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Abstract

We examine innovation as a market-entry timing game with complete infor-
mation and observable actions. We allow for heterogenous payoffs between
players, and for a leader’s payoff functions to be multi-peaked and non-
monotonic. Assuming that the follower’s payoff is non-increasing with the
time of the leader’s entry, we characterize all pure-strategy subgame perfect
equilibria for the two-player asymmetric model, showing that there are at
most two equilibria. Firm heterogeneity allows for equilibria with different
characteristics than previously examined in the literature. For example, a
firm may wish to enter earlier blocking its rival’s entry, so as to avoid an
anticipated lower future payoff if it waited. A notable feature of this block-
ing equilibrium is that rents need not be equalized between the leader and
follower. We also show that if the followers’ payoffs are non-monotonic, the
iterative incentives to block each other’s product launch may lead to starkly
inefficient early entry in a continuous version of the centipede game.
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1 Introduction

When should a firm innovate or launch a new product? Sometimes it is better

to be first into a market. Reinganum (1981a,b) shows that when firms can’t

observe their rival’s actions (in an open-loop equilibrium), the leader can receive

a higher payoff than the follower, who may enter much later even though the

duopolists are ex ante identical. A leader, of course, need not always be better

off; Fudenberg and Tirole (1985) show that when rivals’ actions are observable

(in a closed-loop equilibrium) the incentive to preempt can dissipate all potential

gains from entering first, equalizing rents to both firms in the process. Moreover,

it might be advantageous to enter the market second, rather than first, as the

market pioneer might need to incur set-up or R&D costs on which its rival can

free-ride.

Several themes run through this existing literature. Firstly, given the poten-

tial strategic interaction it brings, the presence of a rival(s) complicates a firm’s

entry decision. Secondly, this interaction can induce inefficient entry (Fudenberg

and Tirole, 1985). Drawing on these themes we study a novel duopoly model of

innovation that allows for: (i) heterogeneous firms; and (ii) the possibility that

different technologies become available (at a later date) if a firm delays entry. We

provide a general solution method and completely characterize the pure-strategy

subgame perfect equilibria.

The basic features of our model are as follows. Two firms can make an irre-

versible and one-off decision to enter a market. Time is continuous and all previous

actions (entry or not) are observable; consistent with this, we focus on closed-loop

equilibria. In Fudenberg and Tirole (1985) and others, the entrants are ex ante

identical and have access to the same potential innovation. But usually firms are

not all the same. Drawing inspiration from Katz and Shapiro (1987), we study

two heterogenous firms that can have different payoffs from entering at a given

time.1 This assumption of heterogeneity is applicable in many situations. Firms

1Katz and Shapiro (1987) analyze an innovation game with heterogenous firms when there is
licensing (by the leader) and imitation (by the follower). They find that industry leaders (who
are more efficient) need not be the firm that innovates, as it may prefer to free ride on the public
good provided by its rival. Riordan (1992) uses a similar framework to examine the impact of
regulation of technological adoption. Also see Galasso and Tombak (2014), who adapt Katz and
Shapiro (1987) to study the take-up of green technologies that have both a private and public

2



might differ in their ability to exploit market opportunities. For example, expected

payoffs from launching a new phone handset could differ between two rivals, given

their preexisting reputation, network or tie-in products. The same can be said for

a process (cost-saving) innovation – its payoff depends on access to markets, how

the new technology meshes with a firm’s existing practices, and so forth. As noted

above, often firms also have to choose which technology to implement. Returning

to the smartphone example, Samsung made a choice to switch its cell phone op-

erating system from its own in-house system to an Android platform; Sony also

made an equivalent choice. Despite its closed system, in many ways Apple faces a

similar tradeoff when contemplating the timing of a new iOS for its devices.

Implicit in this is that not all technologies are available immediately; rather,

some technologies are only available (or worth considering) later. This potentially

changes the payoff structure – for example, unlike in Katz and Shapiro (1987),

a leader’s entry payoff can be multi-peaked with respect to entry time, reflecting

when the new technology becomes available. This payoff structure, generated by

the choice between multiple technologies, combined with the asymmetric payoffs

between players, creates a new strategic entry environment not previously ana-

lyzed.

While we place effectively no restrictions on the leader’s payoff function other

than continuity, in a similar way to Hoppe and Lehmann-Grube (2005) and Ar-

genziano and Schmidt-Dengler (2012, 2013, 2014) we assume that the payoff of

the follower is non-increasing with leader’s time of entry. This could be the case,

for instance, when later entry by the leader affords it to enter the market with a

better (less costly) production technology or product, or possibly both, which in

turn exerts greater competitive pressure on the second entrant.

Adapting the solution technique of Smirnov and Wait (2015) to asymmetric

firms, we characterize all pure-strategy subgame perfect equilibria for this game.

In any entry game in our setting we find that there can be zero, one or two pure-

strategy equilibria. Sometimes the equilibria take a familiar form. Just like in

Fudenberg and Tirole (1985) and Katz and Shapiro (1987), we show that there

can be a preemption equilibrium, in which a firm enters before the stand-alone

good benefit by asymmetric firms.
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entry time.2 A second-mover advantage equilibrium is also possible; while both

parties would like to be second, in equilibrium one of the two needs to self-sacrifice

and enter first.3 Asymmetric payoffs, however, allow for other, more peculiar,

possibilities. For example, a firm may wish to enter earlier (block it rival) so as

to avoid a lower payoff that it would receive if it waited and allowed its rival to

enter as the leader in the future. Anticipating this, the other firm might enter

even earlier, effectively stymiing its rival’s future blocking move. This discrete

leapfrogging characteristic of firms opting to enter earlier so as to gazump their

rival in what we call a blocking equilibrium is only possible with heterogenous

firms. Moreover, rents need not be equalized in this blocking equilibrium. This

type of equilibrium is relevant, capturing some of the interplay between technology

companies such as the decision as to when to launch a new smartphone by rivals

like Apple and Samsung (and others).4 In other situations still, asymmetric payoffs

also allow for the possibility that no equilibrium in pure strategies exists at all.

As noted, the base model assumes that follower payoffs are non-increasing in

the time of entry of the leader. Whilst it aids in exposition, this assumption is

not necessary for our analysis. Section 3.2.3 explores the implications of relaxing

this assumption. In particular, we consider the situation when the follower pay-

off curve is multi-peaked in a continuous market-entry version of the centipede

game. This generates an iterative process in which each firm has an incentive to

enter earlier, fearful of a lower payoff it could receive if its rival was allowed to

enter as a leader later. In equilibrium, entry occurs inefficiently early. This out-

come is indicative of the products being launched when they are really not ready,

squandering opportunities for more mature and socially efficient innovation.5

2This terminology follows Katz and Shapiro (1987), in which the stand-alone entry time is
time of entry a firm would choose if it faces no threat of entry by a rival.

3Theoretically, second-mover advantages with observable actions have been studied by Dutta
et al. (1995), Hoppe (2000), Hoppe and Lehmann-Grube (2001), Hoppe and Lehmann-Grube
(2005) and Smirnov and Wait (2007, 2015). Also see the empirical findings of Tellis and Golder
(1996), who show that early imitators often outperform market pioneers.

4See ‘Phone tag; Apple v Samsung’ in The Economist, September 16 2017.
5This type of equilibrium is reminiscent of deterrence/accommodation models, such as Fu-

denberg and Tirole (1984). For an analysis of the timing of movie release dates see Krider and
Weinberg (1998); also see McKenzie and Smirnov (2018). For empirical studies of strategic entry
see Gil et al. (2019) (US drive-in cinemas), Schmidt-Dengler (2006) (MRI technology adoption
in US hospitals) and Ellison and Ellison (2011) (pharmaceuticals with expiring patents).
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This paper draws on an extensive literature on innovation timing games.6

Our analysis of an irreversible investment decision with complete information and

observable actions (closed-loop equilibria) follows Fudenberg and Tirole (1985),

Dutta et al. (1995), Hoppe and Lehmann-Grube (2005) and Smirnov and Wait

(2015). This framework has been used to study a range of applications. For ex-

ample, Argenziano and Schmidt-Dengler (2012, 2013, 2014) adopt a variant of

Fudenberg and Tirole (1985) to examine the order of market entry, clustering and

delay. They show that with many potential entrants the most efficient firm need

not be the first to enter the market and that delays are non-monotonic with the

number of firms. In addition, they suggest a new justification for clustering of

entry. Others have studied similar issues. Anderson et al. (2017) study delays and

rushes into a market in a stopping game with a continuum of players.7

While we assume that previous actions of a rival are observable, an alternative

approach to study innovation is to assume players’ actions are unobservable as in

Reinganum (1981a,b), where unobservable actions are equivalent to each firm being

able to pre-commit. Reinganum shows that in the open-loop equilibria there will

be diffusion in the sense that firms adopt the technology at different dates, even

though all firms are ex ante identical. Similarly, Park and Smith (2005) develop an

innovation game with unobservable actions that permits any firm (in terms of the

order of entry) to receive the highest payoff. This allows for a war-of-attrition, with

higher payoffs for late movers, a pre-emption game with higher payoffs for early

movers, and a combination of both. An important point of comparison is that in

our model firms use feedback rules to determine their strategy at any particular

point in time; this means that they are unable to commit to their strategy at the

beginning of the game.

Information also plays a key role in the players’ entry strategies. Bloch et al.

(2015) show that when two potential rivals are uncertain about their entry costs,

competition leads to inefficient entry that is too early. Other authors consider

inefficiencies in innovation when there is asymmetric information. For example,

Bobtcheff and Mariotti (2012), Hendricks (1992) and Hopenhayn and Squintani

6See Hoppe (2002) or Van Long (2010, Chapter 5) for a survey of the literature. Further,
Fudenberg and Tirole (1991) consider innovation when the firms make one irreversible decision
(to enter) in a simple timing-game framework (see Sections 4.5 and 4.12).

7See also Riordan (1992) and Alipranti et al. (2011, 2015).
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(2011) assume that a firm’s capability to innovate is private information. In these

models, delay allows a firm to get better information about the potential innovation

(its costs, value, and so on), but waiting runs the risk that a rival will innovate

first, capturing the lion’s share of the returns.

2 The model

Assume two firms (i = 1, 2) are in a continuous-time stopping game starting at

t = 0 until some terminating time T ∈ (0,∞]. Firm i’s one-off decision to stop

(that is, ‘enter’ the market) at ti ≥ 0 is irreversible and observable immediately

by the other firm. The game ends when one of two firms has stopped/entered the

market. The payoff to each firm depends on the stopping time. If the game ends

with player i stopping at time ti, the payoffs of the leader and the follower are

Li(ti) and Fj(ti), respectively, where i, j = 1, 2 and i 6= j.

We make the following assumptions.

Assumption 1. Time is continuous in that it is ‘discrete but with a grid that is

infinitely fine’.

Assumption 2. Firms always choose to stop earlier rather than later in payoff-

equivalent situations.

Assumption 3. If more than one firm chooses to stop (enter) at exactly the same

time, one of these firms is selected to stop (each with an ex ante probability of 1
2
).

Entry models in the literature adopt equivalent assumptions. Assumption 1

invokes Simon and Stinchcombe (1989) who show that under certain conditions a

continuous-time strategy profile is the limit of a discrete-time game with increas-

ingly fine time grids. It also replicates A1 of Hoppe and Lehmann-Grube (2005).8

Assumption 2, which is similar to A3 in Hoppe and Lehmann-Grube (2005), allows

us to focus on just one (payoff-equivalent) equilibrium in the case of indifference

between early and late entry.9 This simplifies our analysis so as to focus on the

timing of entry rather than on issues of equilibrium selection.

8See Hoppe and Lehmann-Grube (2005), footnote 4 for a further discussion.
9Hoppe and Lehmann-Grube (2005) assume that if the follower is indifferent between two

alternative entry times, it chooses the earliest time of entry.
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Assumption 3 – part of A3 in Hoppe and Lehmann-Grube (2005) and Assump-

tion 5 in Dutta et al. (1995) – avoids potential coordination failures involving

simultaneous entry. Given its importance, the intuition underlying this assump-

tion warrants further discussion. In some situations, as a practical matter, if two

firms try to enter the market at the same time there might be some capacity

constraint or institutional requirement that prevents joint entry – consequently,

one firm becomes the leader and the other firm is relegated to the role of second

entrant. For instance, in a particular market there could be a bureaucratic rule

that requires the leadership role be allocated to the firm that has the first email

registered in a designated inbox. Even if both firms simultaneously send their mes-

sages, only one email can arrive first. As a consequence, with simultaneous moves,

each firm has some probability of being the leader. Equivalent intuition applies to

any (bureaucratic) tie-breaking rule that determines the winner in what seems to

be a dead heat. Dutta et al. (1995) present a similar rationale for this assumption,

suggesting there could be small random delays between when a decision is made

and when a new technology is adopted, meaning that there is a positive probability

that either firm will be first in the event of joint adoption. Here, Assumption 3

gives either firm an equal chance being first when there is simultaneous entry.

The following two assumptions ensure that the leader stops in finite time.10 The

first element of this is that leaders’ payoff functions reach their respective global

maxima at a finite point in time; this means that both firms will not delay entry

indefinitely. Dutta et al. (1995) (Assumption 3), Fudenberg and Tirole (1985)

(Assumption 2(ii)) and Smirnov and Wait (2015) (Assumption 4) all make equiv-

alent assumptions. Secondly, we assume that entering provides a higher payoff

than each firm’s respective outside option of zero, thus ensuring that our analysis

is not unnecessarily complicated by having to consider whether one or both firms

never enter the market. Again, this mirrors assumptions made previously in the

literature; Assumption 4 in Dutta et al. (1995), Assumption 2(ii) in Fudenberg

and Tirole (1985) and Assumption 5 in Smirnov and Wait (2015).

Assumption 4. There exists a finite T̂i < T , which is the earliest time at which

Li(t) attains its global maximum. Specifically, Li(T̂i) > L(τ) ∀ τ < T̂i, and

10When there is no ambiguity, we refer to payoffs as a function of t rather than t1.
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Li(T̂i) ≥ L(τ) ∀ τ ≥ T̂i where i = 1, 2.

Assumption 5. Each firm’s outside (non-entry) payoff is normalized to 0, and

Li(t) ≥ 0 and Fi(t) ≥ 0 i = 1, 2.

Finally, we assume that the advantage of being second is non-increasing with

the time of entry. This follows Hoppe and Lehmann-Grube (2005) who employ a

similar assumption. In addition, this assumption incorporates the scenario studied

in Argenziano and Schmidt-Dengler (2012, 2013, 2014), in which the follower payoff

is constant with leader entry time.11

There are several possible explanations for why the follower’s payoff would

be non-increasing in the leader’s entry time. If either cost fall or there is an

improvement of the quality of the product with time, later entry by the leader

could place the follower at a relative disadvantage; any delay in the initial entry

time could help make the leader a stronger competitor, other things equal, hurting

the follower. It is worth noting that this assumption is not crucial; rather, our key

results hold in a more general environment. Assuming that the follower’s payoff

is non-increasing in the leader’s time of entry, however, helps highlight the key

economics insights of the model. We discuss this issue further in Section 3.2.3,

in particular exploring the implications of allowing for non-monotonic follower

payoffs.

To aid in exposition, we restrict our analysis to continuous leader and follower

payoff functions. A detailed analysis solving entry games with discontinuous (but

symmetric) payoffs can be found in Smirnov and Wait (2015).

This discussion is summarized in the following assumption.

Assumption 6. Li(t) is continuous, while Fi(t) is continuous and non-increasing

for i = 1, 2.

In summary, the first five assumptions are standard in the market-entry timing

game literature with complete information and observable actions; see for exam-

ple Smirnov and Wait (2015). Our last assumption is similar to Argenziano and

11It is worth noting that here we assume one potential innovation implemented by the market
leader. In Argenziano and Schmidt-Dengler (2014), on the other hand, they model explicitly both
firms entering the market. In equilibrium in their model entry by the follower always occurs at
some later fixed date, resulting in a constant payoff for the follower.
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Schmidt-Dengler (2012, 2013, 2014) and Hoppe and Lehmann-Grube (2005), how-

ever we allow for more generality in the structure of payoffs. Moreover, as noted

above, we further investigate this assumption in Section 3.2.3.

To conclude this subsection, we outline two useful definitions. Firstly, provided

Li(t) and Fi(t) cross at least once, following Katz and Shapiro (1987), we define

T̃i to be the earliest time the payoff functions intersect.

Definition 1. If Li(t) and Fi(t) intersect, T̃i ≤ T , is the earliest time at which

Li(t) = Fi(t).

Secondly, we also utilize the following definition.

Definition 2. Define T̄2 ≤ T̃2 to be the earliest time at which L2(t) attains its

maximum for t ∈ [0, T̃2].

2.1 Equilibrium concept

Following Fudenberg and Tirole (1985), we use subgame perfection. A history ht

is defined as the knowledge of whether or not firm i = 1, 2 previously stopped at

any time τ < t, and if so when. A strategy of firm i, denoted by σi(ht), indicates

at each history ht whether firm i stops at t (σi(ht) = 1) or does not stop at t

(σi(ht) = 0). A strategy pair (σ1, σ2) maps every history to an outcome, which

is the minimum of stopping times t1 and t2. As usual, a strategy profile (σ∗1, σ
∗
2)

constitutes a subgame perfect equilibrium (SPE) if the strategies are sequentially

rational after every history. Note here that with this representation we only need

to specify the strategies when there has been no entry in the history of the game,

because we assume that once one firm has entered, the game ends (Katz and

Shapiro, 1987). This allows us, for ease of exposition, to refer to each firm’s entry

strategy as a function of time only, σi(t).

3 Characterization of equilibria

In this section we first describe equilibria in the case of symmetric firms (Sec-

tion 3.1), before exploring market entry when the firms potentially have different

payoffs (Section 3.2).
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3.1 Symmetric firms

To outline a benchmark for the analysis that follows, first assume that both firms

are the same in terms of their potential payoffs. The proposition below describes

the method for determining the entry time of the leader in the symmetric case.

Proposition 1. [Smirnov and Wait (2015)] The equilibrium of the symmetric

model is always unique. The first firm’s stopping time t∗ is given by

t∗ = min arg max
t

min[L(t), F (t)]. (1)

As outlined in Smirnov and Wait (2015), this algorithm takes the minimum of

the payoff functions for the leader and the follower, respectively. If the leader’s

payoff at the start of the game exceeds (or is equal to) the follower’s payoff, given

the follower’s payoff is non-increasing, immediate entry (t∗ = 0) maximizes the

minimum of the two payoff functions (or is the earliest time to do so). In this case

there is a first-mover advantage (or rents are equalized if L(0) = F (0)). Consider

now the case when at the start of the game the follower’s payoff exceeds that of

the leader. Given that the follower’s payoff is non-increasing, the first intersection

between the two payoff functions (T̃ ) is the only intersection that is economically

relevant. If the leader’s payoff is at its historical maximum at T̃ , entry occurs

at this time (equalizing rents). This situation is illustrated in Figure 1(a). The

bold line traces out the minimum of the leader and follower payoff functions. On

the other hand, consider the situation when the leader’s payoff at T̃ is not at its

historical maximum; see Figure 1(b). In this case there are two second-mover

advantage equilibria in which one of the firms enters at t∗, while the other enjoys

a higher payoff as the follower. Finally, when there is no intersection between L(t)

and F (t), and F (t) always exceeds L(t), the leader enters at the time that L(t)

attains its global maximum (T̂ ). Again, there are two pure-strategy equilibria

with a second-mover advantage, which entail either one of the firms acting as the

market leader.
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3.2 Asymmetric firms

As noted previously, firms are more often than not different from one another.

In this section we develop a method of determining the leader’s entry time in all

pure-strategy SPE, allowing for asymmetric payoff functions. Firstly, to find the

pure-strategy SPE we note that any equilibrium with player i entering at time ti

must satisfy two necessary conditions:

Condition 1. No preemption by the leader i (NPL): Li(ti) > Li(τ), ∀ τ ∈ (0, ti).

Condition 2. No preemption by the follower j (NPF): Fj(ti) > Lj(τ), ∀ τ ∈
(0, ti) and Fj(ti) ≥ Lj(ti).

If the NPL does not hold, the leader (player i) will deviate by entering earlier.

Similarly, the NPF must hold in any SPE, otherwise the follower (player j) has

an incentive to preempt and enter slightly earlier than the leader, as in Fudenberg

and Tirole (1985).12 Even if these conditions hold, they do not in of themselves

guarantee that a specific entry time is part of an SPE, because both only compare

payoffs at a particular time relative to their historic values. These conditions, by

definition, do not make any comparisons with future potential payoffs. Of course,

such a consideration is necessary when determining any SPE.

To solve for the leader’s entry time, let us eliminate all points that do not

satisfy either of these conditions (the NPL and the NPF ) by constructing sets

A1(t
′, t′′) and A2(t

′, t′′). For each firm i ∈ {1, 2}, j 6= i and T ≥ t′′ > t′ ≥ 0, define

the following set:

Ai(t
′, t′′) = { t ∈ (t′, t′′] | Li(t) > Li(τ) & Fj(t) > Lj(τ) ∀ τ ∈ (t′, t) & Fj(t) ≥ Lj(t)}.

(2)

By definition, a point belongs to set Ai(t
′, t′′) if it satisfies both NPL and NPF.

By way of comparison, to solve the symmetric-player entry game Smirnov and

Wait (2015) construct one set that is applicable to both firms. Here, asymmetry

requires the construction of a set Ai(.) for each firm and for any truncated game

played on interval [t′, t′′].

12Argenziano and Schmidt-Dengler (2014) adopt similar conditions, which they refer to as the
Leader Preemption Constraint and the Follower Preemption Constraint.
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For each firm i ∈ {1, 2} define the following time

t∗i =

{
arg max

t
Ai(0, T ) when Ai(0, T ) 6= ∅,

0 when Ai(0, T ) = ∅.
(3)

In addition, assume without loss of generality that t∗1 ≥ t∗2. Moreover, for the

truncated game played on [0, t∗2] define the following time

t∗∗1 =

{
arg maxA1(0, t

∗
2) when A1(0, t

∗
2) 6= ∅,

0 when A1(0, t
∗
2) = ∅.

(4)

Note that by construction t∗i and t∗∗1 are always unique. t∗i describes the optimal

entry time if player i has to be the leader, while t∗∗1 describes the optimal entry

time if player 1 has to preempt player 2, who is expected to enter at t∗2.

3.2.1 Preemption and second-mover advantage equilibria

In this section we explore situations in which the familiar preemption and second-

mover advantage equilibria arise in the case with asymmetric firms. To do so

consider equilibria when A1(t
∗
1, T ) = ∅; the entry decision at t∗1 is not affected by

historical payoffs. The following proposition summarises all potential equilibria in

this case.

Proposition 2. Consider the SPE of the two-player asymmetric timing game

when A1(t
∗
1, T ) = ∅. If

1. L1(t
∗
1) > F1(t

∗
1), the SPE involves firm 1 entering at t = t∗1;

2. L1(t
∗
1) ≤ F1(t

∗
1), there are two SPE, one with firm 1 entering at t = t∗1 and

the other with firm 2 entering at t = t∗2.

Proof: See Appendix B.

When L1(t
∗
1) > F1(t

∗
1), as in Proposition 2(1), there are two possible cases. As

explained below, both involve firm 1 playing the role of a market leader. Moreover,

in essence both are a small perturbation of the scenario presented in Figure 1(a)

with symmetric players.
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The first possibility is illustrated in Figure 2(a).13 In this case the global

maxima for both leader payoff functions are at an entry time after t∗1. Given the

incentive to preempt, entry will occur before either of T̂i. Rather, firm 1 enters at

t∗1 = T̃2 (where L2 crosses F2) so as to just preempt entry by its rival.

Now consider the case when T̃1 < T̂1 < T̃2, as illustrated in Figure 2(b). Firm 1

will enter at the time that maximizes its leader payoff, T̂1. Again there is a unique

time of entry – t∗1 – but in this case firm 1 enters at its stand-alone time unlike the

case above where strategic interactions lead to earlier entry. The strategies firms

adopt in Proposition 2(1) are:

σ1(t) =

{
1 if [A1(t, T ) = ∅ & L2(t) ≤ F2(t)] ∪ [L1(t) > F1(t) & L2(t) > F2(t)],

0 otherwise;

σ2(t) =

{
1 if L2(t) > F2(t),

0 otherwise.

These strategies require that firm 1 enters in two distinct situations. Firstly, firm 1

opt to be the leader when it has no further incentive to wait in the hope of a higher

return later (A1(t
∗
1, T ) = ∅) and firm 2 prefers to be a follower, as L2(t) ≤ F2(t).

The second situation resembles the classic preemption game outlined in Fudenberg

and Tirole (1985), as both firms prefer to be a leader rather than a follower when

both L1(t) > F1(t) & L2(t) > F2(t). On the other hand, considering the strategy

of firm 2, it will only enter the market at t if doing so dominates waiting. This

holds when L2(t) > F2(t), remembering that F2(t) is a non-increasing function.

When L1(t
∗
1) ≤ F1(t

∗
1), as in Proposition 2(2), there are two distinct scenarios.

First, there is the possibility that the earliest intersection between either leader

and follower payoff curve occurs at the same time – that is T̃1 = T̃2, as illustrated

in Figure 3(a). As in the two scenarios discussed above, this is also a small per-

turbation of the symmetric case in Figure 1(a). The incentive to preempt ensures

that entry occurs at the time of first intersection of each Li and Fi; there are in

fact two equilibria with either firm entering at t = T̃1 = T̃2.

The second scenario is illustrated in the example shown in Figure 3(b). Note

13Both in this example and in most of the examples that follow we make the simplification
that F1 = F2 for illustrative purposes.
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Figure 3: A1(t
∗
1, T ) = ∅ and L1(t

∗
1) ≤ F1(t

∗
1): entry occurs at either t∗1 or t∗2
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that L1(t
∗
1) ≤ F1(t

∗
1). Moreover, A1(t

∗
1, T ) = ∅ guarantees that L2(t

∗
2) < F2(t

∗
2).

In this case there are two SPE in which both firms prefer to be the follower.

Specifically, in each of these equilibria one of the firms enters when they attain

their highest leader payoffs T̂i (and the other firm always waits, unless entering

strictly dominates waiting). Note that this example is a small perturbation of the

symmetric-players case illustrated in Figure 1(b).

For SPE in Proposition 2(2) where firm i is the leader and firm j is the follower,

the firms’ strategies in each of the SPE are:

σi(t) =

{
1 if [Ai(t, T ) = ∅ & Lj(t) ≤ Fj(t)] ∪ [L1(t) > F1(t) & L2(t) > F2(t)],

0 otherwise;

(5)

σj(t) =

{
1 if Lj(t) > Fj(t),

0 otherwise.
(6)

These strategies generalize those outlined earlier for Proposition 2(1) above

and apply to all equilibria discussed so far. Consider the equilibrium when firm 2

enters, so it plays the role of firm i. In this case, firm 2’s strategy is to wait until

its payoff (as a leader) is maximized, and then to enter at this time or whenever

A2(t, T ) = ∅ & L1(t) ≤ F1(t). If, somehow, a preemption subgame is reached in

which L1(t) > F1(t) and L2(t) > F2(t), firm 2 would enter as entering dominates

waiting. Conversely, firm 1 plays the role of follower in this equilibrium. It will

wait in any subgame, unless its leader payoff exceeds the return from being a

follower.

It is worth noting that the equilibria outlined in this Section mimic the equi-

libria discussed in the existing entry-timing literature with symmetric players,

notably preemption and second-mover advantage equilibria. Now we turn our

attention to novel history-dependent equilibria.

3.2.2 Blocking equilibria

In this section we consider new equilibria not possible in the symmetric case when

entry decisions could be affected by historical payoffs. These cases arise when

A1(t
∗
1, T ) 6= ∅. We characterize all of these SPE in the following proposition.
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Figure 4: Example of SPE in Proposition 3(2), when A1(t
∗
1, T ) 6= ∅ and t∗2 = T̂2:

firm 2 is the market leader, entering at t∗2

Proposition 3. Consider the SPE of the two-player asymmetric timing game

when A1(t
∗
1, T ) 6= ∅. If

1. t∗2 < T̄2 and A2(t
∗
2, t
∗
1) = ∅, there is no SPE;

2. t∗2 = T̄2 and A2(t
∗
2, t
∗
1) = ∅, there is a unique SPE with firm 2 entering at

t = t∗2;

3. A2(t
∗
2, t
∗
1) 6= ∅, there is a unique SPE involving firm 1 entering at t = t∗∗1 .

Proof: See Appendix B.

To garner some intuition for these results, with the help of Figure 4, first

consider Proposition 3(2). As illustrated in the top panel of the Figure, if the
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Figure 5: Example of no pure-strategy SPE in Proposition 3(1), whenA1(t
∗
1, T ) 6= ∅

and t∗2 < T̂2

game reaches t∗1 without entry, firm 1 would not enter at this time; rather it has an

incentive to wait and enter at T̂1. Understanding firm 1’s incentive, as F2(T̂1) <

L2(t
∗
2), firm 2 has an incentive to block its rival by entering at t∗2.

14 Consequently,

there is a unique equilibrium with firm 2 entering at t∗2. The strategies adopted in

this case are outlined in equations (5) - (6) with firm 2 playing the role of player i.

Note that this example satisfies the condition L1(t
∗
1) < F1(t

∗
1). However, in

general any sign between L1(t
∗
1) and F1(t

∗
1) is possible. To illustrate this, consider

the example shown in Figure 4(b), in which firm 1 has a leader advantage (after

T̃1) whereas firm 2 prefers to wait. This example is equivalent to the example

presented in Figure 2C in Katz and Shapiro (1987). Employing the same logic as

in the example in Figure 4(a), if the game were to reach t∗1 without entry, firm 1

would have an incentive to wait and only enter at T̂1. At this time in the game,

there is no credible way firm 2 can prevent firm 1 from waiting, as firm 2’s follower

payoff exceeds its return as a leader. Anticipating this, firm 2 has an incentive to

block its rival; there is a unique equilibrium with firm 2 entering at t∗2 (its historical

maximum payoff as leader). As noted by Katz and Shapiro (1987), however, there

is a complication that there does not exist an equilibrium with pure strategies for

14In Figure 4(a) A1(0, T ) = (0, t∗1], where t∗1 is determined by historical maximum of L2. On
the other hand, A2(0, T ) = (0, t∗2].
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a truncated subgame on [T̃1, T
∗∗
2 ]. This issue is discussed in Katz and Shapiro

(1987), in footnote 15. One solution is to resort to mixed strategies. Another

possibility is to augment the equilibrium concept so as to ignore subgames with

dominated strategies. This caveat ensures entry by firm 2 at t∗2, regardless of the

strategies adopted by both firms after this time.15

This issue of non-existence of equilibria is exacerbated further in Proposi-

tion 3(1), illustrated in Figure 5. In this case there is no pure-strategy SPE.

Critical to this non-existence outcome is that t∗2 < T̂2. The intuition for this result

is as follows. In this scenario, recall that A1(t
∗
1, T ) 6= ∅. This means that if the

game reaches t∗1 without entry, firm 1 will have an incentive to delay entry further.

Anticipating this, firm 2 would consider blocking its rival by entering earlier; a

candidate for blocking entry would be at a time at which its leader payoff is max-

imized, T̂2. But in this example t∗2 < T̂2, which raises the problem of existence as

there is no pure strategy equilibrium for [T̃1, T
∗∗
2 ]. At T̂2 firm 1’s best response to

entry by firm 2 is to preempt, as L1(T̂2) > F1(T̂2). Firm 2 would prefer to follow

if firm 1 enters, but if it does so, firm 1 would also have an incentive to wait,

as its leader payoff is increasing at this time. Hence, there is no combination of

best-response pure strategies, as formally captured by Proposition 3(1).

Before we proceed it is worth noting that in all cases we considered so far, (if

equilibria exist) entry by the market leader always occurs at t∗1 or at t∗2, or at both

times (which could of course coincide). While not ensuring uniqueness, it does

indicate that at most there are two entry times feasible in equilibrium.

Now we turn our attention to Proposition 3(3). Let us highlight the intuition

of this case with the assistance of the example illustrated in Figure 6.16 Firstly,

as shown in Figure 6, note that A1(0, T ) = (0, t∗∗1 ] ∪ (t3, t
∗
1]. On the other hand,

A2(0, T ) = (0, t∗2]. To determine the equilibrium entry time, we iterate backwards

from the latest possible candidate entry date. If game has reached t∗1 without entry,

firm 1 would rather wait and enter later at T̃2 than to lead at t∗1. Anticipating

firm 1’s incentive to wait at t∗1, firm 2 would be tempted to preemptively block

this outcome; as A2(0, T ) = (0, t∗2] a candidate entry time is t∗2. However, if the

15Regarding the statement of Proposition 3, we treat this scenario as if the equilibrium exists
and either mixed strategies can be used or subgames with dominates strategies can be ignored.

16Micro-foundations for this example are presented in Appendix A.
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Figure 6: Example of blocking equilibrium with two iterations in Proposition 3(3),
when A1(t

∗
1, T ) 6= ∅ and A2(t

∗
2, t
∗
1) 6= ∅

game reaches t∗2, both firms will have an incentive to wait as firm 2’s leader payoff

is increasing and firm 1 has a higher payoff as a follower. In fact, rather than

entering at t∗2, firm 2 would prefer to enter at T̄2. Of course, anticipating its fate,

firm 1 will block this eventuality by entering even earlier at t∗∗1 , ensuring a payoff

of L1(t
∗∗
1 ) which exceeds its follower payoff at T̄2.

For SPE in Proposition 3(3) the firms’ strategies are:

σ1(t) =

{
1 if [A1(t, t

∗
2) = ∅ & L1(t) > F1(T̄2)] ∪ [L1(t) > F1(t)],

0 otherwise.

σ2(t) =

{
1 if [A2(t, T ) = ∅ & L1(t) ≤ F1(t)] ∪ [L1(t) > F1(t) & L2(t) > F2(t)],

0 otherwise;

These strategies amend those outlined in equations (5) - (6), with firm 2 playing

the role of player i, to include the requirement that firm 1 enters to block firm 2’s

entry at T̄2 when A1(t, t
∗
2) = ∅ and L1(t) > F1(T̄2).

In summary, firm 1 comes into the market early to block firm 2’s strategic entry

plans, which are in of themselves an attempt to preemptively block firm 1’s future

leadership intentions. That is, anticipating that it will be preempted by firm 2
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at T̄2, firm 1 blocks this preemption by entering even earlier, in this case at t∗∗1 .

This is another version of a blocking equilibrium, this time with two iterations.

As noted in the Introduction, this could relate to a firm prematurely launching a

new smartphone, or cobbling together an updated release in an attempt to block

a rival’s future entry that would have, in its own right, a preemptive market

entry. This blocking equilibrium is only possible with heterogenous firms and

when equilibrium strategies are influenced by historic payoffs. This example also

illustrates that in the general case covered by the Proposition 3, entry times in

equilibrium can differ from t∗1 and t∗2.

3.2.3 Continuous version of centipede game

So far we have assumed that the follower payoff functions are non-increasing with

the time of entry by the leader. Even in that case, a blocking equilibrium with two

iterations is possible. Here we show that any arbitrary number of these strategic

leapfrogging iterations are possible in the general case. To see this, consider the

following continuous (market-entry) version of the centipede game illustrated in

Figure 7. Note that while there is a positive trend in the payoffs to each firm,

they experience several peaks and troughs along the way. These mountainous

looking payoffs could represent the seasonally changing payoffs associated with

new versions of two smartphones as they become available. Important also in this

example is that the local peak for one firm roughly corresponds to a time of a local

trough for its rival. In the Figure, firm 1’s potential payoffs are shown in panel (a)

with the top line being its follower payoff F1 and the bottom line its leader payoff

L1, whilst panel (b) shows the follower and leader payoffs for firm 2. Consider the

equilibrium outcome of this centipede entry model. As with the previous blocking

equilibria, if the game reaches t∗1 without entry, firm 1 would not continue waiting

until t11, as its leader payoff is increasing and there is no credible threat of entry

by firm 2. This is a situation that firm 2 wishes to avoid, so it would be willing

to enter at t12 to block firm 1’s opportunistic actions after this time. But, given

the non-monotonic nature of the payoffs, this entry time provides firm 1 with a

lower follower payoff than it could have got as a leader previously. Moreover, entry

by firm 2 at t∗2 is not credible, because firm 2’s leader payoff is increasing at this
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Figure 7: Continuous version of the centipede game

time. To gazump this, firm 1 will come in at t21, if there had been no entry prior.

This blocking process of iterating backwards moves through all of the peaks (and

corresponding rival troughs) – before entry in equilibrium occurs immediately at

t61 = 0. The intuition for blocking is the same as above – to avoid a lower future

payoff a firm will enter earlier, a move which itself induces even earlier entry by its

rival, and so on. In this game, the payoffs to the two firms need not be equalized,

as in the classic preemption equilibrium. Moreover, entry here is inefficient – both

firms could be made better off if they could wait and enter later.

Also note that, more generally, our solution technique can be applied to the

case when both leader and follower payoff functions take on any continuous shape.

While it is tedious to express the entry strategies and existence of equilibria in the

general case, the intuition of our solution algorithm from the base case holds and
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can be used to solve for the entry equilibrium in any specific game desired.

4 Concluding comments

The decision when to launch a new product or production process is a critical

question for many firms; it can help determine profit, firm survival and the shape

of markets. More generally, it drives economic development. Given its impor-

tance, innovation has received a great deal of attention from economists, such as

in Fudenberg and Tiroles’ seminal work. Getting the timing of innovation right

is difficult enough for any firm, let alone when it has a rival breathing down its

neck. In this paper we examine innovation as a market entry game with duopoly

rivals in a very general framework; our main model only assumes that payoffs are

continuous and that follower payoffs are non-increasing in entry time of the leader.

Most importantly, inspired by Katz and Shapiro (1987), we allow for asymmetries

between firms. This incorporates the situation when firms have different capabili-

ties or technologies. Moreover, allowing for non-monotonic leader payoffs captures

situations where multiple technologies or products become available for adoption

at different times.

Adapting the solution method of Smirnov and Wait (2015) to allow for asym-

metric payoffs, we solve for all pure strategy subgame perfect equilibria, character-

ized by the time of the leader’s market entry. It turns out that there can be zero,

one or at most two pure strategy equilibria. In some cases, we see preemption or

a second-mover advantage in the asymmetric game, familiar from the symmetric

case. But other outcomes are also possible. Notably, in our blocking equilibrium

we show that the threat of future entry can lead to an iterative process in which

each firm would enter earlier, so as to block the future entry plans of their rival.

This results in a very early entry by the market leader, and is suggestive of im-

mature product launches by firms attempting to avoid lower payoffs anticipated

if their rival becomes the market leader in the future. Importantly, our blocking

equilibria differ from the preemption equilibrium in Fudenberg and Tirole (1985)

in that rents do not have to be equalized. This analysis also differs from Katz

and Shapiro (1987) in that our blocking equilibrium can have any number of back-

wards iterations, given the shape of potential payoff functions, whereas in their
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model there can be at most one blocking entry due to their implicit assumption of

concave payoffs.

The generality of our solution method is demonstrated by our application to

the entry game with non-monotonic follower (and leader) payoffs. Moreover, in

this case, the iterative incentives to block each other’s product launch leads to

starkly inefficient early entry in a continuous version of the centipede game.

Finally, two further caveats are worth noting. Firstly, we have assumed contin-

uous payoffs, leaving the analysis of discontinuities in the (symmetric) entry game

to Smirnov and Wait (2015). If this assumption is relaxed, additional equilibria in

pure strategies corresponding to points of discontinuities are possible. Secondly,

we have effectively ruled out the situations where both pairs of leader and fol-

lower curves intersect at the same points more than once and these intersections

correspond to both leaders’ respective historical maxima. These points of inter-

section match rent-equalizing equilibria, that for the (symmetric) entry game were

analyzed in Smirnov and Wait (2015).

Appendix A - Example of innovation with two

decreasing-cost innovation choices

To provide some further intuition for the main results in the paper, and to allow

for a closer comparison with the previous literature, we construct the following

modification of Katz and Shapiro (1987). Essentially, we augment their example

to allow for more than one potential innovation that firms can put into practice. As

noted in the introduction, firms are often faced with the choice between two or more

alternative technologies. Examples of competing technologies for tablets, phone

handsets and computer hardware come to mind, but a similar choice often has to

be made when considering adopting cost-reducing technologies. Each technology

will typically come with its own advantages and, moreover, the relative advantages

of a given technology can change over time. Our framework is general enough to

capture all of these scenarios.

Here, we completely characterize all SPE of this two-player innovation game us-

ing the algorithm outlined in this paper. By doing so, we show how an augmented
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example of Katz and Shapiro (1987) can provide micro-foundations for the blocking

equilibrium with two iterations, as illustrated in Figure 6 and discussed above.

Consider the case when two firms are contemplating when to upgrade to a new

technology, which they can implement at some time ti ∈ [0,∞) for i = 1, 2. Each

firm can choose to implement one of the two options k = 1, 2 available. For each

firm, the old (null) technology generates a flow of profit normalized to zero; that

is, π0
i = 0, i = 1, 2. After adoption, the new technology k affords firm i a flow

of profit πiik > 0. Furthermore, subsequent to firm i adopting technology k, firm

j’s earns a flow profits of πijk > 0. Finally, after firm i’s adoption of k, industry

profits are given by πik = πijk + πiik.

The payoffs are discounted by a common discount factor e−rt, so that the net-

present value of profits for the leader (firm i) entering at ti with technology k

is:

Li(ti, k) =

∫ ∞
ti

e−rtπiikdt−KL(ti, k) =
e−rti

r
πiik −KL(ti, k). (7)

Here, we use the exponentially declining development cost function, K(ti, k) =

K0e
λkti +Kik, with λk > r.

Similarly, the payoff to firm i if firm j enters with technology k at tj is:

Fi(tj, k) =
e−rtj

r
πjik −K

F (ti, k). (8)

As firm i maximizes its payoff, the net-present value of profits for the leader

(firm i) entering at ti with the best technology available is:

Li(ti) = max
k=1,2

[
e−rti

r
πiik −KL(ti, k)

]
. (9)

For simplicity, let us assume that the payoff to firm i if firm j wins with

technology k is independent of k; that is,

Fi(tj) = Fi(tj, 1) = Fi(tj, 2). (10)

This means that for both firms πji1 = πji2 and KF (ti, 1) = KF (ti, 2); a follower

earns the same level of profit, regardless as to the technology adopted by the

market leader.
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The market demand in each period is 1 unit at a constant price of 1. We

assume that firms share the market equally; the profits before and after entry are

π0
i = (1− c0i )/2, πiik = (1− ciik)/2, π

j
ik = (1− cjik)/2,

where c0i , c
i
ik and cjik are the costs corresponding to the old and new technology

cases.

Several points are worth noting here in relation to this example and the anal-

ysis of the model in the paper. Firstly, the follower’s payoff function Fi(t) is a

decreasing function of the leader’s entry and the parameters are such that the

payoffs are always positive. This means that Assumptions 5 and 6 are satisfied,

and that we can apply the framework developed. Secondly, the three curves –

L1(t), L2(t), and F1(t) = F2(t) – in Figure 6 are all derived using equations (8)

- (9). In this way, we are able to construct an entry game with non-monotonic

leader payoff functions with only a slight augmentation to an established example

in the literature. Moreover, we are able to use this example to illustrate our novel

blocking equilibrium (with two iterations).

Appendix B

Proof of Proposition 2

This proof consists of four parts: A, B, C, and D. In Part A we show that all SPE

with positive entry times must belong to either A1(0, T ) if firm 1 enters first or

A2(0, T ) if firm 2 enters first. In Part B we prove that for i = 1, 2 there exists a

unique t∗i , given by (3), at which either Li(t) is maximized over Ai(0, T ) or t∗i = 0

when Ai(0, T ) = ∅. Part C shows that firm 1 entering at t∗1 is a unique SPE as it

delivers the highest possible equilibrium payoffs to both the leader and the follower

when A1(t
∗
1, T ) = ∅ and L1(t

∗
1) > F1(t

∗
1). Part D proves that if A1(t

∗
1, T ) = ∅ and

L1(t
∗
1) ≤ F1(t

∗
1) then there are two SPE with firm 1 entering at t = t∗1 and firm 2

entering at t = t∗2.

(A) As a preliminary step, let us prove all SPE with positive entry times

must belong to either A1(0, T ) if firm 1 enters first or A2(0, T ) if firm 2 enters
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first. Assume, on the contrary, that there is an SPE with a positive entry time

t∗i /∈ Ai(0, T ). It must be the case that both NPL and NPF conditions are satisfied.

If condition NPL is not satisfied, the leader (player i) will have an incentive to enter

earlier at τ . On the other hand, if condition NPF is not satisfied, the follower

(player j) will have an incentive to preempt the leader (player i) and enter slightly

earlier, as in Fudenberg and Tirole (1985). Neither of these situations are possible

in equilibrium. Consequently, there is a contradiction, proving the statement that

all SPE with positive entry times must belong to either A1(0, T ) if firm 1 enters

first or A2(0, T ) if firm 2 enters first.

(B) Next, let us prove that t∗i for i = 1, 2 is given by (3). Specifically, there

exists a unique t∗i at which either Li(t) is maximized over Ai(0, T ) or t∗i = 0 when

Ai(0, T ) = ∅. When Ai(0, T ) = ∅, entering at t∗i > 0 can not be an SPE; so the

only potential entry time for player i is t∗i = 0. As neither abstaining from entering

nor entering later is beneficial, the SPE is either t∗1 = 0 or t∗2 = 0 or both.

Now consider the situation when Ai(0, T ) is not empty. Let us prove the

existence of the solution to this problem of maximizing Li(t) over Ai(0, T ) when

Ai(0, T ) 6= ∅. Note that set Ai(0, T ) is bounded because T̂i is finite, where T̂i is the

time at which Li(t) reaches its global maximum (Assumption 4). We need to show

that set Ai(0, T ) always contains its supremum. Assume that it does not. This

means that there is a sequence {tk} contained in Ai(0, T ) that converges to some

limit t∗i that is not contained in set Ai(0, T ). This requires that either NPL or NPF

is not satisfied for t∗i . As sequence {tk} belongs to Ai(0, T ), it means that both

NPL and NPF hold for sequence {tk}. As both Li(t) and Fj(t) are continuous

functions, it means t∗i also belongs to Ai(0, T ). This leads to a contradiction,

proving existence.

The uniqueness follows immediately from the way set Ai(0, T ) is constructed.

If two entry times were to maximize Li(t) over Ai(0, T ), then the later time would

not belong to Ai(0, T ).

Next, let us show that if t∗i = arg max
t∈Ai(0,T )

Li(t), it is also the case that t∗i =

arg max
t
Ai(0, T ) whenAi(0, T ) 6= ∅. Assume the opposite that t∗i 6= arg max

t
Ai(0, T ).

If t∗i < arg max
t
Ai(0, T ), then t∗i does not maximize the leader’s payoff over

Ai(0, T ). If t∗i > arg max
t
Ai(0, T ), t∗i does not belong to Ai(0, T ). Both situa-
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tions lead to a contradiction. We have now shown that t∗i = arg max
t
Ai(0, T ),

concluding the proof of Part B.

(C) Next, we prove that firm 1 entering at t∗1 given by (3) is a unique SPE

when A1(t
∗
1, T ) = ∅ and L1(t

∗
1) > F1(t

∗
1). Note that in this case t∗1 > t∗2. First, in

part A we proved that there is no equilibrium with entry time τ > t∗1.

Second, let us prove that firm 1 entering at t∗1 is an SPE. In part B we proved

that t∗1 maximizes L1(t) over A1(0, T ). This means the leader gets the highest

possible equilibrium payoff and has no incentive to deviate. The follower has no

incentive to deviate as well as t∗1 belongs to A1(0, T ) and A1(t
∗
1, T ) = ∅.

Third, let us prove that there is no equilibrium with entry time of firm 1 τ < t∗1.

As t∗1 ∈ A1(0, T ), entering at t < t∗1 is strictly dominated by entering at t∗1.

Finally, let us prove that there is no SPE with firm 2 entering at any t. Part

A guarantees that entering at t > t∗2 can not be an SPE. The follower also has

no incentive to enter at t ≤ t∗2 < t∗1 as t∗1 belongs to A1(0, T ), which means NPF

condition is satisfied and for firm 2 waiting dominates entering.

(D) Let us prove that if A1(t
∗
1, T ) = ∅ and L1(t

∗
1) ≤ F1(t

∗
1) then there are two

SPE with firm 1 entering at t = t∗1 and firm 2 entering at t = t∗2. Consider an SPE

where firm i is the leader and firm j is the follower (i, j = 1, 2 and i 6= j).

First, given t∗i ∈ Ai(0, T ), if the follower deviates by entering at some time

τ < t∗i , it will get a payoff of Lj(τ) < Fj(t
∗
i ). If it deviates by entering at t∗i , it will

get a payoff of (Lj(t
∗
i ) +Fj(t

∗
i ))/2, which is not greater than Fj(t

∗
i ). If the follower

enters at t > t∗i , there will be no change to the equilibrium outcome. Consequently,

there is no profitable deviation for the follower.

Second, in part A we proved that there is no equilibrium with the leader en-

tering at τ > t∗i . Given t∗i ∈ Ai(0, T ), if the leader deviates by entering earlier at

some time τ < t∗i , it will get a payoff of Li(τ) < Li(t
∗). There is no profitable

deviation for the leader.

There is no other equilibria as entering at t∗i dominates entering at any other

time. Consequently, we have proved that there are two equilibria. This observation

concludes the proof of this Proposition. �
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Proof of Proposition 3

Let us first consider case (2) when A1(t
∗
1, T ) 6= ∅, A2(t

∗
2, t
∗
1) = ∅ and t∗2 = T̄2. In

this scenario relative to (D) in Proposition 2, A1(t
∗
1, T ) 6= ∅. This means firm 1

entering at t = t∗1 is not an equilibrium as at t∗1 firm 1 has an incentive to wait. As

a result firm 2 will have incentive to block firm 1’s entry. Note also that for the

same reason as in part (D) of Proposition 2, entering by either firm i at any other

time t 6= t∗i is not an SPE. Consequently, there exists only one SPE with firm 2

entering at t = t∗2.

Consider instead case (3) when A1(t
∗
1, T ) 6= ∅ and A2(t

∗
2, t
∗
1) 6= ∅. In this case

in comparison with case (2), neither entering by firm 1 at t∗1 nor entering by firm

2 at t∗2 is an equilibrium. Firm 1 has strong incentives to enter even earlier (and

block firm 2’s entry) as firm 2 has incentives to wait at t∗2. Consequently, there is

a unique SPE with firm 1 entering at t∗∗1 .

Finally consider case (1) when A1(t
∗
1, T ) 6= ∅, A2(t

∗
2, t
∗
1) = ∅ and t∗2 < T̄2. In

this case t∗2 = T̃1, which in turn imply that L1(T̂2) > F1(T̂2) and L2(T̂2) < F2(T̂2).

There is no pure strategy equilibrium as at T̂2 firm 1’s best response to the entry

by firm 2 is to enter slightly earlier. Firm 2 would prefer to follow if firm 1 enters,

but if it does so, firm 1 would also have an incentive to wait, as its leader’s payoff

is increasing with time. This observation concludes the proof of this Proposition.

�
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