
Economics Working Paper Series 

2018 - 4

Estimating and Accounting for the Output Gap 
with Large Bayesian Vector Autoregressions  

James Morley and Benjamin Wong 

September 2018 



Estimating and Accounting for the Output Gap with
Large Bayesian Vector Autoregressions ∗†

James Morley1 and Benjamin Wong2

1University of Sydney
2Monash University, Australia

September 10, 2018

Abstract

We consider how to estimate the trend and cycle of a time series, such as real GDP,
given a large information set. Our approach makes use of the Beveridge-Nelson decom-
position based on a vector autoregression, but with two practical considerations. First,
we show how to determine which conditioning variables contain relevant information by
directly accounting for the Beveridge-Nelson trend and cycle in terms of contributions
from different forecast errors. Second, we employ Bayesian shrinkage to avoid overfitting
in finite samples when estimating models that are large enough to include many possible
sources of information. An empirical application with up to 138 variables covering various
aspects of the U.S. economy reveals that the unemployment rate, inflation, and, to a lesser
extent, housing starts, aggregate consumption, stock prices, real money balances, and the
federal funds rate all contain relevant information beyond that in output growth for esti-
mating the output gap, with estimates largely robust to incorporating additional variables.

JEL Classification: C18, E17, E32

Keywords: Beveridge-Nelson decomposition, output gap, Bayesian estimation, multi-
variate information

∗Email: Morley: james.morley@sydney.edu.au Wong: benjamin.wong@monash.edu
†We thank the Editor, Barbara Rossi, three anonymous referees, Hilde Bjørnland, Kalvinder Shields, partici-

pants at the 2018 AEA Meetings, the 25th Symposium of the Society for Nonlinear Dynamics and Econometrics,
the 14th International Symposium on Econometric Theory and Applications, the 11th RCEA Bayes Workshop,
and seminar and workshop audiences at Reserve Bank of New Zealand, University of Melbourne, Australian
National University, Monash University, University of Tasmania, Hitotsubashi University, Reserve Bank of
Australia, and Victoria University of Wellington for helpful comments and suggestions. Any errors are our own.

1

mailto:james.morley@sydney.edu.au
mailto:benjamin.wong@monash.edu


1 Introduction

Interpretation of macroeconomic data often involves decomposing a time series into trend and

cycle, especially as related concepts such as the neutral rate of interest, the output gap, and

trend inflation are crucial inputs into macroeconomic policy decision-making. The macroeco-

nomic literature is replete with statistical methods for conducting such decompositions (e.g.,

Hodrick and Prescott, 1997; Christiano and Fitzgerald, 2003). These methods are typically uni-

variate in nature and so only rely on the single variable being detrended for implementation.

A challenge with such a univariate approach is that the interpretation of the estimated trend

and cycle from a statistical filter often needs to be corroborated “off-model” with other sources

of information. It is possible to directly allow for multivariate information to help conduct

and interpret trend-cycle decompositions (e.g., Kozicki, 1999; Garratt et al., 2006; Sinclair,

2009; Garratt et al., 2016; Chan and Grant, 2017; Barigozzi and Luciani, 2017), but practical

challenges remain in terms of determining exactly which variables should be included in the

information set or even with how large the information set can be while still keeping estimation

tractable.

We address these practical challenges to processing multivariate information within the con-

text of a particular approach to estimating trend and cycle, namely the Beveridge and Nelson

(BN) (1981) decomposition based on a vector autoregression (VAR), as considered in Evans and

Reichlin (1994), amongst others. First, we show how to determine which conditioning variables

contain relevant information by directly accounting for the BN trend and cycle in terms of con-

tributions from different forecast errors in the VAR. This accounting can be used to define the

relevant information set and provides interpretability in terms of which sources of information

are most important for estimating trend and cycle for a target variable. Furthermore, given

an identification scheme that maps forecast errors to structural shocks, it can also be used

for a structural decomposition of movements in trend and cycle. Second, we employ Bayesian

shrinkage to avoid overfitting in finite samples when estimating models that are large enough

to include many possible sources of information. Evans and Reichlin (1994) show that the mul-

tivariate BN decomposition based on a VAR estimated by least squares can be quite sensitive

to the number of conditioning variables due to sampling error, perhaps explaining its relative

lack of use compared to univariate methods in practice. By considering a standard Minnesota
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prior with a key hyperparameter calibrated to minimize the pseudo-out-of-sample forecast error

variance for the target variable, we find that the degree of shrinkage for our Bayesian VARs

(BVARs) increases with the size of the model, mitigating the effects of increasing sampling

error for larger systems, while still allowing the likelihood to dominate the prior for coefficients

on relevant conditioning variables.

An application with up to 138 variables covering various aspects of the U.S. economy re-

veals that the unemployment rate, inflation, and, to a lesser extent, housing starts, aggregate

consumption, stock prices, real money balances, and the federal funds rate all contain rele-

vant information beyond that in output growth for estimating the output gap. Estimates are

largely robust to incorporating additional variables, but highly sensitive to dropping a key in-

formational variable such as the unemployment rate. Notably, our benchmark BVAR forecasts

output growth better than an AR(1) model and the estimated output gap performs favorably

against other measures used in policy environments in terms of having a strong negative cor-

relation with future output growth and positive correlation with future inflation. Our results

are robust to allowing for possible structural change in long-run growth and to consideration of

real GDI instead of real GDP as the measure of aggregate output, while Monte Carlo analysis

using empirically-motivated data generating processes shows that Bayesian shrinkage makes

finite-sample estimates of the BN cycle more robust to misspecification of the size of a system

compared to those based on least squares estimation.

The remainder of this paper proceeds as follows: Section 2 discusses the BN decomposi-

tion in a multivariate setting and how to determine the relevant sources of information by

accounting for the BN trend and cycle in terms of contributions from different forecast errors.

Section 3 describes how we employ Bayesian shrinkage to avoid overfitting in finite samples

when estimating models that are large enough to include many possible sources of information.

Section 4 reports the results for our empirical application estimating the U.S. output gap us-

ing a dataset with 138 variables. Section 5 considers robustness to accounting for structural

change in long-run growth, consideration of real GDI instead of real GDP, and misspecifying

the size of a system in finite samples. We conclude by briefly summarizing our contribution

and suggesting possible extensions.
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2 The BN Decomposition in a Multivariate Setting

Beveridge and Nelson (1981) define the trend of a time series as its long-horizon conditional

expectation minus any future deterministic drift. In particular, letting {yt} be a time series

process with a trend component that follows a random walk with a constant drift µ, the BN

trend, τt, at time t is

τt = lim
j→∞

Et [yt+j − j · µ] . (1)

The BN cycle, ct, can then be calculated simply as the difference between the observed time

series and the BN trend:

ct = yt − τt. (2)

The intuition behind the BN decomposition is that the long-horizon conditional expecta-

tion of the cyclical component of a time series process is zero, meaning that the long-horizon

conditional expectation of the time series will just reflect its trend. Therefore, one only needs

to specify a forecasting model for the time series to estimate the trend based on the implied

long-horizon conditional expectation. In a univariate setting, ARIMA models have often been

considered (e.g., Beveridge and Nelson, 1981; Morley et al., 2003). In a multivariate setting,

linear VARs have been considered (e.g., Evans and Reichlin, 1994).

For the multivariate setting, let ∆xt represent a vector of n stationary variables that includes

the first difference of the target variable yt.
1 We assume that ∆xt has a finite-order VAR(p)

representation with the following companion form:

(∆Xt − µ) = F(∆Xt−1 − µ) + Het, (3)

where ∆Xt = {∆x′t,∆x′t−1, ...,∆x′t−p+1}′, F is the companion matrix, µ is a vector of uncon-

ditional means, H maps the VAR forecast errors to the companion form, and et is a vector of

serially uncorrelated forecast errors with covariance matrix Σ.2 Given stationarity, (I − F)−1

exists and, from equation (3), the cumulative sum at time t of expected future deviations of

1By framing the stationary variables as being in differences, we can apply the BN decomposition to the
integrated levels, xt, of these variables, which importantly includes the target variable yt, although variables
that are stationary in their levels could also be included in ∆xt and the BN decomposition would implicitly be
applied to the accumulation of their levels.

2It should be noted that equation (3) can accommodate cointegration according to a vector error correction
representation by including the long-run equilibrium errors in ∆Xt, with particular restrictions on F and H.
See Morley (2002) for an example.
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the vector process from its unconditional mean can be written as

Et
∞∑
j=1

(∆Xt+j − µ) = F(I− F)−1(∆Xt − µ). (4)

Then, denoting τt and ct as vectors of BN trends and BN cycles, respectively, these can be

solved following Morley (2002) as

τt = Xt + F(I− F)−1(∆Xt − µ) (5)

ct = −F(I− F)−1(∆Xt − µ). (6)

The crucial question in the multivariate setting is which conditioning variables to include

in the model. In principle, the simple answer based on the definition of the BN decomposition

would be to include all variables that contain relevant information for forecasting the target

variable yt based on the true data generating process (DGP). In particular, denote wt as a

strictly multivariate set of variables such that wt is a vector with n∗ > 1 rows that includes

∆yt and follows a finite-order VAR(p∗) process. Then, given population values for F and µ and

setting ∆Xt = Wt, where Wt = {w′t,w′t−1, ...,w′t−p∗+1}′, equations (5) and (6) would recover

the true trends and cycles for xt, including for yt.

We consider the case where a large available dataset includes wt, as well as some additional

extraneous variables that are not relevant for forecasting future values of the target variable.

Then, letting Vt ⊂ Wt ⊂ Zt, we can make the following two observations: First, Proposi-

tion 1 in Evans and Reichlin (1994) directly implies that the BN cycle will be different when

conditioning on a smaller information set Vt instead of Wt, with a strictly smaller variance

of the cycle in the case of omitted variables. Second, it is straightforward to reason from the

proposition that the BN cycle will be the same when conditioning on a larger information set

Zt instead of Wt.
3

Based on these two observations, we propose a practical way to determine which conditioning

variables contain relevant information. To understand our approach, let Γi ≡ Fi(I − F)−1 for

notational convenience and repeatedly lag and substitute equation (3) into equation (6) to get

3This equivalence is given population values for F and µ. The BN cycles would differ when allowing for
sampling error, with a strictly larger variance in the case of extraneous variables and estimation based on least
squares or maximum likelihood. We address parameter estimation and how to avoid overfitting in finite samples
given large models in the next section.
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the following expression for ct as a function of historical forecast errors:

ct = −Γ1(∆Xt − µ)

= −Γ1 {F(∆Xt−1 − µ) + Het}

= −Γ1Het − {FΓ1(∆Xt−1 − µ)}

= −Γ1Het − {Γ2(∆Xt−1 − µ)}

= −
t−1∑
i=0

Γi+1Het−i − Γt+1(∆X0 − µ)

≈ −
t−1∑
i=0

Γi+1Het−i, (7)

where the approximation in the last line should be highly accurate for all but the first few time

periods in a sample given that Γt+1 exponentially decays to zero as t increases for a stationary

vector process.4 Then, defining a selection vector sr,q as a column of zeros in all r rows except

for a 1 in the qth row and assuming n variables and p lags in the VAR, we can account for the

contribution of the forecast error for the kth variable to the BN cycle of the lth-ordered target

variable as

ck,t = −
t−1∑
i=0

snp,l
′Γi+1Hsn,ksn,k

′et−i. (8)

Given this calculation for the contribution of a particular variable, our proposed approach

is to start with a VAR based on the entire available dataset and then drop variables with fore-

cast errors that only contribute a negligible amount of variation to the BN cycle of the target

variable until doing so leads a meaningful change in the cycle. In particular, Proposition 1 in

Evans and Reichlin (1994) means that the BN cycle will not change as we go from ∆Xt = Zt

to ∆Xt = Wt, but its amplitude will shrink as we go from ∆Xt = Wt to ∆Xt = Vt. Thus,

this procedure should result in determining which conditioning variables contain relevant in-

formation and belong in wt.

We note that this approach is not equivalent to simply including any variable that Granger

causes the target variable in ∆xt, as might be inferred from Remark 1 to Proposition 1 in Evans

and Reichlin (1994). The issue is that Granger causation is a sufficient, but not necessary

condition for belonging to wt. In particular, because the BN decomposition is based on an

4There is no approximation if the initial condition (i.e., ∆X0 −µ) is set to zero when backcasting based on
to its unconditional expectation, which is what we do in our empirical application.
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infinite-horizon forecast, a variable might not Granger cause the target variable, but still be

relevant if it Granger causes another variable that Granger causes the target variable.5 The

key is that any variable for which removal from ∆xt alters the BN cycle for yt belongs in wt.

As part of our approach, we can determine the relative importance of different sources of

information in calculating the BN cycle by looking at the variance of the contribution ck,t for

each remaining variable in the VAR. However, this is clearly not a strict variance decomposition

as any correlation between forecast errors across equations will mean there are also non-zero

covariance terms that affect the total variance of ct. Likewise, we can obtain a historical de-

composition in terms of which forecast errors explain the observed BN cycle by looking directly

at ck,t, with ct = c1,t + c2,t + ... + cn,t, but again this will not have a structural interpretation

given correlation between forecast errors across equations. However, if we have an identifica-

tion scheme that maps orthogonal structural shocks to forecast errors according to Aεt = et,

where εt is a vector of structural shocks with covariance matrix I, implying Σ = AA′, we can

substitute in Aεt for the forecast errors in equation (8) to examine the role of the identified

orthogonal structural shocks in driving the cycle.6

For completeness, we note that to solve for the BN trend growth as a function of forecast

errors, we can difference equation (5) to get

∆τt = Xt + Γ1(∆Xt − µ)− {Xt−1 + Γ1(∆Xt−1 − µ)}

= µ+ Γ0Het. (9)

Again, we can account for the contribution of the forecast error for the kth variable to the BN

trend growth of the lth-ordered target variable as

∆τk,t = snp,l
′µ+ snp,l

′Γ0Hsn,ksn,k
′et. (10)

Similar to the case with the BN cycle, this calculation allows us to determine the importance

5This broader concept of forecast relevancy has previously been studied and described as “Granger Causal
Priority” (e.g., Jarociński and Maćkowiak, 2017) or “long-run Granger causality” (e.g., Dufour and Renault,
1998).

6We present an example in the online appendix based on standard identification schemes for oil price shocks
and monetary policy shocks. Importantly for large models such as in our empirical application, orthogonality
makes it possible to examine the causal effects of a subset of structural shocks without necessarily identifying
all of the structural shocks in a system.
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of different sources of information in calculating the BN trend and possibly examine the role of

the identified orthogonal structural shocks in driving the trend by substituting in Aεt for the

forecast errors in equation (10).7

3 Estimation in Finite Samples

Evans and Reichlin (1994) show that estimates of the U.S. output gap based on multivariate

BN decompositions are fundamentally different than those based on a univariate BN decom-

position. In particular, they find that, in contrast to univariate estimates for a low-order AR

model of output growth, multivariate estimates using information from the unemployment rate,

aggregate consumption, and indices of leading and coincident indicators are large in amplitude

and positively associated with NBER reference cycles. They interpret this finding as reflect-

ing the relevance of the multivariate information for forecasting output growth, specifically in

terms of capturing negative serial correlation at long horizons that is not captured by a typical

univariate time series model.8

However, Evans and Reichlin (1994) also acknowledge that estimates of trend and cycle

are sensitive to sampling error in finite samples. In particular, they note that the variance of

the BN trend should be invariant to the information set in theory, but is not in practice due

to large sampling error when estimating highly-parameterized models. Meanwhile, even given

the same information set, they find that the amplitude of the BN cycle is sensitive to model

specification, especially lag length. The general issue is that including more information in

a forecasting model estimated by least squares or maximum likelihood in a finite sample will

mechanically increase the implied predictability of output growth and, therefore, the amplitude

of the BN cycle according to Proposition 1 in Evans and Reichlin (1994). This problem explains

why Evans and Reichlin (1994) and others who consider the multivariate BN decomposition

typically keep the number of variables in the information set relatively small and rely heavily

on Granger causality tests to justify inclusion of variables even though the tests can suffer from

7In related work, Kamber and Wong (2018) use this approach to determine the roles of foreign and domestic
shocks in driving both trend and cycle of inflation in small open economies using a block exogeneity assumption
for the foreign variables.

8This interpretation is directly supported by the findings in Kamber et al. (2018) that imposing a low signal-
to-noise ratio in terms of the variance of trend shocks as a fraction of the overall forecast error variance restricts
a univariate model to imply negative serial correlation and produces a BN cycle estimate of the U.S. output
gap with large amplitude and positive association with NBER reference cycles.
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low power in finite samples and variables could contain relevant information even if they do

not directly Granger cause output growth, as discussed in the previous section.

Here, we propose how to address practical concerns about overfitting in finite samples when

estimating large models to ensure inclusion of all relevant information. In particular, we are

motivated by the literature on using shrinkage priors in Bayesian VARs (BVARs) for forecasting

going back to Litterman (1986) and Robertson and Tallman (1999), but especially more recent

studies on estimating large systems corresponding to entire datasets, such as Banbura et al.

(2010). Building on these studies, we employ a Minnesota-type shrinkage prior with a key

hyperparameter that we calibrate to minimize the pseudo-out-of-sample forecast error variance

for our target variable yt.

The implementation of our shrinkage prior is best illustrated by directly considering the

VAR(p) for the demeaned vector of variables, ∆x̃t ≡∆xt − µ:

∆x̃t = Φ1∆x̃t−1 + . . .+ Φp∆x̃t−p + et

=

[
Φ1 Φ2 . . .Φp

]


∆x̃t−1

∆x̃t−2

...

∆x̃t−p


+ et

=


φ11
1 . . . φ1n

1 φ11
2 . . . φ1n

2 . . . . . . φ1n
p

...
. . .

...
...

. . .
...

. . . . . .
...

φn11 . . . φnn1 φn12 . . . φnn2 . . . . . . φnnp





∆x̃t−1

∆x̃t−2

...

∆x̃t−p


+


e1,t
...

en,t

 , (11)

where E(e′tet) = Σ and E(e′tet−i) = 0 ∀i > 0. The use of demeaned observations ∆x̃t is

equivalent to setting a flat prior on the unconditional means. Shrinkage is then applied to the

slope coefficients using a Minnesota-type prior specification. In particular, letting φjki denote

the slope coefficient of the ith lag of variable k in the jth equation of the VAR in equation (11),
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we set the prior means and variances of the slope coefficients as follows:

E[φjki ] = 0 (12)

V ar[φjki ] =


λ2

i2
, j = k

λ2

i2
σ2
j

σ2
k
, otherwise,

(13)

where the degree of shrinkage is governed by the hyperparameter λ, with λ → 0 shrinking

to the assumption that the variables in the VAR are independent white noise processes or,

equivalently for all of the differenced variables in the VAR, independent random walk processes

in levels. However, given λ > 0, the prior is not dogmatic and, following standard results for

Bayesian estimation of regression models (e.g., see Koop, 2003), the posterior will converge

asymptotically to the population parameters assumed in the analysis in the previous section.9

Following the standard Minnesota prior structure, the factor 1/i2 shrinks coefficients at longer

lags closer to zero. The variances σ2
j and σ2

k are set to the variances of residuals from AR(4)

models estimated using least squares for the corresponding variables as per the usual practice

(e.g., Banbura et al., 2010; Koop, 2013).

In terms of setting the shrinkage hyperparameter λ, we are motivated by methods in previous

studies on forecasting with large BVARs that generally imply more shrinkage – i.e., setting λ

closer to zero – as the number of variables in the model increases. The basic idea is to avoid

overfitting in finite samples as the number of parameters in the VAR proliferates with the

number of variables. Banbura et al. (2010) suggest choosing λ so as to match the in-sample

fit of a large model with that of a smaller 3-variable system based on least squares, Giannone

et al. (2015) suggest placing a hierarchical prior on λ and directly estimating it, while Carriero

et al. (2015) suggest choosing λ to maximize the marginal data density of the model. The first

approach is very application-specific in terms of the choice of the smaller 3-variable system,

although we draw from this general idea by choosing λ to maximize the fit of a particular target

9One possible concern is that the shrinkage to random walk processes is so strong that there is a significant
downward bias in the variance of the estimated cycle for the target variable. To address this, we consider a
modification of the Minnesota prior in the online appendix that shrinks to a small signal-to-noise ratio in terms
of the variance of trend shocks as a fraction of the overall forecast error variance that is consistent with what was
found in the univariate analysis of Kamber et al. (2018) rather than the larger value of 1 implied by a random
walk. We find that this modification has virtually no impact on the estimated cycle in our empirical application,
including when considering as many as 138 variables, suggesting that, even with small λ, the standard Minnesota
prior is diffuse enough that it is dominated by the likelihood for the implied signal-to-noise ratio. See the online
appendix for full details.
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variable rather than the fit of the entire system, which is the implicit goal of the second and

third approaches. The problem with focusing on the fit of the entire system is that it leads

the BN cycle to always be sensitive to the size of the model. Intuitively, as the number of

variables increases, relatively less weight is put on the fit of the target variable, causing the BN

cycle to change even as extraneous information is added to the system. Meanwhile, we focus

on fit in terms of point forecasts, while the second and third approaches are technically related

to density forecasts, although point and density forecast accuracy are often closely related in

practice. Our focus on point forecast accuracy is consistent with the definition of the BN

decomposition in terms of a long-horizon point forecast.

The specifics of our approach are that we conduct numerical optimization to find the λ that

minimizes the one-step-ahead root mean squared forecast error (RMSFE) for the target variable

yt over an evaluation sample using pseudo-real-time estimation based on an expanding window

starting with a particular initial fraction of the full sample.10 In addition to generally providing

more shrinkage as the number of variables included in the model increases, our focus on pseudo-

out-of-sample RMSFE serves another purpose within the context of performing a trend-cycle

decomposition with the BN decomposition. In particular, Nelson (2008) argues that an AR(1)

model of output growth is a sensible choice for performing a BN decomposition for aggregate

output because, while extremely parsimonious, it produces comparatively good out-of-sample

forecasts. Thus, we view a competitive out-of-sample forecast for output growth relative to

a univariate AR(1) model as crucial to address Nelson’s critique of standard approaches to

trend-cycle decomposition such as the HP filter that have implicit out-of-sample forecasts of

output growth that perform much worse (e.g., see Kamber et al., 2018).

Conditional on λ and the assumption of Normality for the variables, the calculation of

posterior moments for the slope coefficients is straightforward, as the natural conjugacy of the

prior implies that we can implement estimation using least squares with dummies observations

(e.g., Del Negro and Schorfheide, 2011; Woźniak, 2016). For brevity, we relegate these details

to the online appendix.

10For our application, we start our recursive estimation with the initial 20 years of data (roughly one-third
of the 230 quarterly observations) and use the remaining almost 40 years of data for evaluation of the RMSFE,
although we note that the results for our benchmark model are quite robust to an initial sample as short as the
first 10 years of data and the remaining almost 50 years of data used for evaluation. We also note that λ can be
determined by a simple grid search, which we do in our application in order to report how the RMSFE changes
for different values of the hyperparameter. However, we generally recommend numerical optimization, as it is
much faster.
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4 Application to the U.S. Output Gap

For our empirical application, we consider a dataset with 138 variables covering various aspects

of the U.S. economy. In our benchmark model, we focus on the following 23 variables: the

oil price, real GDP, the CPI, the unemployment rate, hourly earnings, the fed funds rate,

stock prices, the slope of the yield curve, GDP deflator, employment, personal income, real

PCE, industrial production, capacity utilization, housing starts, producer price index for all

commodities, PCE deflator, hours worked, nonfarm real output per hour, total reserves, non-

borrowed reserves, real M1, and real M2. This choice of variables is informed by the 20-variable

model in Banbura et al. (2010), which in turn was informed by an influential monetary VAR

study by Christiano et al. (1999). In particular, Banbura et al. (2010) suggest that their

medium-sized 20-variable model covers a sufficiently broad set of information for macroeconomic

forecasting purposes and so we believe it serves as a reasonable starting point for a model which

should contain most, if not all, of the relevant information for estimating the output gap via

a multivariate BN decomposition. However, for completeness and comparability to the larger

BVAR in Banbura et al. (2010), as well as FAVARs (e.g., Bernanke et al., 2005), we also consider

a model with the full 138 variables in the dataset, where many of the additional variables are

subcomponents of the 23 variables in our benchmark model. All of the raw data are sourced

from IFS and FRED and considered at a quarterly frequency for a sample period covering

1959-2016. Definitions and details of the data are available in the online appendix.

We take natural logarithms of the data when appropriate and then differences if either a unit

root test cannot reject at a 5% level of significance or a t-test can reject a constant mean across

the first and second halves of the sample at a 10% level of significance.11 We transform the

data in this way because stationarity is necessary to construct BN trends and cycles following

the method described in Section 2.12 All series, once transformed to be stationary, are backcast

using a sample average so as to keep the initial observations as part of the estimation sample

from 1959Q3 to 2016Q4. Unless otherwise noted, the lag length is always set to p = 4, as is

11This relatively simple approach to addressing possible structural change is for convenience given the large
number of variables under consideration. However, it would certainly be possible to consider more formal tests
for structural breaks at unknown breakpoints and adjust series accordingly. Meanwhile, we consider a possible
break in mean of real GDP growth and other variables as a robustness check in Section 5 below.

12Preliminary analysis showed that, despite shrinkage to white noise processes, incorporating very persistent
variables in the BVAR, including those with apparent large shifts in their level, results in BN cycles that appear
to drift up or down over rather than reverting to a mean of zero.
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often considered for quarterly data.

Before estimating our 23-variable benchmark model using Bayesian shrinkage, we motivate

our approach by considering the estimated output gap based on the BN decomposition using

least squares estimation of smaller models.13 In particular, Figure 1 plots the estimated output

gap for the cases of a univariate AR model of output growth, a bivariate VAR model of output

growth and the unemployment rate, and a four-variable VAR model of output growth, the

unemployment rate, CPI inflation, and the growth rate of industrial production. Consistent

with the findings in Evans and Reichlin (1994), the inclusion of multivariate information serves

to capture negative serial correlation in output growth at longer horizons and leads to more

intuitive estimates of the output gap that are positively associated with NBER reference cycles.

However, it is notable just how sensitive the estimates are to the information included in the

forecasting model, with the amplitude of the estimated output gap increasing substantially as

more information is added. This result could be because, as we will see with our analysis below,

the unemployment rate and CPI inflation are particularly important conditioning variables for

estimating the output gap. But Proposition 1 in Evans and Reichlin (1994) also means that the

amplitude of the BN cycle for the target variable will necessarily increase in a purely mechanical

way when more variables are added to the forecasting model given least squares estimation in

finite samples. Thus, some of the increase in amplitude that can be seen for additional variables

in Figure 1 is likely to be overstated due to sampling error. At the same time, it is possible that

other variables are relevant too, but adding them would mechanically increase the amplitude

further due to sampling error.

Our proposed approach attempts to overcome the shortcomings with conducting a multi-

variate BN decomposition using least squares. In particular, we determine which additional

variables should be included by looking at contributions of forecast errors to the BN cycle and

we use Bayesian shrinkage to avoid overfitting when estimating models large enough to include

many possible sources of information. To begin, Figure 2 plots the estimated output gap for

our benchmark model, along with 90% confidence bands calculated using the approach for the

BN decomposition in Kamber et al. (2018). The output gap is positively associated with NBER

reference cycles and tends to be most significantly different from zero during recessions and the

13Least squares estimation is equivalent to maximum likelihood under an assumption of Normality of the
variables that is also maintained when conducting the Bayesian estimation.
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ends of expansions.14 Despite considering 23 variables in our benchmark BVAR, the amplitude

of the estimated output gap is reasonably similar to that of the four-variable case in Figure 1

based on least squares rather than being much larger, as would be the case using least squares

instead of Bayesian shrinkage.

An immediate question arises as to whether all 23 variables in the benchmark model con-

tain relevant information. To answer this question, we consider the contributions of different

forecast errors to the estimated output gap based on the formula given in equation (8). Figure

3 reports the standard deviations of these contributions in order to measure the relevance of

different sources of information in the forecasting model. The first thing to notice is that a

number of variables appear to contain more information about the output gap than output

growth itself. This directly explains why the estimated output gap in Figure 2 is so different

than the univariate case in Figure 1. The most important conditioning variables are the unem-

ployment rate and CPI inflation that were also considered in the multivariate models in Figure

1. However, other variables appear relevant too, especially real PCE, housing starts, the federal

funds rate, real M1, and stock prices.

To confirm the relevance of different sources of information identified by our approach, we

also consider an eight-variable BVAR that includes the seven most informationally-relevant con-

ditioning variables implied by Figure 3, in addition to output growth itself. For completeness,

we also consider a 138-variable BVAR that includes our whole dataset to see if we have omitted

any important information in our benchmark model. Finally, we consider what happens if we

drop the most relevant conditioning variable, the unemployment rate, from our benchmark

model.

Figure 4 plots the estimated output gap for BVARs with different conditioning variables.

The top panel compares the eight-variable, 23-variable, and 138-variable cases. The estimates

in all three cases are very similar, except for some differences for the 138-variable case post

2008 that we will examine in our robustness analysis below in Section 5. Notably, by dropping

the less informationally-relevant variables from the benchmark model, the estimated output

gap is barely affected. This suggests that our approach to selecting conditioning variables

based on informational relevance works well in practice. Meanwhile, it is not simply the case

14We note that the degree of uncertainty about the exact level of the output gap is consistent with findings
for other measures of the output gap in Garratt et al. (2014).
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that the estimated output gap is so similar across the different information sets due to Bayesian

shrinkage. In particular, the bottom panel of Figure 4 compares the benchmark 23-variable case

with the same model except without the unemployment rate and the results make it clear that

the estimated output gap can be quite sensitive to the omission of even just one conditioning

variable if it contains highly relevant information.15

Figure 5 plots the pseudo-out-of-sample RMSFE for output growth as a function of the

shrinkage hyperparameter λ for the eight-variable, 23-variable, and 138-variable cases. As

expected, our approach produces more shrinkage as the system gets larger, with the λ that

minimizes RMSFE decreasing as more variables are added. Interestingly, the minimum RMSFE

itself does not change much across models and is virtually identical in the 23-variable and

138-variable cases. But, notably, the RMSFE is lower than in the random walk case, which

corresponds to λ = 0 based on a dogmatic Minnesota prior, and the case of an AR(1) model

estimated using least squares for which the RMSFE is given by the horizontal line in Figure 5.

An AR(1) model is notoriously challenging to beat in out-of-sample forecasts of output growth,

as noted in the critique by Nelson (2008) mentioned in the previous section. The fact, then,

that the estimated output gap in Figure 2 is based on a model that performs better than an

AR(1) model in out-of-sample forecasts provides some assurance that it is not spurious.

A related question is whether our estimated output gap is relevant for policy, as well as

how it compares to other measures typically used in a policy environment. To examine this,

we consider the correlations between different measures of the output gap and future values of

important macroeconomic variables. In particular, a relevant output gap should have a negative

relationship with future output growth and a positive relationship with future inflation. We

find that our estimated output gap has a correlation of -0.44 with output growth over the

subsequent four quarters (i.e., corr(ct, yt+4 − yt), where ct is the BN cycle for our benchmark

model and yt is the natural logarithm of quarterly real GDP). The corresponding correlations

for the CBO output gap, a one-sided HP filter, and the Hamilton (forthcoming) filter are -0.18,

0.18, and 0.00, respectively. Thus, our output gap performs best, despite the CBO output gap

in particular being a revised measure, with revisions likely influenced by realized values of future

output growth.16 Consistent with the critique of the HP filter by Hamilton (forthcoming), the

15This finding suggests that it is the inclusion of key informational variables for the BN cycle of the target
variable that matters, not the size of the information set per se.

16To understand the problem with using a revised measure for this evaluation, note that the standard two-
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output gap based on his approach performs better than the one-sided HP filter measure of

the output gap. However, it does not provide any guidance on the future direction of real

activity for the economy that one would expect an accurate measure of the output gap to do.

At the same time, our measure is explicitly constructed based on optimizing (one-step-ahead

pseudo-out-of-sample) forecast accuracy for output growth, so the strong negative correlation

with future output growth in our case is perhaps not so surprising. However, our estimated

output gap also has a correlation of 0.24 with inflation over the subsequent four quarters (i.e.,

corr(ct, pt+4 − pt), where pt is the natural logarithm of the CPI) compared to corresponding

correlations for the CBO output gap, a one-sided HP filter, and the Hamilton filter of 0.28,

-0.03, and 0.07, respectively. That is, our approach does almost as well as the CBO output

gap that is, again, a revised measure and much better than the one-sided HP filter and the

Hamilton filter.17 Taken together, these correlations suggest the output gap estimated using a

BVAR provides a useful measure for monitoring the stance of the economy in terms of how it

relates to future output growth and inflation.

5 Robustness

In this section, we consider the robustness of our empirical results to accounting for possible

structural change in the long-run growth rate of the U.S. economy and to an alternative measure

of aggregate economic activity, with a particular focus on understanding the behavior of the

output gap in the Great Recession and its immediate aftermath. We also consider the robustness

of our approach to possible misspecification of the size of a system according to empirically-

motived Monte Carlo simulations.

First, recall that Figure 4 in the previous section suggests that the estimated output gap

sided HP filter also produces a measure of the output gap that is mechanically influenced by realized values of
future output growth. It has a correlation of -0.52 with future output growth, but this is clearly spurious in the
sense that it must reflect a ‘look-ahead bias’ from being influenced by realized values of future output growth
in its calculation given that the one-sided HP filter output gap has a correlation of 0.18 with future output
growth.

17As before, the influence of realized values of future output growth in driving a spurious correlation can be
seen by comparing the correlation for the standard two-sided HP filter, which is 0.26, with the correlation of
-0.03 for the one-sided HP filter. The bandpass filter is also two-sided and the correlations of its measure of the
output gap with future output growth and future inflation are very similar to those for the two-sided HP filter
at -0.54 and 0.32, respectively. A full analysis of real-time out-of-sample forecasting performance of different
measures of the output gap such as in Guérin et al. (2015) and Kamber et al. (2018) would be worth exploring,
but is left to future research given challenges in accounting for data revisions for such a large dataset.
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is not completely robust to the size of the system during the Great Recession, although it is,

perhaps surprisingly, always smaller in magnitude than in the 1981-82 recession. In a univariate

setting, accounting for a break in long-run output growth around the Great Recession has been

shown to significantly alter inference about the output gap based on long-run forecasts (e.g., Eo

and Morley, 2017; Kamber et al., 2018). Thus, we check if this is also the case in a multivariate

setting, with the estimates across different-sized systems possibly influenced to differing degrees

by a failure to account for structural change.

For our estimation sample, Bai and Perron (2003) procedures suggest a significant break in

the unconditional mean of output growth estimated in 2006Q2. To account for this break, we

allow for a one-time break in the mean of all variables in each BVAR in 2006Q2. To the extent

that other variables share a common break with output growth, this will be taken into account,

while variables without such a break will be little affected by allowing for a redundant break

in mean in estimation.18

Figure 6 plots the estimated output gap when allowing for a structural break in 2006Q2.

The top panel compares the estimated output gap for a 23-variable BVAR allowing for a break

to the benchmark case without a break presented in the previous section. The estimates are

reasonably robust, although the amplitude is a bit larger when allowing for a break, especially

in the latter half of the sample. Meanwhile, the bottom panel compares the estimated output

gaps for the eight-variable, 23-variable, and 138-variable cases allowing for a structural break

in each case. Notably, the estimated output gap is more robust across all three cases post 2008

than in in Figure 4, suggesting that a failure to account for structural change could help explain

the differences for the 138-variable case reported in the previous section.

Notably, however, the estimated output gap remains smaller in magnitude in the Great

Recession than in the 1981-82 recession even when accounting for a structural change in long-

run growth. One possibility is that this result could reflect measurement issues with real GDP

that may have been particularly severe around the Great Recession and may be mitigated by

considering a measure of real GDI instead (see, for example, Nalewaik, 2010). To check this, we

construct real GDI using nominal GDI and the GDP deflator from FRED for the same sample

period as the other series and apply our approach to estimate the output gap using real GDI

18We leave a more in-depth analysis of structural breaks in a multivariate setting to future research.
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instead of real GDP.19

Figure 7 plots the estimated output gap using real GDP versus real GDI for the benchmark

BVAR specification. In terms of the shape of the output gap, the estimates are reasonably

robust across the two measures. However, the amplitude of the estimated output gap is a

bit larger in the case of real GDI, suggesting via Proposition 1 in Evans and Reichlin (1994)

that it is somewhat more closely related to the conditioning variables in our benchmark model,

which is consistent with the general findings in Nalewaik (2010) about GDI. Also, the estimated

output gap is larger in magnitude in the Great Recession when using real GDI. However, we

note that it is still not as large in magnitude as in the 1981-82 recession.

To understand the possibly surprising, but seemingly robust result about the relative mag-

nitudes of the output gap in 1981-82 versus the Great Recession, we consider a historical

decomposition of trend growth based on the formula given in equation (10). The smaller mag-

nitude of the estimated output gap in 2007-09 despite the larger drop in log output compared

to the 1981-82 recession directly corresponds to the idea that the trend fell by more in the

Great Recession, consistent with the assessment by the President of the Federal Reserve Bank

of St. Louis, James Bullard, that the Great Recession resulted in large permanent decreases in

output that cannot be expected to be reversed (see Bullard, 2012). Meanwhile, according to the

historical decomposition, the large decline in trend in the Great Recession can be substantially

accounted for by large negative forecast errors for real PCE growth that were less prominent

in the 1981-82 recession.20

Figure 8 presents the results on the role of consumption in explaining the differences in

trend growth between the early 1980s and the post-2008 period. The top panel reports the

change in trend output (cumulated over time) that is accounted for by the forecast errors for

real PCE growth, comparing two periods, 1980Q1-1983Q1 and 2008Q1-2013Q4.21 Evidently,

the forecast errors for consumption only lower the estimate of trend output in the early 1980s

by less than -0.5%. By contrast, the forecast errors for consumption lower the estimate of

19The FRED mnemonic for real GDI is A261RX1Q020SBEA. The ADF and structural break test results are
the same for real GDI as for real GDP.

20As discussed in Section 2, this is not a structural decomposition because forecast errors can be correlated
across variables. However, to the extent that a basic version of the permanent income hypothesis holds, aggregate
consumption will follow a random walk and shocks to it would correspond to shocks to permanent income. Thus,
we can interpret the differences in trend growth across recessions as possibly being due to differences in shocks
to permanent income.

21The estimates are based on the benchmark model for real GDP in the previous section, but they are largely
robust to the other models, accounting for a structural break in 2006, or using real GDI.
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trend output by about 2% in the post-2008 period. To help see what is going on, the bottom

panel plots consumption growth during the two time periods. Consumption growth remained

sluggish throughout the Great Recession compared to the early 1980s, when a sharp fall in

the consumption growth rate in 1980Q2 was immediately reversed in the following quarter and

consumption growth was actually positive for most of the 1981-82 recession.

The final robustness issue that we consider is what happens if the size of the system is

misspecified. In particular, we conduct empirically-motived Monte Carlo simulations based on

three DGPs corresponding to i) an estimated univariate AR model of U.S. output growth using

Bayesian shrinkage, ii) our estimated eight-variable BVAR, and iii) our estimated benchmark

23-variable BVAR. We generate 1000 artificial datasets for each of the three DGPs of length

T = 230, consistent with the length of the sample in our empirical analysis. The true output

gap is defined as the BN decomposition of output based on the population parameters for a

given DGP. For each artificial dataset, we estimate univariate and multivariate models using

least squares and Bayesian estimation. In each case, we estimate the output gap via the BN

decomposition based on the estimated parameters. For each draw, we calculate the root mean

squared error (RMSE) of the estimated output gap relative to the true cycle. For each DGP, we

therefore consider one correct specification in terms of the number and set of variables and two

other specifications that do not coincide with the number or set of variables in the underlying

DGP.22

Table 1 reports the results for our Monte Carlo analysis. The top panel (a) presents the

mean and standard deviation of the RMSEs across draws in each case of estimated model size

for a given DGP. The bottom panel (b) presents the proportion of Monte Carlo draws where

our BVAR approach has a lower RMSE compared to estimates based on least squares. In every

case, Bayesian estimation is more accurate than least squares, although the differences increase

with the size of the system and the size of the estimated model. In cases where the size of the

model is correctly specified (i.e., the diagonals in both panels (a) and (b)), it is straightforward

to see that the differences in mean and standard deviation of the RMSE increase with the

22For variables that do not feature in the underlying DGP, we use historical realized values from our dataset
in our empirical analysis as the additional data considered when estimating larger models for the Monte Carlo
analysis. For example, for our eight-variable DGP, we use the eight simulated series for the variables in the
DGP and the 15 additional historical data series for the variables that are not in the DGP when estimating a
23-variable model. By construction, the additional variables are extraneous and will be irrelevant in population,
but will lead to sampling error in finite-sample estimation.
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number of variables/parameters, with the mean RMSE twice as large for least squares than

Bayesian estimation in the 23-variable case and the BVAR producing a more accurate estimate

of the output gap more than 99% of the time. Notably though, Bayesian shrinkage is not only

useful when the size of the model is correctly specified, but also when it is not (i.e., the off-

diagonals in both panels (a) and (b)). When the model size is misspecified, our Monte Carlo

results suggest that shrinkage still helps keep the estimate of the output gap comparatively

accurate. In particular, we find that, under misspecification, our approach produces a more

accurate estimate of the output gap between 98-100% of the time when the estimated model is

too large and between 60-81% of the time when the estimated model is too small. Thus, there

is possibly some justification for estimating a larger BVAR than might be necessary, as we may

have done with our 23-variable benchmark model in our empirical application. In particular,

the mean RMSEs for the BVARs in our Monte Carlo analysis are very similar for eight- and

23-variable models given one- and eight-variable DGPs, while it is, of course, lower for the

23-variable DGP.

6 Conclusion

In this paper, we have shown how to apply the Beveridge-Nelson decomposition to obtain esti-

mates of trend and cycle using large vector autoregressions estimated with Bayesian shrinkage.

We have also shown how to account for and interpret the various sources of multivariate in-

formation contributing to the estimates of trend and cycle. In our empirical application, we

present estimates of the U.S. output gap based on information sets containing as many as

138 variables. We find that the unemployment rate, inflation, and, to a lesser extent, housing

starts, aggregate consumption, stock prices, real money balances, and the federal funds rate

contain relevant information for estimating the U.S. output gap. Our findings are robust to

consideration of structural change and using a real GDI measure of aggregate output. Monte

Carlo analysis suggests that the Bayesian approach produces estimates of the cycle that are

closer to population values in finite samples than using least squares and that are more robust

to misspecification of the relevant information set.

We view two advantages of the approach proposed in this paper that motivate future ex-

tensions and applications. The first advantage is that casting the detrending problem within a
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regression framework allows us to utilize complicated datasets for estimating trend and cycle.

In particular, many time series problems can naturally be cast into the vector autoregres-

sions considered in this paper. For example, policy institutions often construct an output gap

measure by monitoring a very broad set of data at differing frequencies. One could cast the

problem into a vector autoregression with mixed frequencies and thus allow information from

monthly data to directly enter the problem of nowcasting the output gap, even though real

GDP is often only available at a quarterly frequency. Likewise, large vector autoregressions

with time-varying parameters (e.g., Koop and Korobilis, 2013) or combinations of output gaps

for different models (e.g., Morley and Piger, 2012; Garratt et al., 2014; Guérin et al., 2015)

could be considered. Another potential extension is joint detrending. Although we only target

a single variable in order to estimate the output gap, it would be reasonably straightforward

to modify our approach to target multiple variables at once in order to obtain estimates of,

say, the natural rate of interest, trend inflation, and the natural rate of unemployment, in

addition to the output gap, within a unified and consistent multivariate framework. A second

advantage of our approach is the ability to interpret trend and cycle by appealing further to

tools from the well-developed literature on structural vector autoregressions. This would allow

us to meaningfully discuss shocks driving the trend and cycle and to attribute causality. The

standard frameworks of trend-cycle decomposition using time series methods like unobserved

components models can struggle to attribute causality, in addition to being more difficult to

estimate than the models we propose, especially given large information sets. For example,

Kamber and Wong (2018) employ the methods introduced in this paper to estimate the role

of foreign shocks in driving trend inflation and the inflation gap for a number of small open

economies. One could similarly use the tools we introduce in this paper to answer relevant

policy questions such as what drives low neutral interest rates or what drives financial cycles.

However, we leave this analysis to future research.
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Table 1: Monte Carlo Results

(a) Mean and standard deviation of RMSEs
Estimated Model Size:

1 variable 8 variables 23 variables

1 variable Shrinkage 0.30 1.18 1.03
(0.171) (0.682) (0.518)

OLS 0.33 2.26 4.54
(0.231) (1.011) (2.221)

8 variables Shrinkage 1.45 0.81 0.82
DGP: (0.198) (0.409) (0.355)

OLS 1.48 1.03 1.66
(0.231) (0.553) (0.684)

23 variables Shrinkage 1.34 0.73 0.64
(0.194) (0.379) (0.366)

OLS 1.38 0.95 1.28
(0.234) (0.538) (0.569)

(b) Proportion of Monte Carlo Draws RMSEShrinkage < RMSEMLE

Estimated Model Size:
1 variable 8 variables 23 variables

1 variable 0.53 0.98 1.00
DGP: 8 variables 0.60 0.74 0.97

23 variables 0.67 0.81 0.99

Notes: Root mean squared errors (RMSEs) are calculated for estimates in comparison to the
true output gap for a given simulation under the respective DGP. Estimated model size indicates
the number of variables in the information set used to estimate the VAR. The three DGPs
contain one, eight, and 23 variables, respectively. Panel (a) presents the mean and standard
deviation (in parentheses) of the RMSEs across 1000 Monte Carlo draws. Shrinkage and OLS
refer respectively to using our procedure or least squares to estimate the VAR. Panel (b) counts
the proportion of Monte Carlo draws where shrinkage produces an output gap that has a lower
RMSE relative to the true output gap compared to estimating the VAR using least squares.
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Figure 1: Estimated U.S. Output Gap from Univariate and Multivariate BN Decompositions

Notes: Units are 100 times natural log deviation from trend. Shaded bars correspond to NBER
recession dates. The output gaps are based on a BN decomposition for various forecasting
models estimated using least squares. ‘Univariate’ refers to the estimated output gap for an
AR(4) of output growth. ‘Two Variable VAR’ refers to the estimated output gap for a bivariate
VAR(4) with output growth and the unemployment rate. ‘Four Variable VAR’ refers to the
estimated output gap for a four-variable VAR(4) with output growth, the unemployment rate,
the growth rate of industrial production, and quarterly CPI inflation.

26



Figure 2: Estimated U.S. Output Gap for Benchmark BVAR

Notes: Units are 100 times natural log deviation from trend. The dotted lines indicated the
bounds of the 90% credible set, calculated using the approach detailed by Kamber et al. (2018).
Shaded bars correspond to NBER recession dates.
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Figure 3: Standard Deviations of Informational Contributions

Notes: Units are standard deviations. Contributions to the estimated output gap for each
variable are calculated using equation (8). Output growth and the variables with the seven
highest shares are highlighted in black.
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Figure 4: Estimated U.S. Output Gap for Various-Sized BVARs

Notes: Units are 100 times natural log deviation from trend. Shaded bars correspond to NBER
recession dates.
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Figure 5: One-Step-Ahead Pseudo-Out-of-Sample Root Mean Square Forecast Error for
Various-Sized BVARs

Notes: The horizontal axis represents the tightness of the prior on the hyperparameter λ, with
lower values corresponding to a tighter prior. The vertical axis represents the one-step-ahead
pseudo-out-of-sample root mean square forecast error. ‘8 variables’, ‘23 variables’, and ‘138
variables’ refer to the size of the various BVARs. The horizontal line is the one-step-ahead
pseudo-out-of-sample root mean square forecast error based on an AR(1) model of output
growth estimated by least squares.
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Figure 6: Estimated U.S. Output Gap Allowing for Break in Long-Run Growth

Notes: Units are 100 times natural log deviation from trend. Shaded bars correspond to NBER
recession dates. The timing of a break in 2006Q2 is based on the estimated date according to
Bai and Perron (2003) procedures.
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Figure 7: Estimated U.S. Output Gap Using Real GDP versus Using Real GDI

Notes: Units are 100 times natural log deviation from trend. Shaded bars correspond to NBER
recession dates. Real GDI is calculated using nominal GDI and the GDP deflator.
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Figure 8: Role of Aggregate Consumption in Accounting for the Estimated U.S. Output Gap

Notes: Cumulative change in trend output accounted for by aggregate consumption is in terms
of 100 times natural logs. Shaded bars correspond to NBER recession dates. Real personal
consumption expenditure is plotted as a quarterly percent change.
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A1 Data

IFS in the mnemonic column refers to a series being sourced from the International Financial Statistics. Otherwise, the data are sourced from
the Federal Reserve Economic Data (FRED) and the FRED mnemonic is provided. The “Adjust” column refers to any data transformations:
‘ln’ indicates natural logarithms have been taken and ‘∆i’ indicates the variable has been differenced i times. Differencing is conducted if a Chow
test for a change in mean from the first half to the second half of the sample is significant at the 10% level and/or an augmented Dicky-Fuller
test rejects a unit root at the 5% level. An ‘x’ in the ‘BM’ column indicates that a variable is included in the 23-variable benchmark BVAR.

Series Mnemonic Adjust BM

U.S.: Commodity Price: W Texas Interm Spot Price (US$/Barrel) IFS ln, ∆ x

Real Gross Domestic Product, 3 Decimal GDPC96 ln, ∆ x

Real Personal Consumption Expenditures PCECC96 ln, ∆ x

Personal Consumption Expenditures: Durable Goods PCDGx ln, ∆

Personal Consumption Expenditures: Services PCESVx ln, ∆

Personal Consumption Expenditures: Nondurable Goods PCNDx ln, ∆

Real Gross Private Domestic Investment, 3 decimal GPDIC96 ln, ∆

Fixed Private Investment FPIx ln, ∆

Gross Private Domestic Investment: Fixed Investment: Nonresidential: Equipment Y033RC1Q027SBEAx ln, ∆

Private Nonresidential Fixed Investment PNFIx ln, ∆

Private Residential Fixed Investment PRFIx ln, ∆

Shares of gross domestic product: Gross private domestic investment: Change in private inventories A014RE1Q156NBEA ∆

Real Government Consumption Expenditures and Gross Investment GCEC96 ln, ∆

Real Government Consumption Expenditures and Gross Investment: Federal A823RL1Q225SBEA ln, ∆

Federal Government Current Receipts FGRECPTx ln, ∆

State and Local Consumption Expenditures & Gross Investment SLCEx ln, ∆2

Real Exports of Goods and Services, 3 Decimal EXPGSC96 ln, ∆

Real Imports of Goods and Services, 3 Decimal IMPGSC96 ln, ∆

Real Disposable Personal Income DPIC96 ln, ∆ x

Nonfarm Business Sector: Real Output OUTNFB ln, ∆

Business Sector: Real Output OUTBS ln, ∆

Industrial Production Index INDPRO ln, ∆ x

Industrial Production: Final Products (Market Group) IPFINAL ln, ∆

Industrial Production: Consumer Goods IPCONGD ln, ∆
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Industrial Production: Materials IPMAT ln, ∆

Industrial Production: Durable Materials IPDMAT ln, ∆

Industrial Production: Nondurable Materials IPNMAT ln, ∆

Industrial Production: Durable Consumer Goods IPDCONGD ln, ∆

Industrial Production: Durable Goods: Automotive products IPB51110SQ ln, ∆

Industrial Production: Nondurable Consumer Goods IPNCONGD ln, ∆

Industrial Production: Business Equipment IPBUSEQ ln, ∆

Industrial Production: Consumer energy products IPB51220SQ ln, ∆

Capacity Utilization: Manufacturing (SIC) CUMFNS ∆ x

All Employees: Total Nonfarm Payrolls PAYEMS ln, ∆

All Employees: Total Private Industries USPRIV ln, ∆

Civilian Employment Level CE16OV ln, ∆ x

Civilian Labor Force Participation Rate CIVPART ∆

Civilian Unemployment Rate UNRATE x

Unemployment Rate: 16 to 19 years LNS14000012 ∆

Unemployment Rate: 20 years and over, Men LNS14000025 ∆

Unemployment Rate: 20 years and over, Women LNS14000026 ∆

Number of Civilians Unemployed for Less Than 5 Weeks UEMPLT5 ln, ∆

Number of Civilians Unemployed for 5 to 14 Weeks UEMP5TO14 ln, ∆

Number of Civilians Unemployed for 15 to 26 Weeks UEMP15T26 ln, ∆

Number of Civilians Unemployed for 27 Weeks and Over UEMP27OV ln, ∆

Employment Level: Part-Time for Economic Reasons, All Industries LNS12032194 ln, ∆

Business Sector: Hours of All Persons HOABS ln, ∆

Nonfarm Business Sector: Hours of All Persons HOANBS ln, ∆ x

Average Weekly Hours of Production and Nonsupervisory Employees: Manufacturing AWHMAN ln, ∆

Average Weekly Overtime Hours of Production and Nonsupervisory Employees: Manufacturing AWOTMAN ln, ∆

Housing Starts: Total: New Privately Owned Housing Units Started HOUST ln, ∆ x

Privately Owned Housing Starts: 5-Unit Structures or More HOUST5F ln, ∆

Housing Starts in Midwest Census Region HOUSTMW ln, ∆

Housing Starts in Northeast Census Region HOUSTNE ln, ∆

Housing Starts in South Census Region HOUSTS ln, ∆

Housing Starts in West Census Region HOUSTW ln, ∆
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Personal Consumption Expenditures: Chain-type Price Index PCECTPI ln, ∆2 x

Personal Consumption Expenditures Excluding Food and Energy (Chain-Type Price Index) PCEPILFE ln, ∆2

Gross Domestic Product: Chain-type Price Index GDPCTPI ln, ∆2 x

Gross Private Domestic Investment: Chain-type Price Index GPDICTPI ln, ∆

Business Sector: Implicit Price Deflator IPDBS ln, ∆2

Personal consumption expenditures: Goods (chain-type price index) DGDSRG3Q086SBEA ln, ∆

Personal consumption expenditures: Services (chain-type price index) DSERRG3Q086SBEA ln, ∆2

Consumer Price Index for All Urban Consumers: All Items CPIAUCSL ln, ∆ x

Producer Price Index for All Commodities PPIACO ln, ∆ x

Producer Price Index by Commodity Industrial Commodities PPIIDC ln, ∆

Producer Price Index by Commodity for Fuels and Related Products and Power: Crude Petroleum (Domestic Production) WPU0561 ln, ∆

Average Hourly Earnings of Production and Nonsupervisory Employees: Construction CES2000000008x ln, ∆2

Average Hourly Earnings of Production and Nonsupervisory Employees: Manufacturing CES3000000008x ln, ∆2 x

Nonfarm Business Sector: Real Compensation Per Hour COMPRNFB ln, ∆

Business Sector: Real Compensation Per Hour RCPHBS ln, ∆

Nonfarm Business Sector: Real Output Per Hour of All Persons OPHNFB ln, ∆ x

Business Sector: Real Output Per Hour of All Persons OPHPBS ln, ∆

Business Sector: Unit Labor Cost ULCBS ln, ∆

Nonfarm Business Sector: Unit Labor Cost ULCNFB ln, ∆

Nonfarm Business Sector: Unit Nonlabor Payments UNLPNBS ln, ∆

Producer Price Index by Commodity Metals and metal products: Primary nonferrous metals PPICMM ln, ∆

Consumer Price Index for All Urban Consumers: Apparel CPIAPPSL ln, ∆

Consumer Price Index for All Urban Consumers: Transportation CPITRNSL ln, ∆

Consumer Price Index for All Urban Consumers: Medical Care CPIMEDSL ln, ∆

Consumer Price Index for All Urban Consumers: Commodities CUSR0000SAC ln, ∆

Consumer Price Index for All Urban Consumers: Durables CUUR0000SAD ln, ∆2

Consumer Price Index for All Urban Consumers: Services CUSR0000SAS ln, ∆2

Consumer Price Index for All Urban Consumers: All Items Less Food CPIULFSL ln, ∆

Consumer Price Index for All Urban Consumers: All items less shelter CUUR0000SA0L2 ln, ∆

Consumer Price Index for All Urban Consumers: All items less medical care CUSR0000SA0L5 ln, ∆

Average Hourly Earnings of Production and Nonsupervisory Employees: Goods-Producing CES0600000008 ln, ∆2

Consumer Motor Vehicle Loans Owned by Finance Companies, Outstanding DTCOLNVHFNM ln, ∆
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Effective Federal Funds Rate FEDFUNDS ∆ x

3-Month Treasury Bill: Secondary Market Rate TB3MS ∆

6-Month Treasury Bill: Secondary Market Rate TB6MS ∆

1-Year Treasury Constant Maturity Rate GS1 ∆

10-Year Treasury Constant Maturity Rate GS10 ∆

Moody’s Seasoned Aaa Corporate Bond Yield AAA ∆

Moody’s Seasoned Baa Corporate Bond Yield BAA ∆

Moody’s Seasoned Baa Corporate Bond Yield Relative to Yield on 10-Year Treasury Constant Maturity BAA10YM ∆

6-Month Treasury Bill Minus Federal Funds Rate TB6SMFFM ∆

10-Year Treasury Constant Maturity Minus Federal Funds Rate T10YFFM ∆ x

Real St. Louis Adjusted Monetary Base AMBSLREALx ln, ∆

Real M1 Money Stock M1REALx ln, ∆ x

Real M2 Money Stock M2REALx ln, ∆ x

Real MZM Money Stock MZMREALx ln, ∆

Commercial and Industrial Loans, All Commercial Banks BUSLOANSx ln, ∆

Consumer Loans at All Commercial Banks CONSUMERx ln, ∆

Total Nonrevolving Credit Owned and Securitized, Outstanding NONREVSLx ln, ∆

Real Estate Loans, All Commercial Banks REALLNx ln, ∆

Total Consumer Credit Owned and Securitized, Outstanding TOTALSLx ln, ∆

Households and Nonprofit Organizations; Total Assets, Level TABSHNOx ln, ∆

Households and Nonprofit Organizations; Total Liabilities, Level TLBSHNOx ln, ∆

Households and Nonprofit Organizations; Credit Market Instruments; Liability, Level CMDEBT ln, ∆2

Households and Nonprofit Organizations; Net Worth, Level TNWBSHNOx ln, ∆

Households and Nonprofit Organizations; Total Financial Assets, Level TFAABSHNO ln, ∆

Households and nonprofit organizations; real estate at market value, Level HNOREMQ027Sx ln, ∆

Households and Nonprofit Organizations; Total Financial Assets, Level TFAABSHNOx ln, ∆

Shares of gross domestic product: Exports of goods and services B020RE1Q156NBEA ∆

Shares of gross domestic product: Imports of goods and services B021RE1Q156NBEA ∆

Industrial Production: Manufacturing (SIC) IPMANSICS ln, ∆

Industrial Production: Residential utilities IPB51222S ln, ∆

Industrial Production: Fuels IPFUELS ln, ∆

Average (Mean) Duration of Unemployment UEMPMEAN ln, ∆
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Average Weekly Hours of Production and Nonsupervisory Employees: Goods-Producing CES0600000007 ln, ∆

Total Reserves of Depository Institutions TOTRESNS ln, ∆ x

Reserves of Depository Institutions, Nonborrowed NONBORRES ln, ∆ x

5-Year Treasury Constant Maturity Rate GS5 ∆

3-Month Treasury Bill Minus Federal Funds Rate TB3SMFFM ∆

5-Year Treasury Constant Maturity Minus Federal Funds Rate T5YFFM ∆

Moody’s Seasoned Aaa Corporate Bond Minus Federal Funds Rate AAAFFM ∆

Total Consumer Loans and Leases Owned and Securitized by Finance Companies, Outstanding DTCTHFNM ln, ∆

Securities in Bank Credit at All Commercial Banks INVEST ln, ∆

Nikkei Stock Average, Nikkei 225 NIKKEI225 ln, ∆

Nonfinancial Corporate Business; Total Liabilities, Level TLBSNNCBx ln, ∆

Nonfinancial Corporate Business; Nonfinancial Assets, Level TTAABSNNCBx ln, ∆

Nonfinancial Corporate Business; Net Worth, Level TNWMVBSNNCBx ln, ∆

Nonfinancial noncorporate business; total liabilities, Level NNBTILQ027Sx ln, ∆

Nonfinancial noncorporate business; total assets, Level NNBTASQ027Sx ln, ∆

Nonfinancial Noncorporate Business; Proprietors’ Equity in Noncorporate Business (Net Worth), Level TNWBSNNBx ln, ∆

Corporate Net Cash Flow with IVA CNCFx ln, ∆

U.S.: Industrial Share Prices (2010=100) IFS ln, ∆ x
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A2 Bayesian Estimation via Dummy Observations

To conduct Bayesian estimation of the model, we cast the VAR in equation (8) of the manuscript

into a system of multivariate regressions:

Y = Xβ + u, (A1)

where Y = [Y1, . . . ,YT]′, X = [X1, . . . ,XT]′ with Xt = [Y′t−1, . . . ,Y
′
t−p]′, and u = [u1, . . . ,uT]′.

Our prior structure is a Normal-Inverse Wishart prior, which has the form

vec(β)|Σ ∼ N(vec(β0),Σ⊗ Ω0) and Σ ∼ IW (S0, α0), (A2)

where the prior parameters β0, Ω0, S0, and α0 are set to be consistent with equations (9) and

(10) in the manuscript and the expectation of Σ being diag(σ2
1, . . . σ

2
n). The prior from (A2)

can then be implemented by choosing the following dummy observations in order to match the

moments of the prior (see, e.g., Del Negro and Schorfheide, 2011; Woźniak, 2016):

Yd =

(
0np,n

diag(σ1 . . . σn)

)
, Xd =

(
Jp ⊗ diag(σ1 . . . σn)/λ

0n,np

)
, (A3)

where Yd and Xd are dummy observations, Jp = diag(1, . . . p), S0 = (Yd −XdB0)
′(Yd −XdB0),

B0 = (X ′dXd)
−1X ′dYd, Ω0 = (X ′dXd)

−1, and α0 = Td − np, where Td is the number of rows for

both Yd and Xd.
1 The first block of dummy observations places the prior on all of the individual

VAR slope coefficients and the second block imposes the priors on the covariance matrix.

Augmenting the regression in equation (A1) with the dummy observations gives the follow-

ing:

Y∗ = X∗β + u∗, (A4)

where Y∗ = [Y′,Yd
′]′, X∗ = [X′,Xd

′]′ and u∗ = [u′,ud
′]′. Estimating the BVAR then sim-

ply amounts to conducting least squares regression of Y ∗ on X∗. Therefore, the posterior

distribution has the form

vec(β)|Σ,Y ∼ N(vec(β̃,Σ⊗ (X∗′X∗)−1) (A5)

Σ|Y ∼ IW (Σ̃, Td + T − np+ 2), (A6)

where β̃ = (X∗′X∗)−1X∗′Y∗′ and Σ̃ = (Y∗ −X∗β̃)′(Y∗ −X∗β̃).

1Note that because we demean all the variables prior to estimation, we do not include a constant in our
BVAR. Thus the number of parameters in each equation is np, not n× (p + 1).
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A3 Causal Determinants of the U.S. Output Gap and

Trend Growth

The empirical application within the manuscript largely abstracts from causal analysis and

focuses on associating movements in the estimated output gap with different sources of infor-

mation. Here, we outline and conduct a straightforward extension of the main empirical analysis

to demonstrate how to conduct structural analysis by decomposing the estimated trend output

and output gap into identified structural shocks.

We use standard SVAR analysis for two widely-considered structural shocks: a monetary

policy shock and an oil price shock. The monetary policy shock is identified by ordering the

federal funds rate after ‘slow moving’ variables, but before ‘fast moving’ ones in a Cholesky

decomposition. This identification strategy is similar in spirit to work by, inter alia, Christiano

et al. (1999) and Bernanke et al. (2005), where the idea is that financial market variables are in

the fast moving block because they can respond contemporaneously to monetary policy shocks,

while slow moving variables take at least a quarter to respond. The fast moving variables in our

benchmark 23 variable specification are real M1 and M2, stock prices, non-borrowed reserves,

total reserves, and the slope of the yield curve. The oil price shock is identified by drawing from

Kilian and Vega (2011), who show that oil prices do not appear responsive to macroeconomic

news and thus can be taken to be pre-determined. This in essence orders the oil price first

in a Cholesky decomposition and also has precedence in the wider SVAR literature studying

oil price shocks (e.g., see Edelstein and Kilian, 2009; Wong, 2015). Our system is partially

identified in the sense that we only identify two out of 23 potential structural shocks in our

benchmark system and we do not attempt to disentangle any of the remaining 21 unidentified

shocks. However, assumed orthogonality of structural shocks makes this partial identification

possible.

We consider how much a given structural shock has driven the historical BN trend and cycle

by performing a variance decomposition. To set up a variance decomposition for the BN cycle,

we first note that Eet = 0. Working off equation (7) in the manuscript, it can be verified that

the difference between the actual h-step-ahead BN cycle and the conditional expectation of the

BN cycle at time t− 1 is

ct+h − Et−1ct+h =
h∑
i=0

Γi+1Het+h−i (A7)

=
h∑
i=0

Γi+1HAεt+h−i, (A8)

where the second equality follows from the identification associated with the structural shocks
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from the SVAR. Because E(e′tet−i) = 0, i > 0, the total variance can therefore be written as

V ar(ct+h − Et−1ct+h) =
h∑

i=0

Γi+1HΣH′Γi+1
′. (A9)

It follows, then, that a variance decomposition of the h-step-ahead variation in the BN cycle of

the lth-ordered target variable can be calculated using equations (A8) and (A9):

FEV Dc
k,h =

[∑h
i=0 snp,lΓi+1sn,ksn,k

′Hak

]2
snp,l

[∑h
i=0 Γi+1HΣH′Γi+1

′
]

s′np,l

, (A10)

where FEV Dc
k,h is the h-step-ahead share of the variance of the BN cycle of the target variable

due to the kth structural shock that is identified using the kth column, ak, of A. Similarly, to

perform a variance decomposition of trend growth for a target variable, it is straightforward

to verify from equation (9) in the manuscript that the variance of the change in trend can be

written as

V ar(∆τt − Et−1∆τt) = Γ0HΣH′Γ′0 (A11)

and the share of the variance can be similarly decomposed as

FEV Dτ
j =

[∑h
i=0 snp,lΓ0sn,ksn,k

′Hak

]2
snp,l

[
Γ0HΣH′Γ′0

]
s′np,l

. (A12)

Note that due to the random walk trend, the variance of trend is unbounded as the time horizon

goes to infinity. Consequently, a decomposition of the contemporaneous variance of the change

in the trend is sufficient to provide insight into how much of the variation of trend growth is

due to the various identified structural shocks.

Figure A1 presents a variance decomposition of the output gap and output trend growth.

For the output gap, we present the share of monetary policy shocks and oil price shocks at

horizons h = 0, h = 4, and h =∞. Neither the monetary policy shock nor the oil price shock

explain more than 10% of the variance of the output gap at any horizon. While the monetary

policy shock explains about 7% of the variance of the output gap contemporaneously, its share

quickly dissipates and it only explains about 4% of the unconditional variance. Therefore, it

appears that the role of the monetary policy shock in driving the output gap is limited and

relatively short lived. This finding is consistent with the wider SVAR literature, which often

reports that monetary policy shocks explain only a small part of real economic activity. The

oil price shock explains a somewhat larger share at about 10% of the variance of the output

gap over all horizons. Meanwhile, consistent with traditional theories of growth that assume

technology shocks are the main determinant of the long-run level of output, neither of these

shocks explains much of output trend growth, with shares of about 5% for the oil price shock

and less than 4% for the monetary policy shock. Notably, the latter result is reflective of
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the idea of long-run money neutrality, which suggests monetary policy should not have any

permanent effects on the level of output.

Figure A1: Variance Decompositions of Estimated U.S. Output Gap and Output Trend Growth

Notes: Results are for 23-variable benchmark BVAR. Units are percentage of total variation

Although variance decompositions are useful to gain an overall perspective on the relative

importance of shocks, we can also calculate a historical contribution of shocks to the output

gap to better understand specific historical episodes. This analysis is displayed in Figure A2.

For realized monetary policy shocks, we can observe that they explain a large share of the

positive output gap before the 1980 recession, consistent with anecdotal evidence that the Fed

may have been overstimulating the economy in the 1970s. Although we can see that monetary

policy shocks contributed to some of the negative output gap in the early 1980s, consistent

with the Volcker disinflation, the overall output gap in the early 1980s was estimated to be

large and negative, with monetary policy shocks only contributing to part of the negative gap

rather than being the dominant cause. Meanwhile, a recent interpretation of the events leading

to the Great Recession argues that the Fed was perhaps running the economy too hot before

2008 (e.g., see Taylor, 2012). Our historical decomposition does not support this story. We

find that, while monetary policy shocks did contribute modestly to a rising positive output

gap in the early 2000s, this contribution largely turned negative by 2005, while the estimated

output gap continued to increase up until the advent of the Great Recession. Meanwhile, we
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find that realized oil price shocks tend to contribute positively to the output gap when oil

prices are low and contribute negatively when oil prices are high. This can be seen from the

negative contribution of oil price shocks throughout the 2000s and the positive contribution in

the late 1990s. We also observe a positive contribution turning negative around 1990, consistent

with the timing when the First Gulf War caused oil prices to rise from a low starting level.

Furthermore, oil price shocks contributed negatively to the output gap around 1979 and 1980,

consistent with the timing of the Iranian hostage crisis and the start of the Iraq-Iran War.

Overall, we find that the contributions of realized monetary policy and oil price shocks line up

with many well-understood historical events.

Figure A2: Historical Decomposition of the Estimated U.S. Output Gap

Notes: Units are 100 times natural log deviation from trend. Shaded bars correspond to NBER
recession dates.

A4 Prior on the Signal-to-Noise Ratio

For completeness, we discuss how to implement a prior on the implied signal-to-noise ratio

in terms of the variance of trend shocks relative to the variance of forecast errors. Typical

BVAR methods would shrink a variable like log real GDP towards to a random walk process

with an implied signal-to-noise ratio of 1. The underlying idea is that because a random walk
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provides a competitive forecast for many macroeconomic variables, shrinking towards a random

walk balances overfitting, which worsens the forecasting performance of the model, with a more

parsimonious and accurate forecasting model. However, a slight concern is that with larger

models requiring more shrinkage, as shown by Banbura et al. (2010) and our baseline empirical

analysis has shown, there is a possibility that as the number of time series relative to time

series observations gets large, the model shrinks too much towards a random walk, creating an

possible upward bias in the implied signal-to-noise ratio.

If one were concerned about such a possibility, it is possible to consider shrinking the target

variable not towards a random walk, but towards a pre-specified signal-to-noise ratio δ, building

on work by Kamber et al. (2018). To interpret this signal-to-noise ratio, δ = 0.01x implies x% of

the variance of a forecast error for ∆yt is due to permanent shocks to yt. Kamber et al. (2018)

demonstrate how to perform a univariate BN decomposition with a pre-specified δ because

there is a direct mapping from δ to the AR coefficients in an AR(p) model. In particular,

letting ρ be the sum of AR coefficients in an AR(p) regression of output growth, the mapping

between the two is ρ = 1 − 1/
√
δ. In Kamber et al. (2018), the estimation of the output gap

from a univariate AR(p) model of output growth treats ρ as being fixed and so can be viewed

as a dogmatic prior on the signal-to-noise ratio. Here, in the multivariate environment, we

place a prior on δ, but we do not make it dogmatic to allow the multivariate information to

move the posterior away from the prior depending on how well the multivariate information

helps to forecast ∆yt. A prior on δ amounts to placing a prior on the sum of the autoregressive

coefficients in the target variable equation, which we label ρ(δ).

Recalling that ∆yt is the lth variable in our BVAR and letting ρ(δ̄) be the sum of the

autoregressive coefficients in the target variable equation consistent with a pre-specified δ̄.

Implementing the prior on the signal-to-noise ratio implies:

E[

p∑
i=1

βlli ] = ρ(δ̄) (A13)

V ar[

p∑
i=1

βlli ] = χ2, (A14)

where we set δ̄ = 0.25 based on Kamber et al. (2018) and χ = λ/10 to make the prior relatively

informative compared to the usual Minnesota prior. The prior on the signal-to-noise ratio can

be readily implemented using dummy observations. In particular, this will append the rows[
01,l−1 ρ/χ 01,n−l

]
and

[
11,n ⊗

(
01,l−1 1/χ 01,n−l

)]
to the Yd and Xd matrices, respectively.

Figure A3 plots the estimated output gap for the eight-, 23- and 138-variable systems using

the prior on the signal-to-noise ratio, with δ = 0.25, and once again choosing the shrinkage

parameter λ by optimizing on the pseudo-out-of-sample forecast performance. The results are

similar to those in Figure 4 in the main text based on a Minnesota prior, suggesting that the

likelihood dominates the prior on δ, at least for our empirical application. Thus, imposing such

a prior would only matter for smaller samples when wanting to avoid an upward bias in the

implied signal-to-noise ratio.
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Figure A3: Estimated U.S. Output Gap for Various-Sized BVARs with Prior on Signal-to-Noise
Ratio

Notes: Units are 100 times natural log deviation from trend. Shaded bars correspond to NBER
recession dates.
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