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1. Introduction

The test proposed in Kwiatkowski et al. (1992), often referred to as the KPSS test, has

been used most extensively to test for stationarity of a time series. It relies on cumulation

of squared partial sums of the demeaned and/or detrended series with a correction for

autocorrelation using a nonparametric longrun variance estimate. There have been many

variants of the KPSS test introduced in the literature. For example, the MR/S test of Lo

(1991) is similar to the KPSS test except that it is based on the range of the partial sum

of residuals. Another variant of the KPSS test is the indicator KPSS test of de Jong et al.

(2007), who calculate the same statistic as the KPSS test but relying on the data that is

given as an indicator of whether the original data point is above or below the median. The

indicator KPSS test is shown to be robust to fat tailed distributions. Other variants of the

KPSS test include Giraitis et al. (2003). In practice, the KPSS test is also very useful when

it is applied to the test for cointegration in a set of nonstationary time series. See, e.g.,

Shin (1994). The asymptotic theories of the KPSS test and its variants are well developed.

Due to the abundance of observations available at high frequency, it has become increas-

ingly more popular to use high frequency data in various econometric practice. Testing for

stationarity is not an exception and, recently, the KPSS test and its variants are often ap-

plied by many to observations at daily or higher frequency. However, at high frequency, the

tests behave rather differently from what their existing asymptotic theories predict. It does

not appear that their existing asymptotics are useful at all. In fact, we analyze the forward

premium of US/UK exchange rates and US treasury bill rates and illustrate that the tests

are highly sensitive to the sampling frequency, as well as the bandwidth choice required

for the estimation of longrun variance used in the tests. In fact, for some common choices

of bandwidth, the values of test statistics increase very rapidly as the sampling frequency

exceeds the monthly level and almost explodes at the daily level. It is therefore necessary

to develop a new set of asymptotics that are useful to explain and predict the behaviors of

the KPSS test and its variants at high frequency.

In the paper, we introduce a novel continuous time framework and develop a new set

of asymptotics for the KPSS type tests based on high frequency data. Our framework

and asymptotics are applicable for both the stationarity test and the residual based test

for cointegration.1 In our asymptotics, we assume that samples are drawn discretely from

1Busetti and Taylor (2005) studied the locally best invariant (LBI) stationarity tests, and discussed the
sampling frequency effect using a continuous time model under the infill fixed span asymptotics. They show
that the high-frequency power property of the test is different for stock and flow variables. In this paper, we
develop a more general continuous time framework, and analyze the KPSS type of test which is the longrun
variance corrected LBI test; while the distinction between stock and flow variables is not the focus here. In
terms of asymptotics, we consider both infill and long span asymptotics. In fact, the long span analysis is
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underlying continuous time processes, and that the sampling interval δ shrinks down to

zero as well as the sample span T increases up to infinity. To obtain the asymptotics that

are more relevant to the tests applied for observations at high frequency, we let δ → 0

fast enough relative to T → ∞. The resulting asymptotics are found to be much useful,

explaining and predicting the behaviors of the KPSS type tests at high frequency very well.

In fact, our asymptotics show that the tests do not have proper discriminatory powers at

high frequency if they are implemented with the usual longrun variance estimators obtained

in the usual discrete time framework. The tests either always reject stationarity or have no

nontrivial power at high frequency, depending upon bandwidth choices.

Our asymptotics also show that we only need to choose the bandwidth in continuous

time framework to make the KPSS type tests valid and work as expected at high frequency.

The required modifications are therefore truly simple. Once modified by choosing the

bandwidth properly, the tests have correct sizes and perfect powers asymptotically. Our

simulation results also show that the tests developed in continuous time framework are

no longer sensitive to the sampling frequency and perform as expected in finite samples.

In fact, the tests using high frequency observations are generally much more stable than

the ones using low frequency observations. This implies that high frequency observations

should always be used whenever they are available. The continuous time KPSS type tests

for stationarity have the limit null distributions that are exactly the same as those for the

conventional tests developed in discrete time framework. However, our continuous time

KPSS type tests for cointegration have limit null distributions, which are generally model

dependent and distinct from the limit null distributions of the discrete time KPSS type

tests. This is simply because we allow for a much more general class of nonstationary

processes in our continuous time framework. To deal with the model dependence of the

critical values of the tests, we propose to use a subsampling method. The subsample test

appears to work reasonably well according to our simulations.

Finally, our continuous time KPSS type tests developed in the paper are comparable to

other existing tests for stationarity and nonstationarity of a continuous time process. Our

tests are widely applicable for testing the stationarity of a continuous time process or for

the presence of cointegration in a set of nonstationary continuous time processes, since no

specific assumptions on the structures of underlying continuous time processes are made in

our asymptotics. In fact, not much research has yet been done on testing for stationarity and

nonstationarity in continuous time framework. Only recently, Bandi and Corradi (2014) and

Kanaya (2011) proposes a nonparametric testing approach. The method proposed in Bandi

and Corradi (2014) uses nonstationarity as the null hypothesis and it is only applicable for

essential and more sensible to analyze the properties of stationarity tests.
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nonstationary diffusions, an important but special class of continuous time nonstationary

processes. The KPSS test is more directly comparable to that of Kanaya (2011) as the

test of stationarity for a continuous time process. The former, however, appears to have

substantially better discriminatory power than the latter.

The rest of the paper is organized as follows. Section 2 introduces the KPSS test and the

bandwidth selection rules that are commonly used for longrun variance estimation. Some

motivational illustrations are also included. Section 3 presents the asymptotics of the KPSS

test for stationarity, which are developed in continuous time framework. We show that the

KPSS test fails to work if the bandwidth is selected in discrete time framework, and then

explain what we need to do to make it valid and work properly. Subsequently, in Section 4,

we develop the asymptotics of the residual based KPSS test for cointegration. A subsample

test is also introduced and analyzed. In Section 5, we present the asymptotics of several

variants of KPSS test. Section 6 concludes the paper. All detailed mathematical proofs are

provided in Appendix.

A word on notation. The standard notations such as →p and →d are used extensively to

refer the convergences in probability and in distribution, respectively. We denote by [U ]T the

quadratic variation of a continuous time process U over time interval [0, T ]. Also, P ∼p Q

and P ≺p Q respectively signify P = Q(1 + op(1)) and P/Q = op(1). Moreover, P ≈ Q

just implies that we approximate P by Q, and it does not have any precise mathematical

meaning in regard to the proximity between P and Q.

2. Background and Preliminaries

For a given time series (ui), i = 1, . . . , n, the KPSS test statistic is defined as

λn =
1

n2ω2
n

n∑
i=1

⎛
⎝ i∑

j=1

uj

⎞
⎠

2

, (2.1)

where ω2
n is the longrun variance estimate of (ui). We write

ω2
n =

∑
|j|≤n

K

(
j

bn

)
γn(j), (2.2)

where K : R → [−1, 1] is a kernel function, γn(j) = n−1
∑

i uiui−j is the sample autoco-

variance function,2 and bn is the bandwidth parameter which scales the shape of the kernel

2Here and elsewhere in the paper, we assume that the summation in the definition of γn runs only over
the range where both indices i and i− j are between 1 and n.
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function.

The KPSS test is often applied to the fitted residuals from regressions yi = α+ ui and

yi = α + βxi + ui, where (yi) and (xi) are some observed time series. The residuals are

given as

uni = ui − ūn (2.3)

uni = (ui − ūn)−
n∑

j=1

uj(xj − x̄n)

⎛
⎝ n∑

j=1

(xj − x̄n)
2

⎞
⎠

−1

(xi − x̄n) (2.4)

respectively, with ūn = n−1
∑n

j=1 uj and x̄n = n−1
∑n

j=1 xj . If λn is defined with (uni)

in (2.3) instead of (ui), the test allows for the presence of nonzero mean in (ui). If λn is

defined with (uni) in (2.4) instead of (ui), the test can be used to test for the presence of

cointegration between (yi) and (xi). This was shown earlier by Shin (1994). The test based

on the fitted residuals (uni) in (2.3) or (2.4) will be referred to more specifically as the

residual based KPSS test, or the RB-KPSS test, whenever it is necessary to distinguish it

from the test based directly on (ui). The RB-KPSS tests based on (uni) in (2.3) and (2.4)

will be analyzed in a single framework.3

For the kernel function K introduced in (2.2), we let

π(s) = lim
x→0

1−K(x)

|x|s

for any nonnegative integer s, and define its characteristic exponent as r = max{s : π(s) <
∞}. If π(s) = ∞ for any nonnegative integer s, we set r = ∞. The characteristic exponent

r is a smoothness measure of the kernel function around zero.

Assumption KF We assume that (i) K is continuous at 0 and all but a finite number of

other points, and it is symmetric with K(0) = 1 and
∫∞
−∞K2(x)dx < ∞, (ii) K ′ exists at

all but a finite number of points and K ′ is integrable, and (iii) K has a finite characteristic

exponent r.

The conditions (i), (ii) and (iii) in Assumption KF are standard and not stringent, and

they are satisfied by virtually all kernels used in practical applications including truncated,

Bartlett, Parzen, Tukey-Hanning, and quadratic spectral kernels. For commonly used kernel

functions, we have r = 1 or 2.

3Though we do not explicitly consider in the paper, our subsequent theory is also applicable for the test
in the presence of linear time trend with some obvious modifications.
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It is well recognized that the choice of bandwidth bn plays a central role in determining

the asymptotic behavior of the KPSS test. For consistency of longrun variance estimate,

bn should satisfy bn → ∞ and bn/n → ∞ as n → ∞. The optimal bandwidth bn, which

minimizes the asymptotic mean squared error of the longrun variance estimator, for a

general stationary time series (ui) is given by bn = c∗(r)n1/(2r+1), where

c∗(r) =
(
rπ2(r)

ι(K2)
θ2(r)

)1/(2r+1)

(2.5)

with

θ(r) =

∑
j |j|rγ(j)∑
j γ(j)

.

See, e.g., Andrews (1991) for details.4 Note that the constants r, π(r) and ι(K2) are all

fully determined by the choice of kernel function K. However, the constant θ(r) depends

upon the unknown autocovariance function γ of the underlying time series (ui).

There are three widely used selection schemes for the bandwidth parameter bn, which can

be summarized as follows. The first scheme, called the rule of thumb (RT), sets bn = cnp for

some arbitrary constants c > 0 and 0 < p < 1. The other two schemes are data dependent

versions of the optimal bandwidth that we may write as bn = c∗n(r)n1/(2r+1), where c∗n(r)
is defined analogously as c∗(r) in (2.5) with θ(r) replaced by its estimate θn(r). We call

the second scheme, considered in Newey and West (1994), the nonparametric (NP) scheme,

because it uses a nonparametric estimate θn(r) =
∑

|j|≤an
|j|rγn(j)

/∑
|j|≤an

γn(j) of θ(r)

with an = cnp for some arbitrary constants c > 0 and 0 < p < 1. The third scheme was

proposed and analyzed by Andrews (1991), and will be referred to as the semiparametric

(SP) scheme. It relies on the specification of (ui) as an AR(1) with autoregressive coefficient

ρ, in which case we can deduce θ(r) =
[
2(1 − ρ)/(1 + ρ)

]
ρ(r), where ρ(r) =

∑∞
j=1 j

rρj .

Therefore, by simply plugging in the estimated AR coefficient ρn in the AR(1) regression

of (ui), we obtain an estimate θn(r) of θ(r). In particular, when r = 1 and 2, we have

θn(1) = 2ρn/(1− ρn)(1 + ρn) and θn(2) = 2ρn/(1− ρn)
2.

One of the main objectives of our paper is to demonstrate and analyze the dependency of

the KPSS test on sampling frequency. Figure 1 shows the values of the KPSS test obtained

from the samples collected at various frequencies ranging from quarterly to daily. For our

illustration, the 1-month forward and spot US/UK exchange rates are downloaded from the

Bank of England over the sample period from January 2, 1979 to June 30, 2015, and the

4Needless to say, using an optimal bandwidth minimizing the asymptotic mean squared error of the
longrun variance estimator ω2

n does not necessarily yield an optimal test based on λn in any sense. Optimal
bandwidth choices are considered here simply because they are widely used to implement the KPSS test in
practice.
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Fig. 1. Frequency Dependence of KPSS Test
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Notes: Presented are the KPSS test values from the samples collected at various frequencies. The vertical
axis displays the test values, and the horizontal axis displays the lengths of sampling intervals. We use year
as the unit of time, and the sampling intervals given by 1/4 and 1/252 correspond to the quarterly and
daily observations, respectively. The top two panels present the stationarity tests for the 1-month forward
premium of US/UK exchange rates (left), and for the 3-month US treasury bill rates (right). The lower two
panels present the cointegration tests between the 1-month forward US/UK exchange rates and the spot
rates (left), and between the 10-year US treasury bond rates and 3-month US treasury bill rates (right).
Three bandwidth schemes RT, NP and SP are used with Parzen kernel.

3-month US T-bill rates and 10-year treasury constant maturity rates are downloaded from

FRED, St Louis Fed, over the sample period from January 2, 1962 to June 30, 2015, all

at daily frequency. The forward premium is defined as the log difference of the 1-month

forward and spot exchange rates. We apply the KPSS test to test for stationarity of the

forward premium of US/UK exchange rates and the 3-month US T-bill rates, and also

to test for the presence of cointegration between the spot and 1-month forward US/UK

exchange rates, and between the 3-month US treasury bill and 10-year US treasury bond

rates. The results are presented in the upper and lower panels, respectively.

The results for the KPSS test with bandwidth schemes RT and NP are highly sensitive to

the sampling frequency, and show some clear pattern as the sampling frequency increases.

In fact, the test statistic steadily increases as the sampling frequency increases, and the
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Fig. 2. Sample Autocorrelation Function
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Notes: Presented are the sample autocorrelation functions (ACF) of the time series we used to compute the
KPSS tests for stationarity and cointegration. The top two panels present the sample ACFs of the 1-month
forward premium of US/UK exchange rates (left) and the demeaned 3-month US T-bill rates (right). The
lower two panels present the sample ACFs of the residuals from the cointegration regression of the 1-month
forward US/UK exchange rates on the spot rates (left) and the the 10-year US treasury bond rates on the
3-month US treasury bill rates (right).

increasing trend becomes particularly conspicuous as the sampling frequency exceeds the

monthly level. This is true in all cases. Therefore, we are led to reject the null hypothesis of

stationarity or the null hypothesis of cointegration decisively in all cases if high frequency

observations are used, although the test results tend to be more in favor of the null hypoth-

esis of stationarity or the null hypothesis of cointegration at lower frequencies.5 On the

other hand, the KPSS test with bandwidth scheme SP is robust and it does not show any

frequency dependence. As discussed, however, the test is inconsistent, and the frequency

robustness comes at a severe cost of its power.

5We interpret our result of the KPSS test on stationarity of US/UK forward exchange premium or
cointegration between forward and spot US/UK exchange rates, in particular, as an evidence of test failure
instead of a new finding. Indeed, as for all other currencies, the time series of US/UK forward and spot
exchange rates move so closely each other, and it is quite clear even by an eyeball test that they share a
common trend.
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To further analyze the frequency dependence of the KPSS test, we plot the sample

autocorrelation function (ACF) of the time series we used to compute the KPSS test and

test for stationarity or cointegration in Figure 2. For all four time series, the sample

ACF increases and approaches unity as the sampling frequency increases. This is not quite

surprising, since we may naturally expect that the correlation between adjacent observations

increases as the size of sampling intervals decreases. In this sense, what we observe in

Figure 1 may not look entirely strange, since the KPSS test is supposed to reject the

null hypothesis of stationarity or cointegration if the underlying time series is strongly

persistent and has a unit longrun correlation. However, we should not interpret the results

in Figure 2 as any evidence against the presence of stationarity or cointegration. The perfect

correlation at high frequency here is not a consequence of the presence of a unit root in

the underlying time series. Instead, it is due to the presence of strong correlation between

adjacent observations, which appears in high frequency samples and has nothing to do with

the persistence of the underlying time series.

Though the focus is totally different, our analysis of the KPSS test is somewhat related

to that in Kwiatkowski et al. (1992) and Caner and Kilian (2001), which show that the

test overly rejects the null hypothesis when the underlying process is persistent. A more

systematic and comprehensive investigation of the KPSS test for highly persistent time series

is given in Müller (2005). His analysis is based on a local-to-unity asymptotic framework,

which assumes that the observed time series (ui), i = 1, . . . , n, follows a near unit root

process ui = ρnui−1 + vi with ρn = 1− c/n for some constant c > 0, where (vi) is a general

stationary process satisfying the usual invariance principle. In this framework, he derives

the theoretical properties of the test based on different bandwidth choices available in the

literature,6 and shows that none of the bandwidth schemes works for the KPSS test. In

particular, he finds that the test has either large size distortions or very small powers, in

his local-to-unity framework.

In what follows, we will develop a novel framework to effectively analyze the asymptotic

properties of the KPSS test based on various bandwidth schemes, while accommodating

and explaining all the features we observe in Figures 1 and 2. In the new framework, we

assume that the sample of size n is collected discretely from a continuous time process at

sampling interval δ over time span [0, T ] with T = nδ. Our asymptotics rely on δ → 0 and

T → ∞ jointly, and whenever necessary, we let δ → 0 fast enough relative to T → ∞. This

is to obtain asymptotics that are more relevant for the performance of the KPSS test at

6Besides the above mentioned bandwidth choices for bn, he also considers the fixed-b bandwidth that is
often used to improve the finite sample performance of a test relying longrun variance estimation. See, e.g.,
Sun et al. (2008).
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high frequency.

3. Stationarity Test at High Frequency

Throughout this section, we assume that the observed time series (ui) is collected from an

underlying continuous time process U = (Ut) at sampling interval δ over time span [0, T ],

i.e.,

ui = Uiδ (3.1)

for i = 1, . . . , n, with T = nδ. As mentioned, we set δ → 0 and T → ∞ jointly in

our asymptotics. Our asymptotics will show that the KPSS test with bandwidth scheme

RT or NP diverges to infinity for both stationary and nonstationary process U , whereas

the KPSS test with bandwidth scheme SP has a nondegenerate limit distribution for both

stationary and nonstationary process U . This is consistent with what we see in Figure 1.

As a result, the test cannot be used to test for the null hypothesis of stationarity against

the alternative hypothesis of nonstationarity for the underlying process U . Moreover, the

subsequent development of our asymptotics will also reveal how we should implement the

KPSS test at high frequency to make it valid as a test for stationarity of the underlying

process U .

Below we introduce some technical assumptions, Assumptions ST and NS, respectively

for stationary and nonstationary U . In what follows, we denote by D[0, 1] the space of

cadlag functions on [0, 1] endowed with the Skorohod topology.

Assumption ST For the process UT = (UT
t ) on [0, 1] defined as UT

t = T−1/2
∫ tT
0 Usds, we

assume that UT → U◦ in D[0, 1] as T → ∞, where U◦ is a Brownian motion with variance

given by �2 = limT→∞ T−1
E

(∫ T
0 Utdt

)2
> 0. Moreover, we assume sup0≤t≤∞ EU2

t < ∞,

and T−1
∫ T
0 U2

t dt →p σ
2 > 0.

Assumption NS For the process UT = (UT
t ) on [0, 1] defined as UT

t = c−1
T UTt with some

normalizing sequence (cT ) such that cT → ∞ as T → ∞, we assume that UT → U◦ in

D[0, 1] as T → ∞, where U◦ is a nondegenerate stochastic process on [0, 1].

Assumptions ST and NS will be used as the basic regularity conditions respectively for

stationary and nonstationary U in the subsequent development of our theory. Assumption

ST is satisfied for a broad class of stationary processes with mean zero and finite variance.

It simply assumes three general conditions: U satisfies a mild moment condition which

allows for various heterogeneities across time, the continuous time sample variance of U is
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consistent, and U satisfies the conventional invariance principle in continuous time, which

corresponds to the same type of invariance principle for discrete stationary time series that

we routinely invoke in the statistical analysis of models with unit roots and cointegration.

Assumption NS just requires that under an appropriate normalization U has a well defined

limit distribution, which holds for a very general class of nonstationary processes. As is

well known, a wide class of discrete time series with unit root type nonstationarity satisfy

this condition if we embed them into continuous time processes taking constant values

between their observation intervals. The reader is referred to Park (2014) for more related

discussions.

The conditions in Assumptions ST and NS are generally met for U generated as U =

φ(V ), where V is a diffusion and φ is a real-valued function defined on D ⊂ R. Let s

and m denote the scale function and speed measure of V , respectively. The invariance

principle in Assumption ST holds widely if V is a positive recurrent diffusion.7 Indeed, Van

Der Vaart and Van Zanten (2005) show that the invariance principle holds for U in this

case, provided its longrun variance given by �2 = 4m(D)−1
∫
D
(∫ x

φ(y)m(dy)
)2

s′(x)dx is

finite. Furthermore, Kim and Park (2017) show that Assumption NS holds for general U

defined from null recurrent diffusion V in natural scale with a regularly varying φ. If, for a

general null recurrent diffusion V in natural scale, we define V T as V T
t = κ−1

T VTt with (κT )

given by κ2Tm(κT ) = T , then we have V T →d V ◦, where V ◦ is a skew Bessel process in

natural scale. See, e.g., Watanabe (1995) for detailed discussions on skew Bessel processes.

However, it follows that

UTt

φ(κT )
=

φ(VTt)

φ(κT )
=

φ(κTV
T
t )

φ(κT )
≈ φ(V T

t ) →d φ(V ◦
t ),

and Assumption NS holds for U with normalizing sequence cT = φ(κT ) and limit process

U◦ = φ(V ◦). The reader is referred to Kim and Park (2017) for a more rigorous development

of the asymptotics discussed here.

3.1. Continuous Time Approximation

For the sample (ui) drawn from a continuous time process U as in (3.1), we have

δ

n2

n∑
i=1

⎛
⎝ i∑

j=1

uj

⎞
⎠

2

=
1

T 2

n∑
i=1

δ

⎛
⎝ i∑

j=1

δuj

⎞
⎠

2

≈ 1

T 2

∫ T

0

(∫ t

0
Usds

)2

dt (3.2)

7Of course, we also need to require m(φ) = 0 so that U has mean zero.
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for δ small enough compared with T , and

δω2
n ≈ �2

n,δ (3.3)

with

�2
n,δ =

∫
|s|≤T

K

(
s

Bn,δ

)
ΓT (s)ds, (3.4)

where Bn,δ = bnδ and ΓT (s) = T−1
∫ T
0 UtUt−sdt is the sample autocovariance function of

U . Note that K(j/bn) = K(jδ/bnδ) and γn(j) = (1/n)
∑

i uiui−j = (1/T )
∑

i δUiδUiδ−jδ ≈
ΓT (jδ), and therefore, (3.3) follows directly from (2.2). Consequently, we may deduce that

λn =
1

δω2
n

δ

n2

n∑
i=1

⎛
⎝ i∑

j=1

uj

⎞
⎠

2

≈ 1

�2
n,δ

1

T 2

∫ T

0

(∫ t

0
Usds

)2

dt = Λn,δ, (3.5)

where we introduce Λn,δ as a continuous time approximation of the KPSS test statistic λn.

For the development of our asymptotic theory in the rest of this subsection, we introduce a

set of technical conditions and formally establish the approximation in (3.5).

In what follows, we let T (V ) = sup0≤t≤T |Vt| for any continuous time process V . For a

continuous time process V satisfying Assumption ST or NS, we also define

Δδ,T (V ) = sup
0≤s,t≤T

sup
|t−s|≤δ

|Vt − Vs|, (3.6)

which is interpreted as the uniform modulus of continuity of V in a δ-neighborhood over

interval [0, T ] as δ → 0 and T → ∞. We typically expect Δδ,T (V ) = δ1/2−εκT for ε > 0

arbitrarily small and κT increasing as T → ∞. If V is Brownian motion, we have Δδ,T (V ) =

O
(√

δ log(T/δ)
)
, which reduces to O

(√
δ log(1/δ)

)
if δ → 0 faster relative to T → ∞. This

is shown in Kanaya et al. (2018). The reader is referred to Kim and Park (2017) to find

an explicit rate of Δδ,T (V ) for a more general diffusion type process V . The notations

introduced here will be used throughout the paper without further reference.

In this section, U appears as the only relevant continuous time process, and we will

therefore simply write Δδ,T = Δδ,T (U) and Ts = T (U).

Assumption CA We assume that

(i) (Δδ,T +Δ2
δ,T )T →p 0 under Assumption ST, and

(ii) c−2
T Ts(Δδ,T + δTsT

−1) →p 0 under Assumption NS,

as δ → 0 and T → ∞.
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The conditions in Assumption CA are satisfied as long as δ → 0 fast enough relative to

T → ∞. The condition in Part (i) is not very restrictive. If Δδ,T = Op(δ
1/2−ε) for ε > 0

arbitrarily small, then it holds as long as δ = O(T−2−ε) for any ε > 0. The condition in

Part (ii) is also expected to hold widely. If U is Brownian motion, for instance, we have

cT =
√
T and Ts = Op(

√
T ), and therefore, it is trivially satisfied as δ → 0 and T → ∞.

Assumption CA is sufficient to analyze the KPSS test with RT. However, for the KPSS

test with NP or SP, we need additional assumptions. Although more stringent, they are

not overly restrictive and satisfied as long as δ → 0 fast enough relative to T → ∞.

Assumption NP For NP with an = cnp, we let δ1−pT p → 0 as δ → 0 and T → ∞ and,

under Assumption NS, we assume c−1
T TsT

−p/2δp/2 → 0.

Assumption SP For SP, we let U = U c + Ud, where U c = A + M is the continuous

component with bounded variation process A and continuous martingale M , and Ud is the

jump component. For the continuous component U c, we assume sup0≤s,t≤T |At−As|/|t−s| =
Op(pT ) and sup0≤s,t≤T |[M ]t − [M ]s|/|t − s| = Op(qT ), where pT and qT are deterministic

sequences of T . For the jump component, we assume
∑

0≤t≤T E|ΔUt| = O(T ) as T → ∞.

Moreover, under Assumption ST, we assume Δδ,T (pT
√
T + qT ) → 0 as δ → 0 and T → ∞

and, under Assumption NS, we assume c−2
T Δδ,T (pTT + qT

√
T ) → 0 as δ → 0 and T → ∞.

The following lemma shows that the approximation in (3.5) holds under suitable regu-

larity conditions.

Lemma 3.1. Let Assumptions KF and CA hold. The statistic λn is endowed with RT, NP

or SP. In particular, Assumption NP or SP holds if NP or SP is used. Then we have

λn ∼p Λn,δ

as δ → 0 and T → ∞.

3.2. Continuous Time Asymptotics

Given the asymptotic equivalence of λn and Λn,δ in Lemma 3.1 and the definition of �2
n,δ in

(3.4), we may readily see that the asymptotic effect of sampling frequency on the KPSS test

statistic λn can be fully analyzed by investigating the way the sampling interval δ affects

Bn,δ = bnδ, which is used as the bandwidth for �2
n,δ in (3.3). For stationary U , we may

well expect that if

Bn,δ →p ∞ and Bn,δ/T →p 0 (3.7)

13



as δ → 0 and T → ∞, then �2
n,δ →p �2 as δ → 0 and T → ∞, where �2 is the longrun

variance of U .

Following Chang et al. (2018), we say that the discrete time bandwidth bn is high-

frequency compatible if its corresponding continuous time bandwidth Bn,δ = bnδ satisfies

conditions in (3.7). It is easy to find a discrete time bandwidth that is high-frequency

compatible. For instance, for any continuous time bandwidth BT such that BT → ∞ and

BT /T → 0 as T → ∞, we may just set bn = BT /δ for any given δ > 0. Clearly, any discrete

time bandwidth bn defined in such a way is high-frequency compatible.

Unfortunately, the bandwidth bn chosen in a discrete time setup is typically not high-

frequency compatible. In fact, it is easy to see that RT with bn = cnp for some c > 0 and

0 < p < 1 is not high-frequency compatible, since Bn,δ = cnpδ = cδ1−pT p and Bδ,T → 0

if δ = o(T−p/(1−p)). The asymptotics for the data-dependent procedures such as NP and

SP depend upon whether the underlying process U is stationary or nonstationary. For

stationary U , their asymptotics are analyzed in Chang et al. (2018) and Lu and Park

(2018). In particular, they show that SP is high-frequency compatible, whereas NP is not.

We summarize the asymptotics of NP and SP for both stationary and nonstationary U in

the following lemma.

Lemma 3.2. Let Assumption CA hold. For NP satisfying Assumption NP, we have

δ−2r(1−p)/(2r+1)T−(2rp+1)/(2r+1)Bn,δ →p

(
rc2rπ2(r)

/
(1 + r)2ι(K2)

)1/(2r+1)

as δ → 0 and T → ∞, under both Assumptions ST and NS. For SP satisfying Assumption

SP, (3.7) holds under Assumption ST, and

T−1Bn,δ →d

(
r(r!)2π2(r)

/
ι(K2)

)1/(2r+1)
(∫ 1

0
U◦2
t dt

/∫ 1

0
U◦
t dU

◦
t

)2r/(2r+1)

as δ → 0 and T → ∞, under Assumption NS.

For NP, Bn,δ →p 0 if δ = o
(
T−(2pr+1)/2r(1−p)

)
, which holds as long as δ → 0 fast enough

relative to T → ∞, regardless of stationarity/nonstationarity of the underlying process

U . On the other hand, SP provides a valid bandwidth, but only for stationary U . For

nonstationary U , Bn,δ/T �p 0 as δ → 0 and T → ∞.

Theorem 3.3. Let Assumptions KF and CA hold. If RT or NP satisfying Assumption

NP is used, then λn →p ∞ under both Assumptions ST and NS. Moreover, if SP satis-

fying Assumption SP is used, then λn has a nondegenerate limit distribution under both

Assumptions ST and NS.
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In sum, the KPSS test with any of the schemes RT, NP and SP becomes invalid at high

frequency. If RT or NP is used, both the size and power of the KPSS test depend critically

on the sampling interval δ, and they diverge to infinity in probability under both the null

and alternative hypotheses, whenever δ → 0 fast enough compared to T → ∞. Both the

asymptotic size and power of the test therefore approach unity at high frequency. On the

other hand, if SP is used, KPSS test has a well defined limit distribution under the null

hyothesis. However, it does not diverge either but stay bounded in probability under the

alternative hypothesis. The KPSS test, therefore, is inconsistent when SP is used.

3.3. Continuous Time Test and Relevant Asymptotics

In this section, we suppose that the continuous time process U = (Ut) is observed continu-

ously for t ∈ [0, T ]. The continuous time KPSS test statistic is defined as

ΛT =
1

T 2�2
T

∫ T

0

(∫ t

0
Usds

)2

dt (3.8)

with an estimator �2
T for the longrun variance �2 of U , which is given by

�2
T =

∫
|s|≤T

K

(
s

BT

)
ΓT (s)ds, (3.9)

where BT is the bandwidth parameter, and ΓT (s) = T−1
∫ T
0 UtUt−sdt is the sample auto-

covariance function of U . See Lu and Park (2018) for the longrun variance estimation of a

stationary continuous time process U .

For consistency of �2
T , we require BT → ∞ and BT /T → 0 as T → ∞. The optimal

bandwidth that minimizes the asymptotic mean squared error of the longrun variance es-

timator is given by BT = c∗(r)T 1/(2r+1), where r is the characteristic exponent of kernel

function as defined in Assumption KF, and

c∗(r) =
(
rπ2(r)

ι(K2)
Θ2(r)

)1/(2r+1)

(3.10)

with

Θ(r) =

∫∞
−∞ |s|rΓ(s)ds∫∞
−∞ Γ(s)ds

defined correspondingly as in (2.5). Here Γ denotes the autocovariance function of U ,

and the parameter Θ(r) in the optimal bandwidth is unknown and should be estimated in

practice.
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In parallel to the discrete time bandwidth selection schemes discussed in the previous

section, we consider three schemes to determine the continuous time bandwidth BT as

in Lu and Park (2018). The first scheme sets BT = cT p for some constant c > 0 and

0 < p < 1. Obviously it is the continuous time counterpart of the discrete time RT scheme,

and hence it is called CRT. The second and third schemes, referred to as CNP and CSP

respectively, are analogous to the discrete time NP and SP schemes. More specifically, CNP

sets BT = c∗T (r)T
1/(2r+1), where c∗T (r) is the estimate for c∗(r) in (3.10) obtained with Θ(r)

replaced by its nonparametric estimate

ΘT (r) =

∫
|s|≤AT

|s|rΓT (s)ds∫
|s|≤AT

ΓT (s)ds
(3.11)

with AT = cT p for some arbitrarily chosen constants c > 0 and 0 < p < 1. Similarly as SP,

CSP assumes that U follows a semiparametric continuous time model

dUt = −κUt−dt+ υ(Ut−)dWt + ω(Ut−)dJt, (3.12)

where υ and ω are unknown volatility functions respectively for the diffusive and jump

parts of U , W is standard Brownian motion and J is the Lévy jump process defined by

dJt =
∫
R
xN(dt, dx) from the Poisson random measure N with the corresponding Lévy

measure ν such that
∫
R
xν(dx) = 0. Under this specification, we have Θ(r) = r!/κr if U is

stationary with finite variance, as shown in Proposition 3.2 of Lu and Park (2018). Hence

we may obtain the estimate ΘT (r) of Θ(r) from an estimate κT of κ, and use it to find

an estimate for the optimal bandwidth as BT = c∗T (r)T
1/(2r+1), where c∗T (r) is given as

in (3.10) with Θ(r) replaced by ΘT (r) = r!/κrT . For an estimate κT of κ, we will mainly

consider the continuous time least squares estimator κT = − ∫ T
0 UtdUt

/∫ T
0 U2

t dt, though

there are other possibilities.8

The asymptotics of ΛT in (3.8) will be derived under the null and alternative hypotheses,

respectively, under Assumptions ST and NS. The null asymptotics are straightforward,

because if U is stationary and satisfies Assumption ST, �2
T is a consistent estimate for �2

with a proper bandwidth choice and we have

1

T 2

∫ T

0

(∫ t

0
Usds

)2

dt =

∫ 1

0

(
1√
T

∫ tT

0
Usds

)2

dt →d �2

∫ 1

0
W 2

t dt

8We find that the choice of an estimator κT is unimportant. It does not affect our simulation result in
any significant manner, as well as asymptotic theory.
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as T → ∞, from which it follows immediately that

ΛT →d

∫ 1

0
W 2

t dt (3.13)

as T → ∞.

The asymptotics of ΛT under the alternative hypothesis are much less trivial, especially

when a data dependent bandwidth is used. In Lemma 3.4, we first derive the asymptotics

of BT for CNP and CSP under the alternative hypothesis.

Lemma 3.4. Under Assumption NS, we have

(a) T−(2rp+1)/(2r+1)BT →p

(
rc2rπ2(r)

/
(1 + r)2ι(K2)

)1/(2r+1)
, if CNP is used, and

(b) T−1BT →d

(
r(r!)2π2(r)

/
ι(K2)

)1/(2r+1)
(∫ 1

0 U◦2
t dt

/ ∫ 1
0 U◦

t dU
◦
t

)2r/(2r+1)
, if CSP is used,

as T → ∞, where U◦ is the limit process of U defined in Assumption NS.

Lemma 3.4 shows that, under the alternative hypothesis, CNP yields a bandwidth such that

BT ≺p T , whereas we have BT ∼p T for the bandwidth given by CSP. Note in particular

that the bandwidth obtained from CRT or CNP diverges at a slower rate than that from

CSP under the alternative hypothesis.

In what follows, we let Γ◦(s) =
∫ 1
0 U◦

t U
◦
t−sdt for −1 ≤ s ≤ 1, where U◦ is the limit

process of U defined in Assumption NS. Moreover, whenever we assume BT /T →d B◦ for

some B◦ �= 0 a.s., it is meant to hold jointly with UT →d U◦ implied by Assumption

NS. The asymptotics of �2
T under the alternative hypothesis are presented in the following

lemma.

Lemma 3.5. Let Assumption KF hold. Under Assumption NS, we have

(a) c−2
T B−1

T �2
T →d ι(K)

∫ 1
0 U◦2

t dt, if BT /T →p 0, and

(b) c−2
T T−1�2

T →d

∫ 1
−1K(s/B◦)Γ◦(s)ds, if BT /T →d B◦ �= 0 a.s.,

as T → ∞.

The asymptotics of ΛT under the alternative hypothesis now follow immediately from

Lemma 3.5, and they are presented in the following proposition.

Proposition 3.6. Let Assumption KF hold. Under Assumption NS, we have

(a) (BT /T )ΛT →d

∫ 1
0

(∫ t
0 U

◦
s ds

)2
dt
/
ι(K)

∫ 1
0 U◦2

t dt, if BT /T →p 0, and
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(b) ΛT →d

∫ 1
0

(∫ t
0 U

◦
s ds

)2
dt
/ ∫ 1

−1K(s/B◦)Γ◦(s)ds, if BT /T →d B◦ �= 0 a.s.,

as T → ∞.

The asymptotics in Part (a) of Proposition 3.6 are applicable to the continuous time KPSS

test employed with the bandwidth given by CRT or CNP. Therefore, under these two

bandwidth selection schemes, we have ΛT ∼p T/BT , which implies ΛT →p ∞ as T → ∞.

Therefore, the test is consistent under these two schemes. Unfortunately, however, the use

of CSP invalidates the continuous time KPSS test. In fact, the asymptotics in Part (b) of

Proposition 3.6 show that, if CSP is used, the test statistic ΛT is stochastically bounded

and the test becomes inconsistent. As can be seen clearly from Part (b) of Lemma 3.4 and

3.5, the bandwidth under CSP increases too fast and makes the resulting longrun variance

estimate explode as T → ∞, when the underlying process is nonstationary.

4. Residual Based KPSS Test at High Frequency

In this section, we consider the KPSS tests based on the fitted residuals (uni) defined in (2.3)

and (2.4), which are commonly used in practical applications for the tests of stationarity

and cointegration respectively. The asymptotics of these tests can easily be derived from

our asymptotics developed in the previous sections.

4.1. Asymptotic Test

The RB-KPSS test defined from the fitted residuals in (2.3) at high frequency can be used

to test for stationarity of an underlying continuous time process possibly with nonzero

mean. On the other hand, the RB-KPSS test based on the fitted residuals in (2.4) at high

frequency can be used to test for the presence of cointegration between two continuous time

processes Y = (Yt) and X = (Xt), if (yi) and (xi) defined as yi = Yiδ and xi = Xiδ are

observed at high frequency for i = 1, . . . , n. To analyze the RB-KPSS test of cointegration,

we introduce Assumptions CI and NC, which are assumed to hold respectively under the

null hypothesis of cointegration and the alternative hypothesis of no cointegration.

Assumption CI For the processes Y T = (Y T
t ) and XT = (XT

t ) defined on [0, 1] respec-

tively as Y T
t = c−1

T YTt and XT
t = c−1

T XTt with some normalizing sequence (cT ) such that

cT → ∞ as T → ∞, we assume that Y T →d Y ◦ and XT →d X◦ jointly as T → ∞, where

both Y ◦ and X◦ are non-degenerate stochastic processes on [0, 1]. Moreover, we assume

that there exist some constants α and β such that the continuous time process U = (Ut)

defined as Ut = Yt − α− βXt satisfies Assumption ST.
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Assumption NC For the process XT = (XT
t ) defined on [0, 1] as XT

t = d−1
T XTt with

some normalizing sequence (dT ) such that dT → ∞, we assume that XT →d X◦ as T → ∞.

Moreover, for any values of α and β, the continuous time process U = (Ut) defined as

Ut = Yt − α− βXt satisfies Assumption NS.

The definition of cointegration between continuous time processes we use in Assumptin CI

is comparable to that of cointegration between discrete time series. However, our formu-

lation of cointegration here is more general in that we allow for arbitrary normalization

sequences and for general continuous time processes not necessarily converging to Brown-

ian motion in the limit. In our setup, it is meaningless to consider continuous time processes

requiring normalization sequences of different orders, since cointegrating relationship is not

meaningfully defined in such a case.

To facilitate our analysis of the RB-KPSS test relying on the test statistic λn obtained

from the fitted residuals (uni), we write uni in (2.3) and (2.4) commonly as

uni = vi − v̄n

with v̄n = n−1
∑n

j=1 vj by letting vi = ui and ui −
(∑n

j=1 uj(xj − x̄n)/
∑n

j=1(xj − x̄n)
2
)
xi

for (2.3) and (2.4) respectively. Correspondingly, we define a continuous time process V as

Vt = Ut and Ut −
(∫ T

0
(Xs − X̄T )Usds

/∫ T

0
(Xs − X̄T )

2ds

)
Xt (4.1)

with X̄T = T−1
∫ T
0 Xsds respectively. We will show that λn is asymptotically equivalent to

ΛT , the corresponding continuous time RB-KPSS test statistic defined as in (3.8) with U

replaced by V − V̄T , where V̄T = T−1
∫ T
0 Vtdt.

Below we introduce the regularity conditions required for the continuous time approxi-

mation of the RB-KPSS test statistic λn.

Assumption CA′ (i) If Assumption CI holds, then we assume that Assumption CA (i)

holds with Δδ,T replaced by Δδ,T (U)+T−1/2c−1
T Δδ,T (X). (ii) If Assumption NC holds, then

we assume that Assumption CA (ii) holds with Δδ,T replaced by Δδ,T (U)+ cTd
−1
T Δδ,T (X),

and Ts replaced by T (U) + cTd
−1
T T (X).

The following lemma establishes the asymptotic equivalence between the discrete time

RB-KPSS test statistic λn and its continuous time counterpart ΛT . Here we only con-

sider the test statistic defined with high-frequency compatible bandwidths. It is clear from
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our previous analysis in Section 3.2 that the test becomes invalid if any of high-frequency

incompatible bandwidths is used.

Lemma 4.1. Let Assumption KF hold. We have

λn ∼p ΛT

as δ → 0 and T → ∞, under Assumptions CA and CA′ for the tests of stationarity and

cointegration, respectively.

To establish the asymptotic equivalence of λn and ΛT , Assumption CA is sufficient for

the stationarity test based on the residuals in (2.3), whereas Assumption CA′ is required for

the cointegration test based on the residuals in (2.4). The asymptotic null distributions of

the RB-KPSS tests for the stationarity and cointegration tests, which can be easily deduced

from Lemma 4.1, are provided in the following theorem.

Theorem 4.2. Let Assumption KF and CA′ hold. We have

λn →d

∫ 1

0

(∫ t

0
dW ◦

s

)2

dt

as δ → 0 and T → ∞, where dW ◦
s = dWs − W1ds under Assumption ST, and dW ◦

s =

(dWs − W1ds) −
[ ∫ 1

0 (X
◦
t − X̄◦

1 )dWt

/ ∫ 1
0 (X

◦
t − X̄◦

1 )
2dt

]
(X◦

s − X̄◦
1 )ds with X̄◦

1 =
∫ 1
0 X◦

t dt

under Assumption CI.

The RB-KPSS test for stationarity has the limit null distribution given as a functional of

the standard Brownian bridge, exactly as in the discrete time setup, and therefore, we may

just use the conventional critical values. The limit null distribution of the RB-KPSS test

for cointegration generalizes the one obtained in the discrete time setup. In the special case

where X∗ is given as another Brownian motion, our limit distribution reduces to the one in

Shin (1994) obtained in the discrete time setup and his critical values become applicable.

In our continuous time setup, X◦ is given as a general limit process and the asymptotic

critical values of the RB-KPSS test for cointegration become heavily model-dependent. To

deal with this problem, we propose to use a subsample test relying on a modified version of

the RB-KPSS test. This will be introduced in the next section.

To derive the asymptotics of the RB-KPSS tests under the alternative hypotheses of

nonstationarity and no cointegration, we let V T = (V T
t ) as V T

t = c−1
T VTt for t ∈ [0, 1],

where V is defined in (4.1). Under the alternative hypotheses of nonstationarity and no

cointegration, we have V T → V ◦ in D[0, 1] as T → ∞, where V ◦ = U◦ with U◦ defined
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in Assumption NS for the stationarity test, and V ◦ = U◦ − [ ∫ 1
0 (X

◦
t − X̄◦

1 )U
◦
t dt

/ ∫ 1
0 (X

◦
t −

X̄◦
1 )

2dt
]
X◦ with X◦ and U◦ defined in Assumption NC for the cointegration test. In what

follows, we let V̄ ◦
1 =

∫ 1
0 V ◦

t dt. We first present the asymptotics of CNP and CSP under the

alternative hypotheses of nonstationarity and no cointegration.

Lemma 4.3. Let Assumption KF hold. Under Assumption NS with Assumption CA or

Assumption NC with Assumption CA′, we have

(a) T−(2rp+1)/(2r+1)BT →p

(
rc2rπ2(r)/(1 + r)2ι(K2)

)1/(2r+1)
, if CNP is used

(b) T−1BT →d

(
r(r!)π2(r)/ι(K2)

)1/(2r+1)
(∫ 1

0 (V
◦
t − V̄ ◦

1 )
2dt/

∫ 1
0 (V

◦
t − V̄ ◦

1 )dV
◦
t

)2r/(2r+1)
, if

CSP is used

as δ → 0 and T → ∞.

Lemma 4.3 is directly comparable to Lemma 3.4. For the RB-KPSS tests, we also

have BT ≺p T for CNP, while BT ∼p T for CSP, under the alternative hypotheses. The

asymtotics of the RB-KPSS tests are provided in the following theorem.

Theorem 4.4. Let Assumption KF hold. Under Assumption NS with Assumption CA or

Assumption NC with Assumption CA′, we have

(a) (BT /T )λn →d

∫ 1
0

( ∫ t
0 (V

◦
s − V̄ ◦

1 )ds
)2
dt
/
ι(K)

∫ 1
0 (V

◦
t − V̄ ◦

1

)2
dt, if BT /T → 0

(b) λn →d

∫ 1
0

( ∫ t
0 (V

◦
s − V̄ ◦

1 )ds
)2
dt
/ ∫ 1

−1K(s/B◦)Γ◦(s)ds, if BT /T → B◦ �= 0 a.s.

as δ → 0 and T → ∞, where Γ◦(s) =
∫ 1
0 (V

◦
t − V̄ ◦

1 )(V
◦
t−s − V̄ ◦

1 )dt.

Theorem 4.4 implies in particular that the RB-KPSS tests with CRT and CNP are consis-

tent, while the tests become inconsistent if CSP is used.

4.2. Subsample Test

As discussed, the RB-KPSS test for cointegration has limit distribution that is model-

dependent in our general continuous time setup. To resolve this problem, we consider a

subsample test. To make our subsample test high-frequency compatible, we set subsample

size as m = ST /δ, where ST is given by ST = cT q with some constant c > 0 and 0 < q < 1.

Our subsample test is based on a modified version λ∗
n of the KPSS test statistic λn, which

is defined as

λ∗
n =

δ

n2

n∑
i=1

⎛
⎝ i∑

j=1

unj

⎞
⎠

2

. (4.2)
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The modified KPSS test, therefore, does not have a longrun variance estimate in the denom-

inator. As shown, the presence of longrun variance estimate in λn results in some significant

asymptotic power loss,9 and therefore, we purposely avoid estimating the longrun variance

in our subsample test.

The following corollary presents the asymptotics of the modified RB-KPSS test based

on λ∗
n defined in (4.2) under the null and alternative hypotheses.

Corollary 4.5. We have

(a) λ∗
n →d

∫ 1
0

(∫ t
0 dW̃

◦
s

)2
dt under Assumption ST with Assumption CA or Assumption CI

with Assumption CA′, where dW̃ ◦
s = �dW ◦

s for dW ◦
s defined in Theorem 4.2, and

(b) c−2
T T−1λ∗

n →d

∫ 1
0

(∫ t
0 (V

◦
s − V̄ ◦

1 )ds
)2

dt under Assumption NS with Assumption CA or

Assumption NC with Assumption CA′,

as δ → 0 and T → ∞.

Given the asymptotics in Corollary 4.5, the validity of the subsample test based on λ∗
n

can be readily established. In particular, when subsample size is m = ST /δ with ST = cT q

for c > 0 and 0 < q < 1, the critical value we obtain from subsampling λ∗
n diverges at rate

(c2TT )
q as T → ∞, under the alternative hypothesis of nonstationarity or no cointegration.

Consequently, the power of our subsample test increases at rate (c2TT )
1−q as T → ∞.

In terms of asymptotic discriminatory power, the subsample test relying on the modified

statistic λ∗
n is unambiguously preferred to the subsample test using the original statistic

λn that includes a longrun variance estimate. For the subsample test based on λn, the

asymptotic discriminatory power depends upon the bandwidth selection for longrun variance

estimation. In fact, it follows immediately from our asymptotic theory that the subsample

test based on λn becomes inconsistent if CSP is used, and its asymptotic power increases

at rates T (1−p)(1−q) and T [2r(1−p)/(2r+1)](1−q) as T → ∞ respectively if CRT and CNP are

used.10 Clearly, the subsample test using λ∗
n has a greater asymptotic discriminatory power

than the subsample test relying on λn with any choice of the bandwidth selection procedures

considered in the paper. Note that cT → ∞ as T → ∞, and therefore, T 1−q = o((c2TT )
1−q)

as T → ∞.

9This is the reason why our subsample approach here is also useful for the KPSS test for stationarity, as
well as the KPSS test for cointegration.

10Recall that for CRT we set bandwidth bn = cT p/δ in evaluating test statistic λn, and for CNP we set
bandwidth an = cT p/δ in estimating parameter Θ(r) nonparametrically, with some constant c > 0.
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5. Simulations

In our simulations, we consider the Ornstein-Uhlenbeck (OU) process given by

dUt = κ(μ− Ut)dt+ σdWt, (5.1)

where −∞ < μ < ∞, κ ≥ 0 and σ > 0 are parameters and W is standard Brownian motion.

The parameter κ, called the mean reversion parameter, determines the persistency of U .

If κ > 0, U becomes stationary with invariant distribution given by N(μ, σ2/2κ). On the

other hand, if κ = 0, U becomes Brownian motion (BM), and therefore, nonstationary.

For the RB-KPSS test of stationarity, U is specified under the null hypothesis as the OU

process with two sets of parameter values, (κ, σ2) = (5, 0.0062) and (0.2, 0.0062/25). The

OU processes with these two sets of parameter values are referred to as OU-T and OU-P,

where T and P signify transitory and persistent models, respectively. Note that the value of

the mean reversion parameter κ for OU-T is substantially larger than OU-P, which means

that the former (the latter) is more transitory (persistent) than the latter (the former).11

Under the alternative hypothesis, U is specified as BM with κ = 0.

For the RB-KPSS test of cointegration, we also consider

Xt = ςVt, (5.2)

where ς > 0 is a parameter and V is standard BM, and let Y = X + U . Under the null

hypothesis, we assume that U is generated as OU-T and OU-P, introduced above, and that

d[V,W ]t = ρdt, where −1 ≤ ρ ≤ 1 is the correlation coefficient between V and W , to allow

for dependence between V and W , where W is standard Brownian motion introduced in

(5.1). We set ς = 0.099 and ρ = −0.034.12 Under the alternative hypothesis, we simply set

κ = 0 and ρ = 0, so that U and X become independent BMs.

The exact transitions are used to generate daily samples of OU processes and BMs for

T = 10, 30 and 50 years of sample span, and samples are collected at intervals ranging from

δ = 1/252 to 1/4 corresponding to daily and quarterly frequencies. We draw the initial

values of stationary OU processes from their invariant distributions. The reported rejection

11The values of κ and σ2 in OU-T are obtained from the fitted OU process of the 1-month forward premium
of US/UK exchange rates, and the value of κ in OU-P is comparable to the estimate of the OU process
fitted by the US 3-month T-bill rates. See the notes in Figure 1 for the details of the data used here.

12The values of ς and ρ are set to be identical to those we obtain from the daily US/UK exchange
rates and their 1-month forward premium respectively. To estimate ρ, we observe from (5.1) and (5.2)
that d[U,X]t = σςd[W,V ]t = σςρdt, or, T−1[U,X]T = σςρ. Therefore, estimate of ρ can be obtained as
ρ̂ = T−1 ∑n

i=1(ui − ui−1)(xi − xi−1)/(σ̂ς̂).
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probabilities are computed based on 5000 simulation iterations. We use Parzen kernel13 with

six bandwidth selection schemes RT, NP, SP, CRT, CNP and CSP. For three conventional

discrete time schemes RT, NP and SP, we follow the literature to choose the relevant

constants.14 For continuous time schemes CRT, CNP and CSP, we let bn = BT /δ. We set

BT = cT 1/4 with c = 0.5886 for CRT.15 For CNP and CSP, we letBT = 2.6614ΘT (2)
2/5T 1/5.

We use the first step bandwidth AT = 0.5886T 1/4 for CNP, and set ΘT (2) = 4/κ2T for CSP.

5.1. Frequency Dependence of KPSS Test

To investigate the frequency dependence of the RB-KPSS tests for stationarity and coin-

tegration, we compute their rejection probabilities for variant values of sampling interval δ

while fixing sample span at T = 50.16 Our simulation results are illustrated in Figures 3 and

4, respectively for the test of stationarity and the test of cointegration. Overall, the tests

with conventional discrete time schemes RT and NP or their continuous time versions CRT

and CNP behave quite distinctively from those with conventional discrete time scheme SP

and its continuous time version CSP. Recall that the former are consistent, while the latter

are inconsistent. For the consistent tests, massive over-rejections of the null hypotheses

of stationarity and cointegration are observed when we use highly persistent OU-P in our

simulations. As discussed earlier in Section 2, this is a well known problem already ob-

served and analyzed in discrete time framework by many authors. On the contrary, the use

of persistent OU-P does not affect the inconsistent tests in any noticeable manner. Below

we will focus on our simulations with OU-T, since our main purpose here is to study the

frequency dependence, not to evaluate the overall performance of the tests.

Figures 3 and 4 demonstrate that our asymptotics are very relevant and useful. For

13It is well recognized that the choice of kernel function plays a secondary role in determining the properties
of the test, hence we only consider one widely used kernel function, Parzen kernel, as an illustration and we
expect the results mainly hold if any other proper kernel function is used. The character exponent r = 2 for
Parzen kernel.

14We set bn = 12(n/100)1/4 for RT (Kwiatkowski et al. (1992)), bn = 2.6614θn(2)
2/5n1/5 for NP, where

θn(2) is calculated with an = 4(n/100)4/25 (Newey and West (1994)), and bn = 2.6614θn(2)
2/5n1/5 for SP,

where θn(2) = 2ρ̂/(1 − ρ̂)2 with ρ̂ being the estimated AR coefficient in the AR(1) regression using the
discrete sample (Andrews (1991)).

15As in RT, there is no solid rule to set the constant in CRT, so we choose it to be comparable to that
in RT. In particular, we set c such that BT = cT 1/4 = bnδ where bn = 3.7947n1/4 under RT, for δ = 1/12
corresponding to monthly frequency used commonly in discrete studies, and n = 1000 which is usually the
largest sample size adopted in discrete time simulation studies (e.g., Newey and West (1994)). Therefore,

we set c = 1/12×3.7947×10001/4

(1/12×1000)1/4
= 0.5886.

16Our asymptotics require T → ∞ as well as δ → 0. In our simulations here, we let T be fixed to focus
on how the rejection probabilities change as δ → 0. Of course, it is possible to vary T simultaneously
with δ as in our asymptotics. Though we do not report the details, our simulation results in this setup are
qualitatively identical to those we present here with T fixed.
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the tests of stationarity and cointegration with RT and NP, the rejection probabilities

especially under the null hypotheses of stationarity and cointegration increase as δ shrinks,

very sharply as δ goes beyond the monthly frequency and approaches the daily frequency.

Only the tests with SP, which are inconsistent, show no such tendency. On the other hand,

the rejection probabilities of the tests with CRT and CNP do not show any frequency

dependence, staying more or less constant at all frequencies. This is true under both the

null and alternative hypotheses. Again, the tests with SP, as well CSP, yield very stable

rejection probabilities across all frequencies. They are more stable under the null hypothesis

than under the alternative hypothesis. Though they are shown to have some powers, they

are trivial since they do not increase with T . This is shown in the next section.

Given the frequency invariance of the test performance with continuous time bandwidth

schemes, there seems no compelling reason why we should use high frequency observations.

However, we find that the tests using higher frequency observations are generally much

more robust in the sense that the possibility of making contradictory rejection decisions

is much lower when we change the sampling interval slightly. To demonstrate this, we

count, at each given sampling frequency, the number of contradictory rejection decisions

resulting from any change in sampling frequency by one day up to two days and five days.

The counts of contradictory rejection decisions are reported as the relative percentages to

the total number of simulation iterations. Figure 5 shows a clear upward trend in the

contradiction rate as δ increases, which implies that if we use low frequency observations,

we are more likely to face contradictory results when a small and insignificant change in

sampling frequency is made.

5.2. Size and Power of Asymptotic and Subsample Tests

Table 1 presents the rejection probabilities of the RB-KPSS test for stationarity with CRT,

CNP and CSP. Our simulation results reported in Table 1 are consistent with the asymptotic

theory developed in the paper. In particular, they show that the test with CSP yields no

nontrivial asymptotic power. Its power does not increase with T , though it appears to have

some power in finite samples. The test has the largest power if CRT is used. The test with

CNP does not perform as well as the test with CRT. However, it has power that increases

as T gets large, in contrast to the test with CSP.

In Table 2, we report the rejection probabilities of the RB-KPSS test for cointegration

with CRT, CNP and CSP, and the subsample test of cointegration based on the modified

RB-KPSS test statistic, which are referred to respectively as the asymptotic test and the

modified subsample (MS) test for short. For the MS test, we set subsample size ST = T 1/2

and subsamples are drawn at 1-month intervals. Our simulation results for the asymptotic
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Table 1. Rejection Probabilities of Stationarity Tests

OU-T OU-P BM

T = 10 T = 30 T = 50 T = 10 T = 30 T = 50 T = 10 T = 30 T = 50

CRT 0.071 0.072 0.065 0.610 0.741 0.755 0.711 0.901 0.955

CNP 0.053 0.055 0.050 0.249 0.334 0.317 0.393 0.621 0.709

CSP 0.047 0.060 0.055 0.212 0.038 0.010 0.359 0.350 0.363

Notes: Reported are the rejection probabilities of asymptotic stationarity tests with CRT, CNP and CSP
schemes under the null (OU-T and OU-P) and the alternative (BM) hypotheses, using daily observations
for variant sample spans.

Table 2. Rejection Probabilities of Cointegration Tests

OU-T Error OU-P Error BM Error

T = 10 T = 30 T = 50 T = 10 T = 30 T = 50 T = 10 T = 30 T = 50

CRT 0.084 0.067 0.073 0.498 0.691 0.734 0.587 0.865 0.940

CNP 0.139 0.069 0.063 0.273 0.302 0.285 0.356 0.516 0.606

CSP 0.072 0.061 0.063 0.308 0.172 0.118 0.409 0.424 0.422

MS 0.058 0.040 0.037 0.341 0.422 0.414 0.436 0.676 0.778

Notes: Reported are the rejection probabilities of asymptotic and modified subsample (MS) cointegration
tests under the null (OU-T and OU-P Errors) and the alternative (BM Errors) hypotheses, using daily
observations for variant sample spans. The asymptotic tests are implemented with CRT, CNP and CSP
schemes. For the modified subsample test (MS), we set subsample size ST = T 1/2 and subsamples are drawn
with 1-month intervals.

test here are also largely consistent with our asymptotic theory. The test with CSP has no

nontrivial power, and the test with CRT performs best. The performance with CNP is not

impressive, but at least its power increases steadily as T gets large. The MS test generally

provides more proper size than the asymptotic test, unless the error term becomes highly

persistent. The power performance of the MS test improves as T increases, and it is better

than that of the asymptotic test with CNP or CSP, but worse than that with CRT. In terms

of both size and power, the MS test appears to perform comparably with the asymptotic

test with CRT. Both the MS test and the asymptotic test are valid in our simple simulation

setup. Note, however, that only the MS test is applicable for the test of cointegration in

the more general context considered in the paper.
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6. Asymptotics for Variants of KPSS Tests

Before closing the paper, we briefly show in this section that the frequency dependence

problem shown in Figure 1 and formally analyzed in Sections 3.1 and 3.2 is applicable

not only for the KPSS test defined in (2.1), but also for its variants defined similarly. In

particular, we use our continuous time framework to examine the high-frequency behaviors

of the modified R/S statistic proposed by Lo (1991) and the rescaled variance test developed

in Giraitis et al. (2003), both of which are proposed for the test of long memory.

For a given time series (ui), i = 1, . . . , n with its longrun variance estimate ω2
n defined

in (2.2), the modified R/S statistic can be written as17

λRS
n =

1√
nωn

⎛
⎝max

1≤i≤n

i∑
j=1

uj − min
1≤i≤n

i∑
j=1

uj

⎞
⎠ ,

and the rescaled variance test statistic, or V/S statistic, as

λVS
n =

1

n2ω2
n

⎡
⎣ n∑

i=1

⎛
⎝ i∑

j=1

uj

⎞
⎠

2

− 1

n

⎛
⎝ n∑

i=1

i∑
j=1

uj

⎞
⎠

2⎤
⎦ .

Like the KPSS test statistic λn in (2.1), modified R/S statistic λRS
n and V/S statistic λVS

n

are also defined from the partial sum (si) of (ui) given by si =
∑i

j=1 uj for i = 1, . . . , n,

with a longrun variance estimate ω2
n or its square root ωn in the denominator. Note that

λRS
n is based on the range of (si), and λVS

n essentially looks at the sample variance of (si).

Following our analysis in Section 3.1, we first establish the asymptotic equivalence of

λRS
n and λVS

n to their continuous time counterparts defined as

ΛRS
n,δ =

1

�n,δ

(
max
0≤t≤1

∫ tT

0
Usds− min

0≤t≤1

∫ tT

0
Usds

)

ΛVS
n,δ =

1

�2
n,δ

[
1

T 2

∫ T

0

(∫ t

0
Usds

)2

dt− 1

T 3

(∫ T

0

∫ t

0
Usdsdt

)2
]
.

The asymptotic equivalence is shown in the following corollary to Lemma 3.1. As before,

we consider RT, NP and SP.

Corollary 6.1. Let Assumptions KF and CA hold, and assume TsT
−1δ ≺p Δδ,T . Fur-

17λRS
n is actually n−1/2 multiple of the original modified R/S statistic in Lo (1991).
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thermore, let Assumption NP or SP hold if NP or SP is used. Then we have

√
TλRS

n ∼p Λ
RS
n,δ and λVS

n ∼p Λ
VS
n,δ

as δ → 0 and T → ∞.

Now we may easily deduce the asymptotics of λRS
n and λVS

n , which we present as a

corollary to Theorem 3.3 below.

Corollary 6.2. Let Assumptions KF and CA hold. If RT or NP satisfying Assumption

NP is used, then λRS
n →p ∞ and λVS

n →p ∞ under both Assumptions ST and NS. More-

over, if SP satisfying Assumption SP is used, then λRS
n and λVS

n have nondegenerate limit

distributions under both Assumptions ST and NS.

Therefore, the modified R/S test and the rescaled variance test with the usual bandwidth

choices are also invalid if the discrete samples are obtained at high frequency. We expect

over-rejection of the null hypothesis if RT or NP is used, and the lack of power if SP is used.

7. Conclusion

In this paper, we consider testing for stationarity using high frequency observations. In

particular, we study the asymptotic properties of the KPSS test as a stationarity test and

a residual based cointegration test using a continuous time framework. We find that if high

frequency observations are used, the test employing any conventional bandwidth selection

scheme does not have discriminatory power between stationary and nonstationary processes.

We propose using a continuous time bandwidth selection approach, CRT or CNP. The test

using either scheme is consistent and not sensitive to sampling frequency. Moreover, our

simulation results indicate that the test result is more stable if higher frequency observa-

tions are used. In this paper, we also show that the KPSS test, as a stationarity test,

has asymptotic null distribution identical to that of its counterpart in the usual discrete

time framework. Therefore, the critical values tabulated in Kwiatkowski et al. (1992) are

applicable. However, the KPSS test, as a residual based cointegration test, has asymptotic

distribution dependent upon various nuisance parameters, which makes asymptotic test in-

feasible. We propose a modified subsampling test for testing cointegration. The test can

also be used as a stationarity test. The simulation results are generally consistent with our

asymptotic theories.
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Appendices

A. Useful Lemmas and Their Proofs

Lemma A.1. Let Assumption KF hold. For Bn,δ = δbn satisfying δ ≺p Bn,δ ≺p T , we have

(a)
∑

|j|≤n−1

∫ (j+1)δ
jδ K(s/Bn,δ)ds = O(Bn,δ), and

(b)
∑

|j|≤n−1

∫ (j+1)δ
jδ [K(s/Bn,δ)−K(jδ/Bn,δ)]ds = O(δ),

as δ → 0 and T → ∞.

Proof. The proof of this lemma is analogous to that of Lemma A.1 in Lu and Park (2018)

by replacing BT by Bn,δ.

Lemma A.2. Let ΓT be the sample autocovariance function of U , we have

(a) sups∈[−T,T ] |ΓT (s)| = O(T 2
s ),

(b) max|j|≤n−1 sups∈[jδ,(j+1)δ] |ΓT (s)− ΓT (jδ)| = O(TsΔδ,T ), and

(c) max|j|≤n−1 |ΓT (jδ)− γn(j)| = O(TsΔδ,T ),

as δ → 0 and T → ∞, where Δδ,T = Δδ,T (U) and Ts = T (U).

Proof. Part (a) holds trivially as sups∈[−T,T ] |ΓT (s)| ≤ T−1
(
sup0≤t≤T U2

t

) ∫ T
0 dt = T (U2) =

O(T 2
s ). Moreover, Part (b) holds because

max
|j|≤n−1

sup
s∈[jδ,(j+1)δ]

|ΓT (s)− ΓT (jδ)| ≤ 1

T
max

|j|≤n−1
sup

s∈[jδ,(j+1)δ]

∫ T

0
|Ut (Ut−s − Ut−jδ)| dt

≤ 1

T
sup

0≤t≤T
|Ut|

∫ T

0
max

|j|≤n−1
sup

s∈[jδ,(j+1)δ]
|Ut−s − Ut−jδ|dt

≤ sup
0≤t≤T

|Ut|
(

sup
0≤s,t≤T

sup
|t−s|≤δ

|Ut − Us|
)

= TsΔδ,T .

As for Part (c), we first note that γn(j) = T−1
∑n

i=1

∫ iδ
(i−1)δ UiδU(i−j)δdt, and then

ΓT (jδ)− γn(j) = Anj +Bnj ,

where

Anj =
1

T

n∑
i=1

∫ iδ

(i−1)δ
Ut (Ut−jδ − Uiδ−jδ) dt and Bnj =

1

T

n∑
i=1

∫ iδ

(i−1)δ
(Ut − Uiδ)Uiδ−jδdt
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for which we have

max
|j|≤n−1

|Anj | ≤ 1

T
sup

0≤t≤T
|Ut| max

|j|≤n−1

n∑
i=1

∫ iδ

(i−1)δ
(|Ut−jδ − Uiδ−jδ|) dt

≤ 1

T
sup

0≤t≤T
|Ut|

(
T sup

0≤t,s≤T
sup

|t−s|<δ
|Ut − Us|

)
= TsΔδ,T ,

and similarly, max|j|≤n−1 |Bnj | ≤ TsΔδ,T . This completes the proof of the lemma.

Lemma A.3. Let Assumptions KF hold. For ω2
n and �2

n,δ defined in (2.2) and (3.4) respec-

tively, we have

(i) �2
n,δ − δω2

n = O(Δδ,TBn,δ), if U satisfies Assumption ST, and

(ii) �2
n,δ − δω2

n = O(TsΔδ,TBn,δ + T 2
s δ), if U satisfies Assumption NS,

as δ → 0 and T → ∞.

Proof. To show the lemma, we first write

�2
n,δ − δω2

n = Pn,δ +Qn,δ +Rn,δ,

where

Pn,δ = δ
∑

|j|≤n−1

K(jδ/Bn,δ)[ΓT (jδ)− γn(j)]

Qn,δ =
∑

|j|≤n−1

∫ (j+1)δ

jδ
[K(s/Bn,δ)ΓT (s)−K(jδ/Bn,δ)ΓT (jδ)]ds

Rn,δ =

∫ −(n−1)δ

−nδ
K(s/Bn,δ)ΓT (s)ds,

which are the same as Pn,δ, Qn,δ and Rn,δ defined in the proof of Theorem 4.1 in Lu and

Park (2018) except for BT is replaced by Bn,δ. The analysis of Pn,δ, Qn,δ and Rn,δ here is

the same as that in the proof of Theorem 4.1 in Lu and Park (2018), while their stochastic

orders are determined upon different assumptions for stationary U and nonstationary U .

If U satisfies Assumption ST, Lemma A.2 in Lu and Park (2018) holds under As-

sumption CA (i). By the proof of Theorem 4.1 in Lu and Park (2018), we have Pn,δ =

O(Δδ,TBn,δ), Qn,δ = O(Δδ,TBn,δ) and Rn,δ = O(δ). So Part (i) of the lemma follows im-

mediately. On the other hand, if U satisfies Assumption NS, Lemma A.2 is applicable. We

may follow the analysis in the proof of Theorem 4.1 in Lu and Park (2018) and deduce that

Pn,δ = O(Bn,δTsΔδ,T ), Qn,δ = O(Bn,δTsΔδ,T ) and Rn,δ = O(T 2
s δ), by Lemma A.1 and A.2.

32



This establishes Part (ii) of the lemma.

Lemma A.4. For �2
n,δ defined in (3.4), we have

(i) B−1
n,δ�

2
n,δ →p σ

2ι(K), if U satisfies Assumption ST and Bn,δ →p 0 with Δδ,T →p 0,

(ii) c−2
T B−1

n,δ�
2
n,δ →p ι(K)

∫ 1
0 U◦2

t dt, if U satisfies Assumption NS and Bn,δ/T →p 0, and

(iii) c−2
T T−1�2

n,δ →d

∫ 1
−1K(s/B◦)Γ◦(s)ds, if U satisfies Assumption NS and Bn,δ/T →d

B◦ �= 0 a.s.,

as δ → 0 and T → ∞.

Proof. To show Part (i), we consider

B−1
n,δ�

2
n,δ = B−1

n,δ

∫ T

−T
K(s/Bn,δ)ΓT (s)ds =

∫ T/Bn,δ

−T/Bn,δ

K(s)ΓT (sBn,δ)ds.

Then we can choose 0 < ε < 1 such that T εBn,δ ≺p δ as δ → 0 and T → ∞, and write

∫ T/Bn,δ

−T/Bn,δ

K(s)ΓT (sBn,δ)ds− σ2ι(K) = Pn,δ +Qn,δ +RT

where

Pn,δ =

∫
|s|≤T ε

K(s)
[
ΓT (sBn,δ)− σ2

]
ds,

Qn,δ =

∫
T ε≤|s|≤T/Bn,δ

K(s)ΓT (sBn,δ)ds,

RT = −σ2

∫
|s|≥T ε

K(s)ds

each of which will be shown to be op(1). For Pn,δ, note that for |s| ≤ T ε,

|ΓT (sBn,δ)− σ2| =
∣∣∣∣ 1T

∫ T

0
Ut(Ut−sBn,δ

− Ut)dt+

(
1

T

∫ T

0
U2
t dt− σ2

)∣∣∣∣
≤ 1

T

∫ T

0
|Ut(Ut−sBn,δ

− Ut|dt+
∣∣∣∣ 1T

∫ T

0
U2
t dt− σ2

∣∣∣∣ (A.1)

where the second term on the right hand side of (A.1) is op(1) by Assumption ST. As for
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the first term on the right hand side of (A.1), we note that for |s| ≤ T ε,

E

∣∣∣∣ 1T
∫ T

0
Ut(Ut−sBn,δ

− Ut)dt

∣∣∣∣ ≤ sup
0≤t≤T

E|Ut(Ut−sBn,δ
− Ut)|

≤
[

sup
0≤t≤T

E(U2
t )

]1/2 [
sup

0≤t≤T
E(Ut−sBn,δ

− Ut)
2

]1/2

≤
[

sup
0≤t≤T

E(U2
t )

]1/2 [
sup

0≤s,t≤T
sup

|t−s|≤T εBn,δ

E(Ut − Us)
2

]1/2

≺p Δδ,T

by Assumption ST and the fact that T εBn,δ ≺p δ. Therefore, we have 1(|s| ≤ T ε)[ΓT (sBn,δ)−
σ2] ≺p Δδ,T+op(1) →p 0. Now, if we define a continuous functional L(f) =

∫∞
−∞K(x)f(x)dx

on the space of all continuous functions on [−∞,∞] with supremum norm, then we may

invoke the continuous mapping theorem (CMT) to deduce that

Pn,δ =

∫ ∞

−∞
K(s)1(|s| ≤ T ε)[ΓT (sBn,δ)− σ2]ds →p 0

as δ → 0 and T → ∞. As for Qn,δ, we have

E|Qn,δ| ≤
∫
T ε≤|s|≤T/Bn,δ

|K(s)|E|ΓT (sBn,δ)|ds ≤ sup
s∈[−T,T ]

E|ΓT (s)|
∫
|s|≥T ε

|K(s)|ds → 0

as T → ∞, since K is absolutely integrable and sups∈[−T,T ] E|ΓT (s)| = O(1) as shown

in Lemma A.2 in Lu and Park (2018). Lastly, RT → 0 as T → ∞ simply because K is

integrable.

The proof of Part (ii) and (iii) are essentially the same as that of Lemma 3.5 except for

BT is replaced by Bn,δ, and hence is omitted here.

Lemma A.5. We have

(i)
∫ T
0

(∫ t
0 Usds

)2
dt − δ3

∑n
i=1

(∫ i
j=1 uj

)2 ≺p T 3(Δδ,T + Δ2
δ,T ), if U satisfies Assumption

ST, and

(ii)
∫ T
0

(∫ t
0 Usds

)2
dt−δ3

∑n
i=1

(∫ i
j=1 uj

)2 ≺p T
2Ts(δTs+Δδ,TT ), if U satisfies Assumption

NS,

as δ → 0 and T → ∞, where Δδ,T = Δδ,T (U) and Ts = T (U).
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Proof. Note we have

∫ T

0

(∫ t

0
Usds

)2

dt− δ3
n∑

i=1

⎛
⎝ i∑

j=1

uj

⎞
⎠

2

= Ra
T +Rb

T

where

Ra
T = −2δ

n∑
i=1

⎡
⎣
⎛
⎝ i∑

j=1

uj

⎞
⎠(∫ iδ

(i−1)δ
Aitdt

)⎤
⎦ and Rb

T =

n∑
i=1

∫ iδ

(i−1)δ
A2

itdt

with Ait =
∑i

j=1

∫ jδ
(j−1)δ(Ujδ − Us)ds+

∫ iδ
t Usds for i = 1, · · · , n and t ∈ [(i− 1)δ, iδ].

First, we prove Part (i) of the lemma. If U satisfies Assumption ST, we analyze Ra
T as

follows:

E |Ra
T | ≤ 2δ

n∑
i=1

⎡
⎣E

⎛
⎝ i∑

j=1

uj

⎞
⎠

2

E

(∫ iδ

(i−1)δ
Aitdt

)2
⎤
⎦
1/2

≤ 2δ

n∑
i=1

⎡
⎣E

⎛
⎝ i∑

j=1

uj

⎞
⎠

2

δ

∫ iδ

(i−1)δ
E
(
A2

it

)
dt

⎤
⎦
1/2

≤ 2δ3/2

⎡
⎣max
1≤i≤n

E

⎛
⎝ i∑

j=1

uj

⎞
⎠

2⎤
⎦
1/2 [

max
1≤i≤n

sup
t∈[(i−1)δ,iδ]

E
(
A2

it

)]1/2 n∑
i=1

[∫ iδ

(i−1)δ
dt

]1/2

= 2δT

⎡
⎣max
1≤i≤n

E

⎛
⎝ i∑

j=1

uj

⎞
⎠

2⎤
⎦
1/2 [

max
1≤i≤n

sup
t∈[(i−1)δ,iδ]

E
(
A2

it

)]1/2

, (A.2)

where the first and second inequalities follow from Cauchy Schwartz inequality of expecta-

tion and Cauchy Schwartz inequality of integration, respectively. Moreover, note that

E

∣∣∣Rb
T

∣∣∣ ≤
[
max
1≤i≤n

sup
t∈[(i−1)δ,iδ]

E
(
A2

it

)] n∑
i=1

∫ iδ

(i−1)δ
dt = T max

1≤i≤n
sup

t∈[(i−1)δ,iδ]
E
(
A2

it

)
. (A.3)

In particular, we have

max
1≤i≤n

E

⎛
⎝ i∑

j=1

uj

⎞
⎠

2

≤ n2 sup
0≤t≤T

E(U2
t ) = O(δ−2T 2), (A.4)

35



and for i = 1, · · · , n and t ∈ [(i− 1)δ, iδ],

E
(
A2

it

) ≤ 2E

⎛
⎝ i∑

j=1

∫ jδ

(j−1)δ
(Ujδ − Us) ds

⎞
⎠

2

+ 2E

(∫ iδ

t
Usds

)2

(A.5)

where

E

⎛
⎝ i∑

j=1

∫ jδ

(j−1)δ
(Ujδ − Us) ds

⎞
⎠

2

≤ iE

⎡
⎣ i∑
j=1

(∫ jδ

(j−1)δ
(Ujδ − Us) ds

)2
⎤
⎦

≤ iE

⎡
⎣ i∑
j=1

(∫ jδ

(j−1)δ
(Ujδ − Us)

2 ds

)(∫ jδ

(j−1)δ
ds

)⎤
⎦

= iδE

⎡
⎣ i∑
j=1

∫ jδ

(j−1)δ
(Ujδ − Us)

2 ds

⎤
⎦

and E

(∫ iδ
t Usds

)2 ≤ E

(∫ iδ
t U2

s ds
)(∫ iδ

t ds
)
≤ δ

∫ iδ
t E(U2

s )ds, from which it follows that

max
1≤i≤n

sup
t∈[(i−1)δ,iδ]

E
(
A2

it

) ≤ 2nδE

⎡
⎣ sup
0≤s,t≤T

sup
|t−s|≤δ

(Ut − Us)
2

n∑
j=1

∫ jδ

(j−1)δ
ds

⎤
⎦

+ 2δ sup
0≤t≤T

E(Ut)
2

∫ iδ

(i−1)δ
ds ∼p Δ

2
δ,TT

2. (A.6)

Thus we can deduce Ra
T ≺p Δδ,TT

3 from (A.2), (A.4) and (A.6), and Rb
T ≺p Δ2

δ,TT
3 from

(A.3) and (A.6). Part (i) of the lemma then follows immediately.

Next, we prove Part (ii) of the lemma. When U satisfies Assumption NS, we consider

|Ra
T | ≤ 2δ

n∑
i=1

∣∣∣∣∣∣
i∑

j=1

uj

∣∣∣∣∣∣
∣∣∣∣∣
∫ iδ

(i−1)δ
Aitdt

∣∣∣∣∣ ≤ 2δ

(
n sup

0≤t≤T
|Ut|

)
n∑

i=1

∣∣∣∣∣
∫ iδ

(i−1)δ
Aitdt

∣∣∣∣∣
≤ 2TTs

n∑
i=1

∫ iδ

(i−1)δ
|Ait| dt ≤ 2T 2Ts max

1≤i≤n
sup

(i−1)δ≤t≤iδ
|Ait| (A.7)

and

∣∣∣Rb
T

∣∣∣ ≤
(

max
1≤i≤n

sup
(i−1)δ≤t≤iδ

A2
it

)
n∑

i=1

∫ iδ

(i−1)δ
dt = T max

1≤i≤n
sup

(i−1)δ≤t≤iδ
A2

it. (A.8)
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In this case, we simply have

max
1≤i≤n

sup
(i−1)δ≤t≤iδ

|Ait| ≤
n∑

j=1

∫ jδ

(j−1)δ
|Ujδ − Us|ds+ max

1≤i≤n

∫ iδ

(i−1)δ
|Us|ds

≤ T sup
0≤t,s≤T

sup
|t−s|<δ

|Ut − Us|+ δ sup
0≤t≤T

|Ut| = TΔδ,T + δTs

from which and (A.7) and (A.8) it follows that Ra
T ≺p T 3TsΔδ,T + δT 2T 2

s and Rb
T ≺p

T 3Δ2
δ,T + δ2TT 2

s . So the result in Part (ii) of the lemma follows immediately from the fact

that Ts �p Δδ,T , and hence the whole lemma is proved.

Lemma A.6. Let Assumptions CA and NP hold. If θn(r) is the estimate of θ(r) under NP,

and

Θn,δ(r) =

∫
|s|≤An,δ

|s|rΓT (s)ds∫
|s|≤An,δ

ΓT (s)ds
(A.9)

where An,δ = δan, then under Assumptions ST and NS, we have

δrθn(r) ∼p Θn,δ(r)

as δ → 0 and T → ∞.

Proof. If NP is used, then δrθn(r) = δ1+r
∑

|j|≤an
|j|rγn(j)

/
δ
∑

|j|≤an
γn(j) . To prove the

lemma, it suffices to show that for an integer r ≥ 0,∫
|s|≤An,δ

|s|rΓT (s)ds ∼p δ
1+r

∑
|j|≤an

|j|rγn(j) (A.10)

as δ → 0 and T → ∞. To this end, we write∫
|s|≤An,δ

|s|rΓT (s)ds− δ1+r
∑

|j|≤an

|j|rγn(j) = Pn,δ +Qn,δ +Rn,δ (A.11)

where Pn,δ, Qn,δ and Rn,δ are the same as those defined in the proof of Proposition 4.2 in

Lu and Park (2018) with AT replaced by An,δ.

If U satisfies Assumption ST, Chang et al. (2018) has shown that (A.10) holds given

Δδ,T → 0 in their proof of Lemma 5.1. On the other hand, if U satisfies Assumption NS,

then Lemma A.2 holds. We follow the analysis in the proof of Proposition 4.2 in Lu and

Park (2018), and deduce that Pn,δ = O(TsΔδ,TA
1+r
n,δ ), Qn,δ = O(TsΔδ,TA

1+r
n,δ +T 2

s δA
r
n,δ) and
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Rn,δ = O(T 2
s δA

r
n,δ) using Lemma A.2. Then it follows from (A.11) that

∫
|s|≤An,δ

|s|rΓT (s)ds− δ1+r
∑

|j|≤an

|j|rγn(j) = O(TsΔδ,TA
1+r
n,δ + T 2

s δA
r
n,δ)

as δ → 0 and T → ∞. Moreover, since c−2
T A

−(1+r)
n,δ

∫
|s|≤An,δ

|s|rΓT (s)ds →d

∫ 1
−1 |s|r(

∫ 1
0 U◦2

t dt)ds

as δ → 0 and T → ∞, (A.10) holds by observing that c−2
T A

−(1+r)
n,δ

(
δ1+r

∑
|j|≤an

|j|rγn(j) −∫
|s|≤An,δ

|s|rΓT (s)ds
)
= O(c−2

T TsΔδ,T + c−2
T T 2

s δA
−1
n,δ) = O

(
c−2
T Ts(Δδ,T + Tsδ

pT−p)
)
= op(1)

under Assumption CA (ii) and Assumption NP. This completes the proof of the lemma.

Lemma A.7. Let Assumptions CA and SP hold. If ρn is the estimated AR coefficient in

the AR(1) regression of (ui), then under both Assumptions ST and NS, we have

1− ρn ∼p −
δ
∫ T
0 UtdUt∫ T
0 U2

t dt

as δ → 0 and T → ∞.

Proof. Since ρn − 1 =
∑n

i=1 ui−1(ui − ui−1)/
∑n

i=1 u
2
i−1, it suffices to show

n∑
i=1

δu2i ∼p

∫ T

0
U2
t dt (A.12)

and

n∑
i=1

ui−1(ui − ui−1) ∼p

∫ T

0
UtdUt, (A.13)

as δ → 0 and T → ∞, under both Assumptions ST and NS.

To prove (A.12), note that under Assumption ST, we have T−1
∫ T
0 U2

t dt →p σ2 as

T → ∞, and

E

∣∣∣∣∣ 1T
(∫ T

0
U2
t dt−

n∑
i=1

δu2i−1

)∣∣∣∣∣ ≤ 1

T

n∑
i=1

∫ iδ

(i−1)δ
E

∣∣∣U2
t − U2

(i−1)δ

∣∣∣ dt
≤ 1

T

n∑
i=1

∫ iδ

(i−1)δ

[
E
(
Ut + U(i−1)δ

)2]1/2 [
E
(
Ut − U(i−1)δ

)2]1/2
dt

≤
[
2 sup
0≤t≤T

E(U2
t )

]1/2 [
sup

0≤s,t≤T
sup

|t−s|≤δ
E(Ut − Us)

2

]1/2
1

T

∫ T

0
dt

= O(1)O(Δδ,T ) = o(1)
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under Assumptions CA (i). While under Assumption NS, we have c−2
T T−1

∫ T
0 U2

t dt →d∫ 1
0 U◦2

t dt as T → ∞, and

∣∣∣∣∣
∫ T

0
U2
t dt−

n∑
i=1

δu2i−1

∣∣∣∣∣ =
∣∣∣∣∣

n∑
i=1

∫ iδ

(i−1)δ
(U2

t − U2
(i−1)δ)dt

∣∣∣∣∣
≤

n∑
i=1

∫ iδ

(i−1)δ

∣∣Ut + U(i−1)δ

∣∣ |Ut − U(i−1)δ|dt

≤ 2 sup
0≤t≤T

|Ut|
(

sup
0≤s,t≤T

sup
|t−s|≤δ

|Ut − Us|
)

n∑
i=1

∫ iδ

(i−1)δ
dt = O(TsΔδ,TT )

from which we deduce that c−2
T T−1

∣∣∣∫ T
0 U2

t dt−
∑n

i=1 δu
2
i−1

∣∣∣ = Op(c
−2
T TsΔδ,T ) = op(1) by

Assumption CA (ii). This completes the proof of (A.12).

Next, to show (A.13), we consider

n∑
i=1

ui−1(ui − ui−1) =
1

2
(u2n − u20)−

1

2

n∑
i=1

(ui − ui−1)
2

=
1

2

[(
U2
T − U2

0

)− n∑
i=1

(
Uiδ − U(i−1)δ

)2]
(A.14)

where by Itô formula, we have

U2
T − U2

0 = 2

∫ T

0
UtdU

c
t + [U c]T +

∑
0≤t≤T

ΔU2
t

= 2

∫ T

0
UtdU

c
t + [U c]T +

∑
0≤t≤T

[
2UtΔUt − (ΔUt)

2
]

= 2

⎛
⎝∫ T

0
UtdU

c
t +

∑
0≤t≤T

UtΔUt

⎞
⎠+ [U c]T −

∑
0≤t≤T

(ΔUt)
2

= 2

∫ T

0
UtdUt + [U c]T −

∑
0≤t≤T

(ΔUt)
2, (A.15)

where the second equality follows from ΔU2
t = U2

t − U2
t− = (Ut + Ut−)(Ut − Ut−) = (2Ut −
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ΔUt)ΔUt. Moreover, we can write (Ut − U(i−1)δ)
2 as

2

∫ iδ

(i−1)δ
(Ut − U(i−1)δ)dU

c
t +

∫ iδ

(i−1)δ
d[U c]t +

∑
(i−1)δ≤t≤iδ

Δ
(
Ut − U(i−1)δ

)2

=2

∫ iδ

(i−1)δ
(Ut − U(i−1)δ)dU

c
t +

∫ iδ

(i−1)δ
d[U c]t +

∑
(i−1)δ≤t≤iδ

[
2
(
Ut − U(i−1)δ

)
ΔUt − (ΔUt)

2
]

by applying Itô formula again, and then deduce

n∑
i=1

(
Uiδ − U(i−1)δ

)2
= [U c]T −

∑
0≤t≤T

(ΔUt)
2 + 2(Ra

T +Rb
T ) (A.16)

where

Ra
T =

n∑
i=1

∫ iδ

(i−1)δ
(Ut − U(i−1)δ)dU

c
t

Rb
T =

n∑
i=1

∑
(i−1)δ≤t≤iδ

(Ut − U(i−1)δ)ΔUt.

Now from (A.14), (A.15) and (A.16) we obtain

∫ T

0
UtdUt −

n∑
i=1

ui(ui − ui−1) = Ra
T +Rb

T (A.17)

which will be analyzed in a sequel.

To analyze Ra
T , we note that

Ra
T = PT +QT

where

PT =
n∑

i=1

∫ iδ

(i−1)δ
(Ut − U(i−1)δ)dAt

QT =

n∑
i=1

∫ iδ

(i−1)δ
(Ut − U(i−1)δ)dMt.
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under Assumption SP. For PT , we have

|PT | ≤ sup
0≤t,s≤T

sup
|t−s|≤δ

|Ut − Us|
n∑

i=1

∫ iδ

(i−1)δ
|dAt| = Δδ,T

∫ T

0
|dAt| �p Δδ,T pTT.

As for QT , it suffices to look at its quadratic variation

[Q]T =
n∑

i=1

∫ iδ

(i−1)δ
(Ut − U(i−1)δ)

2d[M ]t ≤ sup
0≤t,s≤T

sup
|t−s|≤δ

(Ut − Us)
2

∫ T

0
d[M ]t �p Δ

2
δ,T qTT

from which we deduce that QT �p Δδ,T
√
qTT . Therefore, we have

Ra
T �p Δδ,T (pTT +

√
qTT ).

Moreover, we have Rb
T �p Δδ,TT because

∣∣∣Rb
T

∣∣∣ ≤ sup
0≤t,s≤T

sup
|t−s|≤δ

|Ut − Us|
n∑

i=1

∑
(i−1)δ≤t≤iδ

|ΔUt| = Δδ,T

∑
0≤t≤T

|ΔUt| = Δδ,TOp(T )

under Assumption SP. Now (A.17) implies that

T−1/2

[∫ T

0
UtdUt −

n∑
i=1

ui(ui − ui−1)

]
�p Δδ,T (pT

√
T +

√
qT ) = op(1)

under Assumption SP if U satisfies Assumption ST. On the other hand, if U satisfies

Assumption NS, we have

c−2
T

[∫ T

0
UtdUt −

n∑
i=1

ui(ui − ui−1)

]
�p c

−2
T Δδ,T (pTT +

√
qTT ) = op(1).

This shows (A.13), and hence the proof of the lemma is complete.

Lemma A.8. Let Assumption CA and SP hold. If θn(r) is the estimate of θ(r) under SP,

and ΘT (r) = r!/κrT under CSP, then under Assumptions ST and NS, we have

δrθn(r) ∼p ΘT (r)

as δ → 0 and T → ∞.

41



Proof. Note θn(r) under SP is given as

θn(r) =
2(1− ρn)

1 + ρn
Fn(r), (A.18)

where Fn(r) =
∑∞

j=1 j
rρjn. By the use of Lemma A.7, we have

Fn(0) =

∞∑
j=1

ρjn =
ρn

1− ρn
∼p

1− δκT
δκT

= (δκT )
−1 + op

(
(δκT )

−1
)
.

for r = 0, and

Fn(r) =
1 + (r − 1)ρn

1− ρn
Fn(r − 1) +

ρn
1− ρn

r−2∑
k=1

ar(k)Fn(k) (A.19)

r ≥ 1, where the summation in (A.19) appears only when r ≥ 3, and ar(k) =
∑k−1

i=1

(
r−2−i
k−1−i

)
for r ≥ 3. Note that

1 + (r − 1)ρn
1− ρn

∼p
1 + (r − 1)(1− δκT )

δκT
=

r

δκT
− (r − 1) = r(δκT )

−1 + op
(
(δκT )

−1
)
,

ρn
1− ρn

∼p
1− δκT
δκT

=
1

δκT
− 1 = (δκT )

−1 + op
(
(δκT )

−1
)
.

Therefore, the first term on the right hand side of (A.19) dominates, and we have for r ≥ 1,

Fn(r) = r(δκT )
−1Fn(r − 1) + op

(
(δκT )

−1Fn(r − 1)
)

= r!(δκT )
−rFn(0) + op

(
(δκT )

−rFn(0)
)

= r!(δκT )
−(r+1) + op

(
(δκT )

−(r+1)
)
. (A.20)

Now it follows from Lemma A.7, (A.18) and (A.20) that

θn(r) ∼p
2δκT

2− δκT

[
r!(δκT )

−(r+1) + op
(
(δκT )

−(r+1)
)]

= [δκT + op(δκT )]
[
r!(δκT )

−(r+1) + op
(
(δκT )

−(r+1)
)]

= r!(δκT )
−r + op

(
(δκT )

−r
)

from which we deduce that

δrθn(r) =
r!

κrT
+ op(κ

−r
T ) = ΘT (r)(1 + op(1))

as δ → 0 and T → ∞, as desired.
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B. Proofs of Theorems

Proof of Lemma 3.1. To show the lemma, it suffices to show that

δω2
n ∼p �

2
n,δ (B.1)

and

δ3
n∑

i=1

⎛
⎝ i∑

j=1

uj

⎞
⎠

2

∼p

∫ T

0

(∫ t

0
Usds

)2

dt (B.2)

as δ → 0 and T → ∞, under both Assumptions ST and NS.

To establish (B.1), we note that there are two cases under Assumption ST. The first

is concerned with Bn,δ →p 0 as δ → 0 sufficiently fast relative to T → ∞, when RT or

NP is used. In this case, we refer to Lemma A.4 (i) and deduce (B.1) by noticing that

B−1
n,δ

(
δω2

n −�2
n,δ

)
= O(Δδ,T ) = op(1) due to Lemma A.3 (i) and Assumption CA (i).

Second, if Bn,δ →p ∞ and Bn,δ/T →p 0, as in the case when SP is used, we have �2
n,δ →p

�2 as δ → 0 and T → ∞. In this case, Lemma A.3 (i) and Assumption CA (i) imply

that δω2
n − �2

n,δ = O(Δδ,TBn,δ) = o(Δδ,TT ) = op(1), as desired. There are also two

cases to consider under Assumption NS, and the correponding asymptotics of �2
n,δ are

given in Lemma A.4 (ii) and (iii). In both cases, we can prove (B.1) by the fact that

c−2
T B−1

n,δ

(
δω2

n −�2
n,δ

)
= O(c−2

T TsΔδ,T + c−2
T B−1

n,δT
2
s δ) = op(1) due to Lemma A.3 (ii) and

Assumption CA (ii).

Next we show (B.2). If U satisfies Assumption ST, then T−2
∫ T
0 (

∫ t
0 Usds)

2dt →d

∫ 1
0 U◦2

t dt

as T → ∞. In this case, we have

T−2

⎡
⎣δ3 n∑

i=1

⎛
⎝ i∑

j=1

uj

⎞
⎠

2

−
∫ T

0

(∫ t

0
Usds

)2

dt

⎤
⎦ ≺p T (Δδ,T +Δ2

δ,T ) = op(1)

by Lemma A.5 (i) and Assumption CA (i). Moreover, c−2
T T−3

∫ T
0 (

∫ t
0 Usds)

2dt →d

∫ 1
0 (

∫ t
0 U

◦2
s ds)dt

as T → ∞, if U satisfies Assumption NS. Then by Lemma A.5 (ii) and Assumption CA (ii),

we have

c−2
T T−3

⎡
⎣δ3 n∑

i=1

⎛
⎝ i∑

j=1

uj

⎞
⎠

2

−
∫ T

0

(∫ t

0
Usds

)2

dt

⎤
⎦ ≺p c

−2
T Ts(Δδ,T + δTsT

−1) = op(1),

which completes the proof of (B.2).
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Proof of Lemma 3.2. If NP or SP is used, we have

Bn,δ = δ

[
rπ2(r)

ι(K2)
θ2n(r)

]1/(2r+1)

n1/(2r+1) =

[
rπ2(r)

ι(K2)

(
δrθn(r)

)2]1/(2r+1)

T 1/(2r+1)

from which and Lemma A.6 and Lemma A.8 it follows that

Bn,δ ∼p

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[
rπ2(r)

ι(K2)
Θ2

n,δ(r)

]1/(2r+1)

T 1/(2r+1), if NP is used, (B.3a)

[
rπ2(r)

ι(K2)
Θ2

T (r)

]1/(2r+1)

T 1/(2r+1), if SP is used, (B.3b)

where Θn,δ(r) is defined in (A.9) and ΘT (r) = r!/κrT . Note that (B.3b) implies that when

SP is used, Bn,δ ∼p BT where BT is the continuous time bandwidth under CSP. Therefore,

Part (b) of the lemma follows immediately from the definition of CSP and Lemma 3.4 (b).

For Part (a), the proof of the result for the stationary case is given in the proof of

Lemma 5.1 in Chang et al. (2018), so here we only consider the case when U satisfies

Assumption NS. Note that Θn,δ(r) is the same as ΘT (r) in (3.11) with AT replaced by

An,δ = δan such that An,δ/T = cδ1−pT p−1 → 0 as δ → 0 and T → ∞. So, analogous to the

proof of Lemma 3.4 (a), we have

A−r
n,δΘn,δ(r) →d

∫ 1
−1 |s|r(

∫ 1
0 U◦2

t dt)ds∫ 1
−1(

∫ 1
0 U◦2

t dt)ds
=

1

1 + r
,

from which and (B.3a), Part (a) of the lemma follows upon An,δ = cδ1−pT p.

Proof of Theorem 3.3. By virtue of Lemma 3.1, it suffices to show the stated results for

Λn,δ. If RT or NP is used, Bn,δ →p 0 as δ → 0 sufficiently fast relative to T → ∞ under

both Assumptions ST and NS. In this case, we invoke Lemma A.4 (i) to deduce that

Bn,δΛn,δ =
T−2

∫ T
0

(∫ t
0 Usds

)2
dt

B−1
n,δ�

2
n,δ

=

∫ 1
0

(
1√
T

∫ Tt
0 Usds

)2
dt

B−1
n,δ�

2
n,δ

→d
�2

σ2ι(K)

∫ 1

0
W 2

t dt,

as δ → 0 and T → ∞ under Assumption ST. Moreover, Lemma A.4 (ii) implies that under

Assumption NS,

Bn,δT
−1Λn,δ =

c−2
T T−3

∫ T
0

(∫ t
0 Usds

)2
dt

c−2
T B−1

n,δ�
2
n,δ

=

∫ 1
0

(∫ t
0 U

T
s ds

)2
dt

c−2
T B−1

n,δ�
2
n,δ

→d

∫ 1
0

(∫ t
0 U

◦
s ds

)2
dt

ι(K)
∫ 1
0 U◦2

t dt
,
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as δ → 0 and T → ∞. Therefore, we have Λn,δ →p ∞ in both cases.

On the other hand, if SP is used, we know that �2
n,δ →p �2 if U is stationary because

SP scheme is high-frequency compatible. In this case, we have Λn,δ →d

∫ 1
0 W 2

t dt under

Assumption ST. If U is nonstationary satisfying Assumption NS, then Lemma 3.2 shows

that Bn,δ/T →d B◦ �= 0 a.s. In this case, we invoke Lemma A.4 (iii) to deduce that

Λn,δ =
c−2
T T−3

∫ T
0

(∫ t
0 Usds

)2
dt

c−2
T T−1�2

n,δ

→d

∫ 1
0

(∫ t
0 U

◦
s ds

)2
dt∫ 1

−1K(s/B◦)Γ◦(s)ds

as δ → 0 and T → ∞. This completes the proof.

Proof of Lemma 3.4. If CNP is used, BT = c∗T (r)T
1/(1+2r) and ΘT (r) in c∗T (r) is defined

in (3.11). By a change of variable, we have

ΘT (r) =

∫ 1
−1 |sAT |rΓT (sAT )ds∫ 1

−1 ΓT (sAT )ds
=

Ar
T

∫ 1
−1 |s|r

(∫ 1
0 c−1

T UTtc
−1
T UT (t−sAT /T )dt

)
ds∫ 1

−1

(∫ 1
0 c−1

T UTtc
−1
T UT (t−sAT /T )dt

)
ds

,

which is followed by

A−r
T ΘT (r) =

∫ 1
−1 |s|r

(∫ 1
0 UT

t U
T
t−sAT /Tdt

)
ds∫ 1

−1

(∫ 1
0 UT

t U
T
t−sAT /Tdt

)
ds

, (B.4)

where UT → U◦ as T → ∞ under Assumption NS. Since AT = cT p for c > 0 and 0 < p < 1,

we have AT /T → 0 as T → ∞. Then for any −1 ≤ s ≤ 1, UT
t U

T
t−sAT /T →d U◦2

t on [0, 1]

as T → ∞, and therefore
∫ 1
0 UT

t U
T
t−sAT /Tdt →d

∫ 1
0 U◦2

t dt. Now we define a continuous

functional L as L(f) =
∫ 1
−1 |x|rf(x)dx, r ≥ 0, on the space of all continuous functions on

[−1, 1] with supremum norm and invoke CMT to deduce from (B.4) that

A−r
T ΘT (r) →d

∫ 1
−1 |s|r

(∫ 1
0 U◦2

t dt
)
ds∫ 1

−1

(∫ 1
0 U◦2

t dt
)
ds

=

∫ 1
−1 |s|rds∫ 1
−1 ds

=
1

1 + r

as T → ∞. Then Part (a) of the lemma follows immediately from the definition of BT and

AT = cT p.

If CSP is used, BT = c∗T (r)T
1/(1+2r) and ΘT (r) = r!/κrT where κT = − ∫ T

0 UtdUt

/ ∫ T
0 U2

t dt.
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Under Assumption NS, we have

c−2
T

∫ T

0
UtdUt =

∫ 1

0
c−1
T UTtdc

−1
T UTt =

∫ 1

0
UT
t dU

T
t →d

∫ 1

0
U◦
t dU

◦
t ,

T−1c−2
T

∫ T

0
U2
t dt =

∫ 1

0

(
c−1
T UTt

)2
dt =

∫ 1

0

(
UT
t

)2
dt →d

∫ 1

0
U◦2
t dt

as T → ∞, from which it follows that TκT →d − ∫ 1
0 U◦

t dU
◦
t

/ ∫ 1
0 U◦2

t dt as T → ∞, and this

implies T−rΘT (r) →d r!
(∫ 1

0 U◦2
t dt

/∫ 1
0 U◦

t dU
◦
t

)r
as T → ∞. Then Part (b) of the lemma

follows directly.

Proof of Lemma 3.5. To prove Part (a), note that by a change of variable, we have �2
T =

BT

∫
|s|≤T/BT

K(s)ΓT (sBT )ds where ΓT (sBT ) = 1
T

∫ T
0 UtUt−sBT

dt =
∫ 1
0 UTtUT (t−sBT /T )dt.

Therefore, if we let 0 < ε < 1 satisfy BT /T
1−ε →p 0 as T → ∞, we can write

c−2
T B−1

T �2
T = QT +RT (B.5)

where

QT =

∫
|s|≤T ε

K(s)

(∫ 1

0
UT
t U

T
t−sBT /Tdt

)
ds,

RT =

∫
T ε≤|s|≤T/BT

K(s)

(∫ 1

0
UT
t U

T
t−sBT /Tdt

)
ds.

We analyze QT first. Note that for |s| ≤ T ε, we have sBT /T →p 0 jointly with UT →d

U◦ as T → ∞, and therefore, 1(|s| ≤ T ε)UT
t U

T
t−sBT /T →d 1(−∞ ≤ s ≤ ∞)U◦2

t as T →
∞. Let L be a continuous functional defined as L(f) =

∫ 1
0 f(x)dx on D[0, 1], then by

CMT we have 1(|s| ≤ T ε)
∫ 1
0 UT

t U
T
t−sBT /Tdt →d 1(−∞ ≤ s ≤ ∞)

∫ 1
0 U◦2

t dt as T → ∞.

Moreover, given K is absolutely integrable, we may define another continuous functional

LK as LK(f) =
∫∞
−∞K(x)f(x)dx on a a space of continuous functions on [−∞,∞] with the

supremum norm, and then deduce from CMT again that

QT →d

∫ ∞

−∞
K(s)

(∫ 1

0
U◦2
t dt

)
ds = ι(K)

∫ 1

0
U◦2
t dt (B.6)

as T → ∞. As for RT , we have

|RT | ≤ sup
0≤t≤1

(
UT
t

)2 ∫
|s|≥T ε

|K(s)|ds →p 0 (B.7)
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as T → ∞, because K is absolutely integrable and sup0≤t≤1

(
UT
t

)2 →d sup0≤t≤1 U
◦2
t as

T → ∞. Then Part (a) of the lemma holds due to (B.5)–(B.7).

Next, to show Part (b), we write �2
T = T

∫ 1
−1K(sT/BT )ΓT (sT )ds where ΓT (sT ) =

1
T

∫ T
0 UtUt−sTdt =

∫ 1
0 UTtUT (t−s)dt. Then it follows that

c−2
T T−1�2

T =

∫ 1

−1
K(sT/BT )

(∫ 1

0
UT
t U

T
t−sdt

)
ds.

If BT /T →d B◦ �= 0 a.s. jointly with UT → U◦ as T → ∞, then we have

c−2
T T−1�2

T →d

∫ 1

−1
K(s/B◦)

(∫ 1

0
U◦
t U

◦
t−sdt

)
ds =

∫ 1

−1
K(s/B◦)Γ◦(s)ds

as T → ∞ by CMT. This completes the proof of Part (b) of the lemma.

Proof of Proposition 3.6. Under Assumption NS, we have

c−2
T T−3

∫ T

0

(∫ t

0
Usds

)2

dt =

∫ 1

0

(∫ t

0
UT
s ds

)2

dt →d

∫ 1

0

(∫ t

0
U◦
s ds

)2

dt

as T → ∞, from which and Lemma 3.5, Proposition 3.6 follow immediately.

Proof of Lemma 4.1. First, note that by the same proof of Lemma 3.1 with Bn,δ replaced

by BT , we can show that under Assumption KF and CA, the KPSS stationarity test statistic

λn in (2.1) with a high-frequency compatible bandwidth is asymptotically equivalent to ΛT

defined in (3.8). Second, the RB-KPSS test statistic is the same as λn with (ui) is replaced

by (vi − v̄n), and the corresponding continuous time RB-KPSS test statistic is the same as

ΛT with U replaced by V − V̄ . Therefore, to establish Lemma 4.1, it suffices to show that

the V − V̄ satisfies Assumption CA for both stationarity and cointegration tests as follows.

For the stationarity test, we have vi = ui and V = U . In this case, the process V − V̄ =

U − Ū satisfies Assumption CA trivially if U itself saftisfies Assumption CA. In specific, we

have Δδ,T (U − Ū) = Δδ,T (U) and T (U − Ū) ∼p T (U). Also, given sup0≤t≤∞ E(U2
t ) < ∞,

we have sup0≤t≤∞ E(Ut − Ū)2 < ∞. As for the cointegration test, Vt = Ut −NTXt where

NT =

∫ T
0 (Xt − X̄T )Utdt∫ T
0 (Xt − X̄T )2dt

. (B.8)
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If Assumption CI holds, we have NT ∼p T
−1/2c−1

T , and then

sup
0≤t≤∞

EV 2
t ≤ 2 sup

0≤t≤∞
EU2

t + 2 lim
T→∞

sup
0≤t≤T

E(NTXt)
2

= 2 sup
0≤t≤∞

EU2
t + 2E lim

T→∞
sup

0≤t≤T
(NTXt)

2 = O(1) +O(T−1) = O(1)

under Assumption CA′ (i). Moreover, notice that

Δδ,T (V ) = sup
0≤s,t≤T

sup
|t−s|≤δ

|Vt − Vs| ≤ sup
0≤s,t≤T

sup
|t−s|≤δ

|Ut − Us|+NT sup
0≤s,t≤T

sup
|t−s|≤δ

|Xt −Xs|

= Δδ,T (U) +NTΔδ,T (X) ∼p Δδ,T (U) + T−1/2c−1
T Δδ,T (X).

Therefore, Assumption CA′ (i) guarantees V to satisfy Assumption CA (i). Next, if As-

sumption NC holds, we have NT ∼p cTd
−1
T . For this case, we have Δδ,T (V ) ≤ Δδ,T (U) +

NTΔδ,T (X) ∼p Δδ,T (U) + cTd
−1
T Δδ,T (X) and T (V ) = sup0≤t≤T |Vt| ≤ sup0≤t≤T |Ut| +

NT sup0≤t≤T |Xt| ∼p T (U) + cTd
−1
T T (X) from which we can see that, again, the conditions

in Assumption CA′ (ii) guarantee V to satisfy Assumption CA (ii). This completes the

proof of the lemma.

Proof of Theorem 4.2. By virtue of Lemma 4.1, it suffices to show that

ΛT =

∫ T
0

(∫ t
0 (Vs − V̄T )ds

)2
dt

T 2
∫
|s|≤T K(s/BT )ΓT (s)ds

→p

∫ 1

0

(∫ t

0
dW ◦

s

)2

dt (B.9)

as T → ∞. For stationarity test, we have Vt = Ut, and therefore,

1

T 2

∫ T

0

(∫ t

0
(Vs − V̄T )ds

)2

dt =

∫ 1

0

(
1√
T

∫ tT

0

(
Us − ŪT

)
ds

)2

dt (B.10)

where under Assumption ST we have

1√
T

∫ tT

0
(Us − ŪT )ds =

1√
T

∫ tT

0
Usds− t · 1√

T

∫ T

0
Usds →d U◦

t − tU◦
1 ,

as T → ∞, where U◦ is Brownian motion with longrun variance �2. Moreover, Lu

and Park (2018) has shown that if BT → ∞ and BT /T → 0 as T → ∞, we have∫
|s|≤T K(s/BT )ΓT (s)ds →p �

2 as T → ∞. Hence (B.9) follows immediately in this case.

For the cointegration test, we have Vt = Ut−NTXt where NT is defined in (B.8). Under
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the Assumption CI, it follows that

cT
√
TNT =

c−1
T T−1/2

∫ T
0 (Xt − X̄T )Utdt

c−2
T T−1

∫ T
0 (Xt − X̄T )2dt

=

∫ 1
0 (X

T
t − X̄T

1 )dU
T
t∫ 1

0 (X
T
t − X̄T

1 )
2dt

→d N◦ (B.11)

as T → ∞, where N◦ = �
∫ 1
0 (X

◦
t − X̄◦

1 )dWt/
∫ 1
0 (X

◦
t − X̄◦

1 )
2dt. We first analyze the

numerator of ΛT as follows.

1

T 2

∫ T

0

(∫ t

0
(Vs − V̄T )ds

)2

dt =

∫ 1

0

(
1√
T

∫ tT

0
(Vs − V̄T )ds

)2

dt =

∫ 1

0
(Yt + Zt)

2dt

where Yt =
1√
T

∫ tT
0 (Us − ŪT )ds →d U◦

t − tU◦
1 = �Wt − tW1, and

Zt =
1√
T

∫ tT

0
NT (Xs − X̄T )ds = cT

√
TNT

1

cTT

∫ tT

0
(Xs − X̄T )ds

= cT
√
TNT

∫ t

0
(XT

s − X̄T
1 )ds →d N◦

∫ t

0
(X◦

s − X̄◦
1 )ds

as T → ∞ by Assumption CI. Hence the theorem holds if the denominator of ΛT satisfies∫
|s|≤T K(s/BT )ΓT (s)ds →p �

2 as T → ∞ under Assumption CI. To see this, we write

ΓT (s) =
1

T

∫ T

0
(Vt − V̄T )(Vt−s − V̄T )dt = Γ̃T (s) +GT (s),

where Γ̃T (s) = T−1
∫ T
0 (Ut − ŪT )(Ut−s − ŪT )dt and

GT (s) = T−1 (PT (s) +QT (s) +RT (s))

where

PT (s) = N2
T

∫ T

0
(Xt − X̄T )(Xt−s − X̄T )dt

QT (s) = NT

∫ T

0
(Xt − X̄T )(Ut−s − ŪT )dt

RT (s) = NT

∫ T

0
(Ut − ŪT )(Xt−s − X̄T )dt.

As U satisfies Assumption ST under Assumption CI, we have
∫
|s|≤T K(s/BT )Γ̃T (s)ds →p �

2
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as T → ∞. Moreover, we have

T

BT

∫
|s|≤T

K(s/BT )GT (s)ds =

∫
|s|≤T/BT

K(s) [PT (sBT ) +QT (sBT ) +RT (sBT )] ds

where∫
|s|≤T/BT

K(s)PT (sBT )ds =
(
cT

√
TNT

)2
∫
|s|≤T/BT

K(s)

[∫ 1

0
(XT

t − X̄T
1 )(X

T
t−sBT /T − X̄T

1 )dt

]
ds

→d N◦2ι(K)

∫ 1

0
(X◦

t − X̄◦
1 )

2dt∫
|s|≤T/BT

K(s)QT (sBT )ds = cT
√
TNT

∫
|s|≤T/BT

K(s)

[∫ 1

0
(XT

t − X̄T
1 )(dU

T
t−sBT /T − UT

1 dt)

]
ds

→d N◦2ι(K)

∫ 1

0
(X◦

t − X̄◦
1 )(dU

◦
t − U◦

1dt)∫
|s|≤T/BT

K(s)RT (sBT )ds = cT
√
TNT

∫
|s|≤T/BT

K(s)

[∫ 1

0
(XT

t−sBT /T − X̄T
1 )(dU

T
t − UT

1 dt)

]
ds

→d N◦2ι(K)

∫ 1

0
(X◦

t − X̄◦
1 )(dU

◦
t − U◦

1dt)

as T → ∞, from which we deduce that
∫
|s|≤T K(s/BT )GT (s)ds = Op(BT /T ) = op(1) as

desired. This completes the proof of the thorem under Assumption CI.

Proof of Lemma 4.3. For the RB-KPSS test, schemes CNP and CSP are the same as

defined in Section 3.1 except for the process U is replaced by V − V̄T , where V is defined

separately for stationarity and cointegration test. Since we have c−1
T (VTt − V̄T ) →d V ◦

t − V̄1

as T → ∞ on D[0, 1] under Assumption NS or NC, Lemma 4.3 follows immediately from

Lemma 3.4 with U replaced by V − V̄T and U◦ replaced by V ◦ − V̄ ◦
1 .

Proof of Theorem 4.4. Note that under Assumption NS for stationarity test or under

Assumption NC for cointegration test, we have c−1
T (VTt − V̄T ) →d V ◦

t − V̄1 as T → ∞ on

D[0, 1]. Therefore under Assumption NS or NC, Proposition 3.6 holds for continuous time

RB-KPSS test statistic ΛT with U replaced by V − V̄T and U◦ replaced by V ◦ − V̄ ◦
1 , and

then Theorem 4.4 can be deduced from Lemma 4.1.

Proof of Corollary 4.5. Under Assumption CA for stationarity test or Assumption CA′

for cointegration test, the modified test statistic

λ∗
n ∼p

1

T 2

∫ T

0

(∫ t

0
(Vs − V̄T )ds

)2

dt
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as δ → 0 and T → ∞, due to Lemma 4.1. Therefore, Part (a) of the corollary follows from

the analysis of the numerator of ΛT in the proof of Theorem 4.2. Moreover, Part (b) of the

corollary holds because

1

c2TT
3

∫ T

0

(∫ t

0
(Vs − V̄T )ds

)2

dt =

∫ 1

0

(∫ t

0
c−1
T (VTs − V̄T )ds

)2

dt →d

∫ 1

0

(∫ t

0
(V ◦

s − V̄ ◦
1 )ds

)2

dt

as T → ∞.

Proof of Corollary 6.1. Note that we have shown in (B.1) that δω2
n ∼p �

2
n,δ. Therefore,

to show
√
TλRS

n ∼p Λ
RS
n,δ, it suffices to prove that

δ

⎡
⎣max
1≤i≤n

i∑
j=1

uj − min
1≤i≤n

i∑
j=1

uj

⎤
⎦ ∼p max

0≤t≤1

∫ tT

0
Usds− min

0≤t≤1

∫ tT

0
Usds. (B.12)

To show this, note that for any i = 1, . . . , n, and t ∈ ((i− 1)δ/T, iδ/T ],

∫ tT

0
Usds− δ

i∑
j=1

uj =

i∑
j=1

∫ jδ

(j−1)δ
(Us − Ujδ)ds−

∫ iδ

tT
Usds

from which we deduce that∣∣∣∣∣∣max
0≤t≤1

∫ tT

0
Usds− max

1≤i≤n
δ

i∑
j=1

uj

∣∣∣∣∣∣ ≤ max
1≤i≤n

max
(i−1)δ

T
≤t≤ iδ

T

∣∣∣∣∣∣
i∑

j=1

∫ jδ

(j−1)δ
(Us − Ujδ)ds−

∫ iδ

tT
Usds

∣∣∣∣∣∣
≤ max

1≤i≤n

∣∣∣∣∣∣
i∑

j=1

∫ jδ

(j−1)δ
(Us − Ujδ)ds

∣∣∣∣∣∣+ max
1≤i≤n

max
(i−1)δ

T
≤t≤ iδ

T

∣∣∣∣
∫ iδ

tT
Usds

∣∣∣∣
≤ Δδ,TT + Tsδ.

Since the first inequality also applies to the case if we replace the maximal signs on the left

hand of the inequality by the minimal signs, we can readily deduce that∣∣∣∣∣∣
(
max
0≤t≤1

∫ tT

0
Usds− min

0≤t≤1

∫ tT

0
Usds

)
− δ

⎛
⎝max

1≤i≤n

i∑
j=1

uj − min
1≤i≤n

i∑
j=1

uj

⎞
⎠
∣∣∣∣∣∣

≤
∣∣∣∣∣∣max
0≤t≤1

∫ tT

0
Usds− max

1≤i≤n
δ

i∑
j=1

uj

∣∣∣∣∣∣+
∣∣∣∣∣∣ min
0≤t≤1

∫ tT

0
Usds− min

1≤i≤n
δ

i∑
j=1

uj

∣∣∣∣∣∣ = Op(Δδ,TT + Tsδ).
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In the case when U is stationary and satisfying Assumption ST, we have

1√
T

(
max
0≤t≤1

∫ tT

0
Usds− min

0≤t≤1

∫ tT

0
Usds

)
→d max

0≤t≤1
U◦
t − min

0≤t≤1
U◦
t . (B.13)

Therefore, (B.12) holds if Δδ,TT
1/2+TsT

−1/2δ →p 0 as δ → 0 and T → ∞ which is satisfied

under the assumption that TsT
−1δ ≺p Δδ,T and Assumption CA (i). On the other hand, if

U is nonstationary satisfying Assumption NS, it follows that

1

TcT

(
max
0≤t≤1

∫ tT

0
Usds− min

0≤t≤1

∫ tT

0
Usds

)
→d max

0≤t≤1

∫ t

0
U◦
s ds− min

0≤t≤1

∫ t

0
U◦
s ds, (B.14)

and thus (B.12) holds given Δδ,T c
−1
T + c−1

T TsT
−1δ →p 0 is satisfied by Assumption CA (ii).

Next, we show λVS
n ∼p Λ

VS
n,δ. Given (B.1) and Lemma 3.1, it is sufficient to prove that

δ2
n∑

i=1

i∑
j=1

uj ∼p

∫ T

0

∫ t

0
Usdsdt, (B.15)

for which we consider

∫ T

0

∫ t

0
Usdsdt− δ2

n∑
i=1

i∑
j=1

uj = δ

n∑
i=1

i∑
j=1

∫ jδ

(j−1)δ
(Ujδ − Us)ds−

n∑
i=1

∫ iδ

(i−1)δ

∫ iδ

t
Usdsdt.

Note that
∣∣∣δ∑n

i=1

∑i
j=1

∫ jδ
(j−1)δ(Ujδ − Us)ds

∣∣∣ ≤ Δδ,T δ
∑n

i=1

∑i
j=1

∫ jδ
(j−1)δ ds ≤ Δδ,T δ

2n2 =

Δδ,TT
2, and

E

∣∣∣∣∣
n∑

i=1

∫ iδ

(i−1)δ

∫ iδ

t
Usdsdt

∣∣∣∣∣ ≤ sup
0≤t≤∞

E|Ut|
n∑

i=1

∫ iδ

(i−1)δ

∫ iδ

t
dsdt = O(δT )

for the case when U satisfies Assumption ST, and∣∣∣∣∣
n∑

i=1

∫ iδ

(i−1)δ

∫ iδ

t
Usdsdt

∣∣∣∣∣ ≤ Ts

n∑
i=1

∫ iδ

(i−1)δ

∫ iδ

t
dsdt = δTTs

for the case when U satisfies Assumption NS. Therefore, we can deduce that
∫ T
0

∫ t
0 Usdsdt−

δ2
∑n

i=1

∑i
j=1 uj is Op(Δδ,TT

2 + δT ) and Op(Δδ,TT
2 + δTTs) under Assumption ST and

NS, respectively. Since T−3/2
∫ T
0

∫ t
0 Usdsdt →d

∫ 1
0 U◦

t dt under Assumption ST, (B.15)

holds because T−3/2
[∫ T

0

∫ t
0 Usdsdt− δ2

∑n
i=1

∑i
j=1 uj

]
= Op(Δδ,TT

1/2) = op(1) under As-

sumption CA (i). On the other hand, c−1
T T−2

∫ T
0

∫ t
0 Usdsdt →d

∫ 1
0

∫ t
0 U

◦
s dsdt under As-
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sumption NS, so (B.15) holds in this case as c−1
T T−2

[∫ T
0

∫ t
0 Usdsdt− δ2

∑n
i=1

∑i
j=1 uj

]
=

Op(c
−1
T Δδ,T + δc−1

T T−1Ts) = op(1) under Assumption CA (ii). This completes the proof of

the corollary.

Proof of Corollary 6.2. We prove this corollary in line with the proof of Theorem 3.3.

First, if RT or NP is used, then Bn,δ →p 0 under both Assumption ST and NS. If U sat-

isfies Assumption ST, then we have
√
Bn,δ/TΛ

RS
n,δ →d �(M◦ −m◦)/σ

√
ι(K) where M◦ =

max0≤t≤1Wt and m◦ = min0≤t≤1Wt, by (B.13) and Lemma A.4 (i). This implies λRS
n ∼p

T−1/2ΛRS
n,δ = Op(B

−1/2
n,δ ) →p ∞. As for λVS

n , we haveBn,δΛ
VS
n,δ →d

[∫ 1
0 U◦2

t dt− (
∫ 1
0 U◦

t dt)
2
]
/σ2ι(K),

which implies λVS
n ∼p Λ

VS
n,δ = Op(B

−1
n,δ) →p ∞. If U satisfies Assumption NS, Lemma A.4 (ii)

and (B.14) yield that
√

Bn,δ/TΛ
RS
n,δ →d (M̃◦−m̃◦)/

√
ι(K)

∫ 1
0 U◦2

t dt where M̃◦ = max0≤t≤1

∫ t
0 U

◦
s ds

and m̃◦ = min0≤t≤1

∫ t
0 U

◦
s ds. This implies λRS

n ∼p T−1/2ΛRS
n,δ = Op(

√
T/Bn,δ) →p ∞.

For λVS
n , we have Bn,δT

−1ΛVS
n,δ →d

[∫ 1
0 (

∫ t
0 U

◦
s ds)

2dt− (
∫ 1
0

∫ t
0 U

◦
s dsdt)

2
]
/ι(K)

∫ 1
0 U◦2

t dt, and

hence λVS
n ∼p Λ

VS
n,δ = Op(T/Bn,δ) →p ∞, as desired.

On the other hand, if SP is used, we have �n,δ →d � if U is stationary. Then

by Corollary 6.1 and (B.13) we have λRS
n ∼p T−1/2ΛRS

n,δ →d M◦ − m◦, and for λVS
n we

have λVS
n ∼p ΛVS

n,δ →d

∫ 1
0 W 2

t dt −
(∫ 1

0 Wtdt
)2

under Assumption ST. While if U is non-

stationary satisfying Assumption NS, we have c−2
T T−1�2

n,δ →d

∫ 1
−1K(s/B◦)Γ◦(s)ds as in

Lemma 3.5 (b). Then it follows from Corollary 6.1 and (B.14) that λRS
n ∼p T−1/2ΛRS

n,δ →d

(M̃◦ − m̃◦)/(
∫ 1
−1K(s/B◦)Γ◦(s)ds)1/2, and for λVS

n under Assumption NS, we have λVS
n ∼p

ΛVS
n,δ →d

[∫ 1
0

(∫ t
0 U

◦
s ds

)2
dt−

(∫ 1
0

∫ t
0 U

◦
s dsdt

)2
]
/(
∫ 1
−1K(s/B◦)Γ◦(s)ds)1/2. This complete

the proof of the corollary.
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C. Figures for Illustration Simulation

Fig. 3. Rejection Probabilities of 5% RB-KPSS Test for Stationarity
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Notes: Presented are the rejection probabilities of the 5% RB-KPSS test for stationarity. Discrete samples
are collected at 63 equally-spaced sampling intervals ranging from δ = 1/252 (daily frequency) to δ = 1/4
(quarterly frequency).
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Fig. 4. Rejection Probabilities of 5% RB-KPSS Test for Cointegration
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Notes: Presented are the rejection probabilities of the 5% RB-KPSS test for cointegration. Discrete samples
are collected at 63 equally-spaced sampling intervals ranging from δ = 1/252 (daily frequency) to δ = 1/4
(quarterly frequency).
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Fig. 5. Contradictory Rejection Rates
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Notes: Presented are the contradictory rejection rates of the 5% RB-KPSS test for stationarity with CRT,
CNP and CSP. Discrete samples are collected at 63 equally-spaced sampling intervals ranging from δ = 1/252
(daily frequency) to δ = 1/4 (quarterly frequency). Rejection decisions are made over 5000 simulation
iterations, from which contradictory rejection rates are computed as we change the sampling frequency by
one day up to two days and five days.
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