(1−(

α1n
α1n−1 )k−s−1δk )−1)

.

Continuity follows from Lemma 5. The denominator of pk and v1 are non-zero for δ ∈
[δs ,δs+1), establishing continuity in δ for this region. The lemma therefore is proved.

Proof of Lemma 7

Proof. 1) Consider constraint s of (15), where s = 1, . . . ,k−1. If ps ≥ 1−c, then (15) implies that

ps ≥αn . If ps < 1− c, then (15) implies that ps ≥αn(ps + c), and therefore ps ≥αnc/(1−αn).

Recall that ps is decreasing in s. Thus, (15) is equivalent to the implicit condition

pk−1 ≥
αn/α1 if pk−1 ≥ 1− c,

αn c
(1−αn )α1

if pk−1 < 1− c.
(31)

2) Suppose that αn ≥ 1 − c, and observe that this is equivalent to the condition αnc/(1 −
αn) ≥ αn . If pk−1 ≥ αn/α1, then pk−1 ≥ 1− c and (31) is satisfied. Next, consider the case

pk−1 < αn/α1. The condition αn ≥ 1− c implies that αnc/(1−αn) ≥ αn and therefore that

pk−1 < αnc/((1−αn)α1), and (31) is not satisfied. Therefore, when αn ≥ 1− c, pk−1 ≥ αn/α1

is equivalent to (31).

3) Suppose instead that αn < 1− c. This is equivalent to the condition αnc/(1−αn) < αn .

Consider first pk−1 ≥ αnc/((1−αn)α1). If pk−1 < 1− c, then by 1) above, (31) is satisfied. If

instead pk−1 ≥ 1− c, then because αn < 1− c, pk−1 ≥ αn/α1, and (31) again holds. Thus,

if pk−1 ≥ αnc/((1−αn)α1), then (31) is satisfied. Next, examine the case pk−1 < αnc/((1−
αn)α1). This implies αn/α1 > pk−1. This contradicts (31). Therefore, when αn/α1 < 1− c,

pk−1 ≥αnc/((1−αn)α1) is equivalent to (31).

4) Observe that 1), 2) and 3) imply that the relenting constraints (15) are satisfied iff pk−1 ≥ γ,

where γ is defined in (19).

Proof of Lemma 8

Proof. From Lemma 4, pk = δv1n/(n −1) and pk−1 ≤ δn
α1n−1 pk . The lowest value of v1 occurs

when all constraints are binding and δ = δ1. Therefore, v1 = α1 and pk−1 = δ2
1n2α1/((n −

1)(α1n − 1)). Hence, δ2
1n2α1 ≥ γ(n − 1)(α1n − 1). Substituting for δ1 and rearranging, we

obtain

γ≤
(
α1n −1

α1(n −1)

) k−2
k

. (32)
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Equation (19) implies that γ> 0 if β= 0 and c > 0. Therefore, (32) is violated when β= 0.

Next, observe that when β= 1, γ= 0 and the right hand side of (32) is positive, and therefore

(32) is satisfied. Finally, note that for c > 0, γ′(β) < 0, and the right hand side of (32) is strictly

increasing in β. Therefore, there exists β1 such that for any β ≥ β1, the prices {ps}k
s=1 also

satisfy the constraints in (15), and for β<β1, they do not. This establishes part i).

Observe that γ is independent of δ. Because v1 is continuous and strictly increasing in

δ, pk = δv1n
n−1 and pk−1 = min

{
1, δn

α1n−1 pk

}
, pk−1 is a strictly increasing continuous function

of δ. If δ= n−1
n , a fixed price can be supported in equilibrium and therefore pk−1 = 1 > γ. If

δ = 0, then no collusive equilibrium exists and we must have pk−1 = 0 < γ. Therefore, there

is a unique δ̂ such that γ(β) = pk−1(β, δ̂). An equilibrium exists if and only if δ ≥ δ̂. This

establishes part ii).

For anyβ and n, (19) implies that as c approaches 0, γ(n,β,c) converges to 0 for any c < c.

From Lemma 4, recall pk = δnv1/(n −1) > 0 and pk−1 = min
{

1, δn
α1n−1 pk

}
. Hence, for any β,

there exists c such that for any c < c, γ(n,β,c) < pk−1, and the relenting constraints in (15) do

not bind. This establishes part iii).

Proof of Lemma 9

Proof. The knot discount factors are characterized by vs = α1 for s = 2, . . . ,k, and equa-

tion (17). We can represent v1 = δv2+1/n = ·· · = δs−1vs+δs−2/n+·· ·+1/n = δs−1α1+δs−2/n+
·· ·+1/n.

Substitute v1 into equation (17) to derive

δv1 =
(
α1n −1

α1n

)k−s (
n −1

n

)
α1δ

s−k . (33)

Using Lemma 4 and substituting δv1 from equation (33), we derive

pk−1 =
(
α1n −1

α1n

)k−s−1

δs+1−k . (34)

The s-th zone exists whenever pk−1 ≥ αn/α1 is feasible. The critical value of δ is then δ =
α1n−1
α1n

(
α1
αn

) 1
k−s−1

. Substitute this value in equation (17) and simplify to derive

(
α1n −1

α1n

)s (
α1

αn

) k
k−s−1 + 1

α1n

s−1∑
i=1

(
α1n −1

α1n

)s−i (
α1

αn

) k−i
k−s−1 = n −1

n
. (35)

Define the terms

X = α1n −1

α1n
, Y = α1

αn
,
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and note that 0 < X < 1, Y > 1, and both X and Y are increasing functions of β. Use X and Y

to rewrite equation (35),

X sY
k

k−s−1 + (1−X )
(

X s−1Y
k−1

k−s−1 +·· ·+X Y
k−s+1
k−s−1

)
= n −1

n
.

With some manipulation, we obtain

X s
(
Y

s−1
k−s−1 −Y

s−2
k−s−1

)
+X s−1

(
Y

s−2
k−s−1 −Y

s−3
k−s−1

)
+·· ·+X = n −1

n
Y − k−s+1

k−s−1 .

The left hand side of this expression is increasing in β while the right hand side is de-

creasing in β. Also, note that if β = 0, then X = 0 which implies that the left hand side is

equal to zero. Alternatively, if β = 1, then αn = 0 and α1 = 1 and the left hand side becomes

infinite. Therefore, there is a unique solution β = βs . Increasing β will increase pk−1 (see

equation (34)), decrease αn , and make the constraint pk−1 ≥αn/α1 easier to satisfy. Conse-

quently, it is proved that for β>βs the s-th zone exists. The lemma therefore is proved.

Proof of Proposition 1

Proof. The result follows directly from Lemmas 2 to 9.

Proof of Proposition 2

Proof. We use the notation x = {pi }∞i=1 to denote a price path, and xs
r = {pr , . . . , ps} to denote

a subpath. We first consider the optimal path abstracting from initial conditions. In the final

step, we impose the initial condition yo =∞.

1) Consider any consecutive supporting prices pr and ps with r < s. Every price pi for

r < i < s is supported but not supporting. Therefore, pi must satisfy vi ≥ pr , and either pi = 1

or vi =α1pi . Based on these conditions, we established in Lemma 4 that: for r +1 < i < s, if

pi = 1, then pi−1 = 1; and for r < i ≤ s, pi and vi are decreasing in i .

2) We now show that no supporting price is reliant on another price. Suppose otherwise

that the supporting price pr is reliant, vr < pr . If s > r + 1, then vs−1 ≥ pr , which implies

vs−1 > vr . We can therefore increase the value of the path without violating any constraints

by excising the subpath xs−2
r . If instead s = r + 1 then, because pr is supporting, we must

have pr < ps . Hence, vs ≥ pr . This implies vs > vr , and therefore excising pr will increase the

value of the path without violating any constraints.

3) Next, we show that vr = pr for every supporting price pr . In an optimal path, the

supporting price pr is maximised subject to the constraints vr ≥ pr , vs−1 ≥ pr , and vs ≥ pr .

At least one of these constraints must be satisfied with equality. The first constraint follows
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because vr is not reliant. Recall that ps−1 is the lowest price among the supported prices

between pr and ps . The second constraint prevents undercutting below pr in period s −1.

This constraint applies only if s > r + 1. The third constraint prevents undercutting below

pr for period s in the event that pr < ps . Suppose first that vs = pr and pr < ps . However,

ps is not reliant, which implies vs ≥ ps , leading to a contradiction. Next, suppose vs−1 = pr .

This implies vs < pr , and thus vr > vs . Therefore, if xs−1
r is repeated forever from period s,

no constraints will be violated and the value of the path will be increased. Hence, the first

constraint must bind, as contended.

4) Given the consecutive supporting prices, pr , ps , and pt , focus attention on the asso-

ciated subpaths xs−1
r and x t−1

s . We show that these subpaths are identical. Suppose that

ps < pr . This implies vs < vr . Because no price outside the subpath x t−1
s is reliant on ps ,

the subpath x t−1
s can be replaced by the subpath xs−1

r without violating any incentive con-

straints. This would increase the value of the path, leading to a contradiction. Alternatively,

suppose pr < ps , and hence vr < vs . No price outside the subpath xs−1
r is reliant on pr ,

and therefore the subpath xs−1
r can be replaced by the subpath x t−1

s without violating any

constraints. This again increases the value of the path, leading to a contradiction. Hence,

pr = ps . Finally, recall that the complementary slackness conditions described in 1) (and in

more detail in Lemma 4) completely determine the remaining prices in each subpath, ensur-

ing each subpath is identical. Extending the argument to all consecutive subpaths, it follows

that all subpaths are identical.

5) Note that with memory m, for any consecutive supporting prices pr and ps , the sub-

path xs−1
r is no longer than m + 1 periods. Consider a repeated k period subpath, and let

pr be the supporting price. Up to m periods of the path can be supported by pr , while pr

requires no support. Therefore, k ≤ m +1.

6) Next, observe that the k period path with k = m + 1 satisfies all the constraints of

Lemma 3. For s = 1, . . . ,m, the price pm+1 is in consumer memory and the constraints are

identical. In period m +1, the price pm+1 is no longer in memory, but this does not impact

on the constraints. It is then a corollary of Proposition 1 that the optimal m + 1 path with

memory m is sustainable if and only if δ≥ δ∗.

7) We now show that the optimal m+1 period path dominates all shorter paths. Suppose

instead that the path {p̃s}k
s=1 is optimal, with k < m + 1. Prepend p ′

0 = 1 to form the path

{p ′
s}k

s=0, where p ′
s = p̃s for s = 1, . . . ,k. Because p̃s ≤ 1 for s = 1, . . . ,k −1, and p̃k < 1, the value

of the new path is greater.

Next, notice that v ′
s > ṽs for s = 1, . . . ,k. Hence, if the incentive constraints were satisfied

for the original path, then they must also be satisfied in periods s = 1, . . . ,k for the new path.

Also observe that p ′
0 = p ′

1 = 1 and v ′
0 > v ′

1. Therefore, if the constraints in period 1 are sat-
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isfied, then the constraints in period 0 must also be satisfied. Thus, the k +1 period path is

sustainable and of higher value than the k period path, leading to a contradiction. Therefore,

the optimal path is of length m +1 periods.

8) It remains to specify how the path is initiated from the null history. Recall that y0 =∞.

Thus, there is no finite price in memory in period 0. It follows that p0 is the lowest price in

memory at the commencement of period 1. That is, y1 = p0. Therefore p0 is a supporting

price. Combining with steps 1) - 7), it follows that σ̃(m+1) is both feasible and optimal.

Proof of Proposition 3

Proof. (1) First, observe that {ps}k
s=1 and {vs}k

s=1 must satisfy the incentive constraints

vs ≥α(r,s)
1 pr , r ≥ s, s = 1, . . . ,k, (36)

vs ≥α(r,s)
n min{pr , zs}, r < s, s = 1, . . . ,k. (37)

The constraints in (36) deter deviation by undercutting the cartel price ps , and the con-

straints in (37) deter relenting in period s. The derivation follows the argument of Lemma 3.

Because of the more complex form of (23), undercutting and relenting to alternative cut-off

prices must be considered. The relenting constraints are satisfied by assumption. We ini-

tially consider only the marginal undercutting constraints

vs ≥α(s)
1 ps , s = 1, . . . ,k, (38)

and suppose all other undercutting constraints are satisfied. In 15)-17) below, we show that

these constraints do hold for the optimal path.

2) The condition δ≥ max{δa ,δb} implies that δ≥ α(s−1)
1 n−1

α(s)
1 n

for s = 2, . . . ,k.

3) We show that for each s = 1, . . . ,k, constraint s is either binding or ps = 1. Consider con-

straint s and suppose otherwise that the constraint is not binding and that ps < 1. By in-

creasing ps until either ps = 1 or constraint s is binding, the objective function v is increased

and all the constraints in (38) are satisfied, leading to a contradiction.

4) Observe that constraint k must be binding. Suppose otherwise that pk = 1. Then (11)

and the last constraint imply vk = δv1 +1/n ≥ 1. With δ < n−1
n , this means that v ≥ v1 > 1.

Notice that setting price ps = 1 for all s yields value 1
n(1−δ) < 1, leading to a contradiction.

Consequently, pk < 1 and the last constraint is satisfied with equality, vk = pk . Using (11),

note that pk = δn
n−1 v1.

5) Next, we show that for each s = 2, . . . ,k, if ps = 1 then ps−1 = 1. If ps = 1 then constraint

s becomes vs ≥ α(s)
1 . Constraint s − 1 stipulates vs−1 ≥ α(s−1)

1 ps−1. Using equality vs−1 =
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δvs + ps−1/n from (11), transform this to vs ≥ α(s−1)
1 n−1

nδ ps−1. With δ ≥ α(s−1)
1 n−1

α(s)
1 n

, this implies

that α(s)
1 ≥ α(s−1)

1 n−1
nδ . Consequently ps−1 = 1 satisfies constraint s −1.

6) We now show that pk−1 = min

{
1, δn

α(k−1)
1 n−1

pk

}
. Using (11) to transform constraint k−1, we

obtain δvk + pk−1/n ≥ α(k−1)
1 pk−1. Observing that constraint k is binding and rearranging,

we obtain pk−1 ≤ δn
α(k−1)

1 n−1
pk . Applying point 3) above yields our desired result.

7) Similarly, we show that ps = min

{
1,

δα(s+1)
1 n

α(s)
1 n−1

ps+1

}
, s = 2, . . . ,k − 2. First, note that if con-

straint s +1 is not binding then ps = 1. Alternatively, suppose constraint s +1 is binding. We

can use (11) to transform constraint s to obtain δvs+1+ps/n ≥α(s)
1 ps . Using the fact that con-

straint s +1 is binding, we obtain δα(s+1)
1 ps+1 +ps/n ≥ α(s)

1 ps or ps ≤ δα(s+1)
1 n

α(s)
1 n−1

ps+1. Applying

point 3) above yields our desired result.

8) Let us prove that v = v1. Note that points 2), 6), and 7) imply p1 ≥ p2 ≥ ·· · ≥ pk−1 > pk ; this

result follows immediately.

9) We now show that p1 = 1. Notice that all constraints are homogeneous of degree one with

respect to prices. We first prove by contradiction that maxi pi = 1. With a choke price of

1, pi ≤ 1 ∀ i . Suppose that maxi pi < 1. Introduce the variables p ′
s = ps/maxi pi ∀ s ≤ k.

Because of first degree homogeneity, our transformed variables must satisfy the constraints.

Given that p ′
s > ps ∀ i , this means that v ′ > v . Consequently, there is a contradiction and

maxi pi = 1. Monotonicity of ps in s then ensures that p1 = 1.

10) Let us show that ∀ δ, the optimal sequence {pi }k
i=1, if it exists, must be unique. Assume

the opposite that there are two sequences. v1 must be the same for both sequences, other-

wise the one with the higher v1 is chosen. This will uniquely determine the value of pk and

then, recursively, pk−1,. . . , p1. The optimal sequence is therefore unique.

11) Next, derive δ1. Consider the situation when all constraints are binding. From constraint

k−1 it follows that vk−1 =α(k−1)
1 pk−1. Using (11) it follows that vk = α(k−1)

1 n−1

δα(k−1)
1 n

vk−1. Continuing

this process results in

vk =
k−i∏
s=1

(
α(k−s)

1 n −1

δα(k−s)
1 n

)
vi , i = 1, . . . ,k −1. (39)

In particular, vk = ∏k−1
s=1

(
α(k−s)

1 n−1

δα(k−s)
1 n

)
v1. Then, using (11) and vk = pk from constraint k, we

obtain δ1 =∏k
s=1

(
α(s)

1 n−1

α(s)
1 n

) 1
k

.

12) Next, note that v1(δ) is strictly increasing in δ, where v1(δ) is the value of v1 associated

with the optimal price sequence for discount factor δ. Consider any two discount factors
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δ and δ′ with δ′ > δ. Let pk = {pi }k
i=1 be the optimal price sequence associated with δ

and p ′k be the corresponding sequence for δ′. Then, abusing notation slightly, v1(δ′, p ′k ) >
v1(δ′, pk ) > v1(δ, pk ), as required.

13) We now show that a multi-price equilibrium exists if and only if δ1 ≤ δ< n−1
n . Recall that

when δ= δ1, constraint 1 in (38) is binding and v1 =α(1)
1 . Because v1 is strictly increasing in

δ, if δ< δ1 then v1 <α(1)
1 , leading to violation of constraint 1. Similarly, if δ> δ1 then v1 >α(1)

1

and all constraints are satisfied.

14) Next, we characterise the optimal path in terms of values rather than prices. Using con-

straint k and (11), we obtain vk = nδ
n−1 v1. Next, consider the constraints for each period s

for s < k. Noting that ps ≤ 1 and using (11) yields vs ≤ 1/n +δvs+1. Using constraint s and

(11) leads to vs ≤ δα(s)
1 n

α(s)
1 n−1

vs+1. Employing the complementary slackness conditions of 3) then

yields vs = min{1/n +δvs+1,
δα(s)

1 n

α(s)
1 n−1

vs+1}. This implies vs is decreasing in s.

15) Because vk = pk and vs is decreasing in s, this implies vs > pk . Hence, there is no incen-

tive to undercut to the bottom of the cycle in any period s < k.

16) We now show that there is no incentive to undercut by a full cut-off level: vs ≥α(s+1,s)
1 ps+1.

Using vs ≥ δα(s)
1 n

α(s)
1 n−1

vs+1 and marginal undercutting constraint s+1 yields vs ≥ δα(s)
1 n

α(s)
1 n−1

α(s+1)
1 ps+1.

Comparison with the one-step undercutting constraint vs ≥ α(s+1,s)
1 ps+1 gives the sufficient

condition

δ≥ α(s)
1 n −1

α(s)
1 n

α(s+1,s)
1

α(s+1)
1

. (40)

The condition δ≥ δb is thus sufficient to deter all one-step undercutting deviations.

17) We show, inductively, that if δ≥ δb , then there is no incentive to undercut by q > 1 steps.

Suppose there is no incentive to undercut q steps in any period s = 1, . . . ,k −q −1. In period

s + 1, this means vs+1 ≥ α
(s+q+1,s+1)
1 ps+q+1. Combining with the condition vs ≥ δα(s)

1 n

α(s)
1 n−1

vs+1

yields vs ≥ α
(s+q+1,s+1)
1

δα(s)
1 n

α(s)
1 n−1

ps+q+1. If this implies that vs ≥ α
(s+q+1,s)
1 ps+q+1, then a q +1-

step undercut is deterred. A sufficient condition is therefore δα(s+q+1,s+1)
1

α(s)
1 n

α(s)
1 n−1

≥α
(s+q+1,s)
1

or

δ≥ α
(s+q+1,s)
1

α
(s+q+1,s+1)
1

α(s)
1 n −1

α(s)
1 n

. (41)
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The one-step condition (40) at period s +q implies (41) if

α(s+1,s)
1

α(s+1)
1

≥ α
(s+q+1,s)
1

α
(s+q+1,s+1)
1

⇔ α
(s+q+1,s+1)
1

α
(s+q+1,s)
1

−1 ≥ α(s+1)
1

α(s+1,s)
1

−1

⇔ (1−β(s+q+1))((1−β(s+1))n−1 − (1−β(s))n−1)

nβ(s+q+1) + (1−β(s+q+1))(1−β(s))n−1
≥ (1−β(s+1))((1−β(s+1))n−1 − (1−β(s))n−1)

nβ(s+1) + (1−β(s+1))(1−β(s))n−1

⇔ nβ(s+1)(1−β(s+q+1)) ≤ nβ(s+q+1)(1−β(s+1)),

where the final inequality holds because β(s+q+1) ≥ β(s+1). Hence, there is no incentive for a

q +1-step undercut. Applying the argument inductively, there is no incentive for any i -step

undercut for i ≥ 1.

Proof of Proposition 4

Proof. Describe a generic two-firm asymmetric path by the pair of price paths {p1
s }∞s=1, {p2

s }∞s=1,

where p1
s and p2

s are the prices charged by Firms 1 and 2 in period s, respectively. Introduce a

derivative symmetric path {p3
s }∞s=1, defined as follows. In periods that contain no supporting

prices, let p3
s = (p1

s + p2
s )/2. In periods containing a supporting price, set p3

s = min{p1
s , p2

s }.

Define the associated profits and continuation values in period s for Firm j as π j
s and v j

s ,

respectively, where Firm 3 indicates a representative firm on the symmetric path.

We first establish that the value of the symmetric path is greater than the average value

of the asymmetric price paths for any period s. In periods containing no supporting prices,

the average profit of the asymmetric path is

(π1
s +π2

s )/2 = (αmin{p1
s , p2

s }+γmax{p1
s , p2

s })/2,

while the profit of the symmetric path is

π3
s = (p1

s +p2
s )/4.

Because α > γ, it follows that the profit of the symmetric path is greater. In periods con-

taining a supporting price, average profits for both symmetric and asymmetric paths are the

same:

(π1
s +π2

s )/2 =π3
s = min{p1

s , p2
s }.
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Combining all periods, it then follows that

v3
s ≥ (v1

s + v2
s )/2. (42)

Next, we verify that all incentive constraints are satisfied for the symmetric path if they

are satisfied for each asymmetric path. Symmetric paths must satisfy three types of con-

straint: marginal undercutting, undercutting to the supporting price, and relenting. First,

consider periods with no contemporaneous supporting prices and recall that v3
s ≥ (v1

s +v2
s )/2

and p3
s = (p1

s +p2
s )/2. If the marginal undercutting constraints are met for both asymmetric

paths then v j
s ≥αp j

s , for j = 1,2. It follows that v3
s ≥αp3

s , and the marginal undercutting con-

straint is satisfied for the symmetric path. Let the supporting price in period s be p. To pre-

vent undercutting below the supporting price for the asymmetric paths requires v j
s ≥ p for

j = 1,2, which implies that v3
s ≥ p. Hence, undercutting to the supporting price is deterred

in the symmetric path. By assumption, search costs are sufficiently high that the reserva-

tion price is no lower than the choke price. Hence, the value of an upward price deviation is

equal to γ for all paths. The relenting constraints for the asymmetric paths are then v j
s ≥ γ

for j = 1,2, which implies that v3
s ≥ γ. Hence, the relenting constraint is satisfied for the

symmetric path.

Second, consider incentive constraints for periods with a supporting price. Recall that

v3
s ≥ (v1

s + v2
s )/2 and p3

s = min{p1
s , p2

s }. To prevent undercutting below the supporting price

for the asymmetric paths requires v j
s ≥ min{p1

s , p2
s }, for j = 1,2, which implies that v3

s ≥
min{p1

s , p2
s }. Hence, there is no incentive to undercut to the supporting price on the sym-

metric path. Next, notice that there are no separate marginal undercutting constraints on

the symmetric path in periods with a supporting price. The relenting constraints for the

asymmetric paths are again v j
s ≥ γ for j = 1,2, which implies that v3

s ≥ γ. Hence, the relent-

ing constraint is satisfied for the symmetric path.

The above arguments establish that for every asymmetric path, there exists a symmetric

path with weakly higher average value that satisfies all incentive constraints. If there exists a

period s with no supporting prices in which p1
s 6= p2

s , then the inequality (42) is strict. Sup-

pose instead that the asymmetric path involves p1
s 6= p2

s only in periods with a supporting

price. In this case, there exists s with v1
s 6= v2

s on the asymmetric path. To prevent undercut-

ting below the supporting price requires min{v1
s , v2

s } ≥ min{p1
s , p2

s }. On the optimal path, this

constraint must be binding. For the symmetric path, v3
s > min{v1

s , v2
s }. Hence, there is scope

to raise p3
s without violating the marginal undercutting constraint on the symmetric path.

Therefore, there exists a symmetric path with higher average value that satisfies all incentive

constraints.
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Proof of Proposition 5

Proof. Redefine the cartel value

v1 = (1−θ)p1 +δ(1−θ)p2 +·· ·+ (1−θ+kθ)pk

n(1−δk )
,

and define vs , s = 2, . . . ,k analogously. Applying the same steps as Lemma 3, the cartel’s

problem becomes

max
p1...pk∈[0,1]

v (43)

subject to

vs ≥ (1−θ)α1ps , s = 1, . . . ,k −1, and vk ≥ (1−θ+kθ)pk ,

vs ≥ (1−θ+ sθ)pk , s = 1, . . . ,k −1,

vs ≥ (1−θ)αn min{1, zs}, s = 1, . . . ,k −1.

Let

v̂s = vs

1−θ , s = 1, . . . ,k, p̂s = ps , s = 1, . . . ,k −1, p̂k =
(
1+ kθ

1−θ
)

pk , (44)

and rewrite the constraints

v̂s ≥α1p̂s , s = 1, . . . ,k −1, and v̂k ≥ p̂k , (45)

v̂s ≥
(
1− (k − s)θ

1−θ+kθ

)
p̂k , s = 1, . . . ,k −1, (46)

v̂s ≥αn min{1, zs}, s = 1, . . . ,k −1, (47)

Comparison of equations (13) - (15) and (45) - (47) reveals that only the constraints in

(46) have changed. These constraints were not binding in the original problem. They are

now easier to satisfy, so they will not be binding in the current problem. Hence,

ps = p0
s , s = 1, . . . ,k −1, pk =

(
1+ kθ

1−θ
)−1

p0
k ,

as required. Further, vs = (1−θ)v0
s , s = 1, . . . ,k.

47



B Profits and punishment

An important implication of our model is that if consumers are imperfectly attentive, it is

possible that price dispersion could make collusion easier to sustain. The mechanism is

quite intuitive. Price variation makes it harder for consumers to detect modest price under-

cutting. This affects the sustainability of collusion by reducing the payoffs to firms deviating

from cartel policies. However, if price dispersion is effective at obfuscating the price process,

it is also possible that the ability of the cartel to punish a defector is impacted. In this section,

we examine the trade-off involved if this is the case.

First, we introduce some additional notation and definitions.25 Let p ≡ (p1, p2, . . . , pn)

denote a price vector, and p j the associated vector with p j removed. Let ~p ≡ (p, p, . . . , p)

describe a vector of n prices in which each firm chooses the same price p. Let ~p j be the

corresponding n−1 price vector with the price of firm j omitted. We generalise the model in

the body of the paper by allowing attention to be triggered by unusually low and high prices.

Thus,

φ
(
p, p, p

)
=

β if p ∈ (p, p);

1 otherwise,

where p and p are the lower and upper bounds, respectively. Profits for firm j are then

given by π j (p; p, p) = R(p j )s j (p; p, p). Define π∗
j (p j ; p, p) ≡ supp ′ π j (p ′,p j ; p, p). Letting p̆ j

minimise π∗
j (p j ; p, p), minmax profits for j are then given by π∗

j (p̆ j ; p, p).

We adopt the following restrictions on the firm’s profit function.

Assumption 1. For all j and k 6= j ,

∂s j (p; p, p)

∂pk
≥ 0.

Assumption 2. For all j and all p,

s j (~p, p, p) = 1

n
.

Assumption 3. There exists p̃ ≤ p such that for all p ∈ [p̃, p] and all j ,

π j (~p; p, p) >π∗
j (~0 j ; p, p).

Assumption 4. For all j and all p < p̂,

π∗
j (~p j ; p, p)−π j (~p; p, p)

is nondecreasing in p.

25Our exposition is closely related to Lambson (1987).
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Assumption 1 imposes monotonicity and implies that marginal cost pricing by all other

firms minmaxes firm j ’s profits. By Assumption 2, the market is shared equally if all firms

set the same price. Assumption 3 ensures that it is possible for firms to earn collusive profits

that are greater than the minmax profit level. Assumption 4 suggests that the returns from

deviation are weakly increasing in prices.

A punishment for firm j is a sequence of price vectors τ j = {p(t , j )}∞t=0, and a simple penal

code is a vector of punishments τ= (τ1,τ2, . . . ,τn). The value to firm j if the punishment for

firm i is followed is V j (τi ; p, p) = ∑∞
t=0δ

tπ j (p(t , i ); p, p). A simple penal code is credible if

∀i , j , and t ′,

∞∑
t=0

δtπ j (p(t ′+ t , i ); p, p) ≥ π∗
j (p j (t ′, i ); p, p)+δV j (τ j ; p, p). (48)

If Firm j receives minmax profits in every period, she obtains her security value v(p, p) ≡
π∗

j (p̆ j ; p, p)/(1−δ). For any credible penal code τ, and for all j , we must have V j (τ j ; p, p) ≥
v(p, p). Define a security level punishment τ j as the punishment that achieves the value

V j (τ j ; p, p) = v(p, p), and the associated simple penal code as τ. An optimal penal code is a

simple penal code that minimises V j (τ j , p, p), subject to the constraint that it is credible.

Consider the infinitely repeated two period cycle {pa , pb} where pa , pb ∈ [p, p] and p ≥
p̃.26 A fixed price is a special case in which pa = pb . Let Φ(p, p) be the set of two-period

cycles sustainable by τ. Then, {pa , pb} ∈Φ(p, p) if and only if

π j (~pa ; p, p)+δπ j (~pb ; p, p)

1+δ ≥ (1−δ)π∗
j (~pa, j ; p, p)+δπ∗

j (~0 j ; p, p), (49)

π j (~pb ; p, p)+δπ j (~pa ; p, p)

1+δ ≥ (1−δ)π∗
j (~pb, j ; p, p)+δπ∗

j (~0 j ; p, p). (50)

Proposition 6. Suppose Assumptions 1-4 hold. Fix pa > p̃ such that {pa , pa} ∈Φ(pa , pa) and

let δ∗(pa) be the solution to

π j (~pa ; pa , pa) = (1−δ∗(pa))π∗
j (~pa, j ; pa , pa)+δ∗(pa)π∗

j (~0 j ; pa , pa). (51)

Then there exists a price pb < pa and a discount factorδ< δ∗(pa) such that {pa , pb} ∈Φ(pb , pa)

if equations (52) and (53) hold:

26The extension to a finite k period cycle is immediate.
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δ∗(pa)

1+δ∗(pa)

(
π j (~pb ; pb , pa)−π j (~pa ; pa , pa)

)> (52)

(1−δ∗(pa))
(
π∗

j (~pa, j ; pb , pa)−π∗
j (~pa, j ; pa , pa)

)
+δ∗(pa)

(
π∗

j (~0 j ; pb , pa)−π∗
j (~0 j ; pa , pa)

)
,

1

1+δ∗(pa)

(
π j (~pb ; pb , pa)−π j (~pa ; pa , pa)

)> (53)

(1−δ∗(pa))
(
π∗

j (~pb, j ; pb , pa)−π∗
j (~pa, j ; pa , pa)

)
+δ∗(pa)

(
π∗

j (~0 j ; pb , pa)−π∗
j (~0 j ; pa , pa)

)
.

Proof. 1. By Assumption 1, security level payoffs are given by

v(p, p) =
π∗

j (~0 j ; p, p)

1−δ . (54)

2. Let δ∗(pa , pb ; p, p) be the lowest discount factor satisfying (49) and (50). Notice that the

left hand side of (50) is increasing in δ and the right hand side of (50) is decreasing in δ.

Therefore, (50) is satisfied for δ≥ δ∗(pa , pb ; p, p).

Differentiating (49) by δ, the following condition ensures that (49) will also be satisfied

for δ≥ δ∗(pa , pb ; p, p):

π j (~pb ; p, p)−π j (~pa ; p, p)

(1+δ)2
>π∗

j (~0 j ; p, p)−π∗
j (~pa, j ; p, p). (55)

We can always choose pb sufficiently close to pa to satisfy (55). Combining these results,

there exists pb < pa such that (49) and (50) are satisfied for δ≥ δ∗(pa , pb ; p, p).

3. Next, we construct an optimal penal code τ. To do so, first define the price pu and integer

u such that

u−2∑
t=0

δtπ j (~0; p, p)+δu−1π j (~pu ; p, p)+δu
π j (~pa ; p, p)+δπ j (~pb ; p, p)

1−δ2
= v(p, p). (56)

There are two possibilities for the relationship between minmax profits and profits in the

initial, harshest, phase of punishment. If π j (~0; p, p) =π∗
j (~0 j ; p, p), then there is a Nash equi-

librium to the stage game that minmaxes each player. In this case, we use infinite repetition

of this stage game Nash equilibrium as punishment by setting u =∞. Note that this was the

situation we examined in the body of the paper.

Alternatively, if π j (~0; p, p) < π∗
j (~0 j ; p, p), then we must show that there exists an integer

u and a price pu < pb that satisfies (56). Initially suppose pb = pa . Next, note that Assump-

tion 3 implies that π j (~pb ; p, p) > π∗
j (~0 j ; p, p). It follows that there must exist a pair u and

pu < pa that satisfies (56) in this case. Therefore, there exists a pb < pa such that this condi-

tion is also satisfied.
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For {pa , pb} ∈Φ(p, p) and each j , then define τ j as follows

p(t , i ) =


~0 0 ≤ t ≤ u −2

~pu t = u −1

{~pa ,~pb} t ≥ u.

Note that we must have u ≥ 1. Otherwise, the penal code consists only of the infinite price

cycle {pa , pb} which has a value greater than the security value by Assumption 3. In points 4.

and 5., we consider the case where u ≥ 2. In 6., we consider u = 1.

4. Let us show credibility of the optimal penal code τ for the case u ≥ 2 by establishing (48).

In period t ′ ≤ u −2, we can rewrite (48) as

u−2−t ′∑
t=0

δtπ j (~0; p, p)+δu−1−t ′π j (~pu ; p, p)+δu−t ′
π j (~pa ; p, p)+δπ j (~pb ; p, p)

1−δ2
(57)

≥π∗
j (~0 j ; p, p)+δv(p, p)

For t ′ = 0, by (56), equation (57) is satisfied with equality. For 0 < t ′ ≤ u−2, becauseπ j (~0; p, p) <
min{π j (~pu ; p, p),π j (~pa ; p, p),π j (~pb ; p, p)}, (57) must also be satisfied.

For t ′ ≥ u, inequality (48) follows if {pa , pb} ∈ Φ(pb , pa). We establish the conditions for

this result in step 5, below.

Finally, for t ′ = u −1, condition (48) requires

π j (~pu ; p, p)+δ
π j (~pa ; p, p)+δπ j (~pb ; p, p)

1−δ2
≥π∗

j (~pu
j ; p, p)+δv(p, p) (58)

Notice that if {pa , pb} ∈Φ(pb , pa), then from (50)

π j (~pb ; p, p)+δ
π j (~pa ; p, p)+δπ j (~pb ; p, p)

1−δ2
≥π∗

j (~pb, j ; p, p)+δv(p, p) (59)

Because pu > pb , Assumption 4 and (59) imply (58).

5. Now, for u ≥ 2, we compare the sustainability of a fixed price path with that of a cycle.

Consider first a candidate fixed price equilibrium with price pa . In the candidate equi-

librium, p = p = pa . Consequently pa is sustainable if and only if

π j (~pa ; pa , pa)

1−δ ≥π∗
j (~pa, j ; pa , pa)+ δ

1−δπ
∗
j (~0 j ; pa , pa). (60)

Let δ∗(pa) solve (60) with equality and rearrange to obtain (51).

Next consider a candidate price cycle equilibrium with prices pa and pb for some pb <
pa . In the candidate equilibrium, p = pb and p = pa . The cycle {pa , pb} is sustainable if and
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only if

π j (~pa ; pb , pa)+δπ j (~pb ; pb , pa)

1+δ ≥ (1−δ)π∗
j (~pa, j ; pb , pa)+δπ∗

j (~0 j ; pb , pa), (61)

π j (~pb ; pb , pa)+δπ j (~pa ; pb , pa)

1+δ ≥ (1−δ)π∗
j (~pb, j ; pb , pa)+δπ∗

j (~0 j ; pb , pa). (62)

The candidate price cycle equilibrium is then sustainable for a greater range of discount

factors if the inequalities in (61) and (62) are strict for δ = δ∗(pa). Combining (51), (61) and

(62), and applying Assumption 2 we obtain the conditions (52) and (53).

6. Finally, consider the case u = 1. Credibility at time t = 0 is established by the same argu-

ment examined for t ′ = u −1 in point 4. Credibility at time t ≥ 1 and sustainability are both

demonstrated by repeating the argument of point 5.

Proposition 6 establishes the conditions under which collusion is supportable for a greater

range of discount factors using a price cycle rather than a fixed price. Equations (52) and (53)

highlight the trade-off between the profitability of deviation and punishment across a cycle

and a fixed price. The left hand side of each equation measures the difference between the

average value of collusion with a cycle and with a fixed price. Because the cycle involves

spending some time setting the lower price pb , average profitability under the cycle path

will be lower. However, this difference will be (i) small if pb is not too far below pa ; and (ii)

less important if we consider cycles of greater length.

The first term on the right hand side is the difference between deviation profits under a

cycle and a fixed price. Our argument in the body of the paper is that the profits from de-

viation may be markedly higher in the context of a fixed price path relative to a price cycle

because price dispersion makes it difficult for consumers to distinguish small price differ-

ences that lie within their realm of experience. By this argument, we may expect this term to

be negative and substantial.

The second term on the right hand side is the difference between punishment profits

under the cycle and the fixed price path. In our specification of Section 2, a zero profit stage

game equilibrium was available and this term dropped out. Here, we allow punishment pay-

offs to depend on the extent of price dispersion. Intuitively though, the influence of price

dispersion is likely to be small. To illustrate, suppose firms have enjoyed a spell of collusion.

One firm then deviates, triggering a price war in which all firms set price equal to marginal

cost for a sustained period. This price war represents a sharp break in the pricing pattern of

the market and is likely to attract the attention of consumers regardless of the precise form of

collusive pricing. If a single firm were to depart from the prescribed punishment by raising

price, it is likely that consumers will notice that this firm offers a price that is above the price
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of its rivals. This argument pertains whether collusion had taken the form of a fixed price or

a price cycle.
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