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Abstract

Would raising the inflation target require an increase in the nominal interest
rate in the short run? We answer this policy question, first analytically in a
small-scale New Keynesian model with backward-looking components where a
closed-form solution exists, and then in a medium-scale model of Smets and
Wouters (2007) calibrated to the U.S. economy. Our analysis shows that the
short-run comovement between inflation and the nominal interest rate conditional
on changes in the inflation target is more likely to be positive, all else equal,
as the monetary authority reacts less aggressively to the deviation of inflation
from its target. Meanwhile, features of the model that enhance backward-looking
behavior, such as backward price indexation and habit formation in consumption,
are shown to reduce the likelihood of the positive comovement. However, our
investigations reveal that in both models, this positive comovement or so-called
Neo-Fisherism is prevalent across a wide-range of empirically-plausible parameter
values. Using the Smets and Wouters model with a zero lower bound constraint
(ZLB) on the nominal interest rate, we show that raising the inflation target
could be an effective alternative policy framework to reduce the possibility of a
binding ZLB constraint and to mitigate the potentially large output loss.
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1 Introduction

1.1 Overview

Since the 2007-08 global financial crisis (GFC) and the subsequent Great Recession, nominal

interest rates in the U.S. and other developed economies have been persistently lower than

before the GFC. The short-term rates have effectively become constrained again by the zero

lower bound (ZLB) due to the COVID-19 pandemic. Inflation rates, however, have also

continued to be low in these economies and in some inflation targeting economies, have been

below the targets. This low inflation, low interest rate environment presents a challenge

for central banks. When the short-term nominal interest (policy) rate is low, the central

bank’s ability to use its conventional monetary policy tool by cutting its policy rate during a

recession or an economic downturn is more limited. As shown by Kiley and Roberts (2017),

in such an environment the frequency and length of hitting the ZLB on the nominal interest

rate are higher, and this may lead to poorer economic performance associated with inflation

and economic activity being more volatile and systematically falling short of their desirable

levels. To alleviate these concerns, several alternative policy frameworks have been proposed.

One such framework is for an inflation targeting central bank to simply raise its inflation

target, as proposed by Blanchard, Dell’Ariccia and Mauro (2010), Ball (2014), and Krugman

(2014), among others.

Raising the inflation target, especially in a low interest rate environment, in turn poses a

substantive policy question: Does raising the target entail an increase in the nominal interest

rate? This question has an important policy implication because if a higher inflation target

entails a reduction in the nominal rate, policy implemented to avoid the ZLB may, in fact,

result in hitting the ZLB. The answer to this question is relatively clear in the long run.

From the Fisher equation,

it = Etπt+1 + rt (1)

where it is the nominal interest rate, rt is the real interest rate, and Etπt+1 is the one-

period ahead expected inflation rate. The nominal interest rate and expected inflation, and

hence actual inflation, move together one-for-one in the long run insofar as the classical
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dichotomy holds, i.e., the long-run real interest rate is independent of nominal variables and

is solely determined by macroeconomic fundamentals such as the discount factor and long-

run output growth. Building on this long-run relationship, Cochrane (2016) and Williamson

(2016) argue that a central bank can raise inflation even in the short run by setting a higher

interest rate consistent with an inflation target. They dub this property Neo-Fisherism.

In the short run, however, the answer is not so clear-cut. The presence of nominal frictions

such as price and wage rigidities complicates the short-run relationship between the inflation

target, inflation, and the nominal interest rate. The comovement between inflation and the

nominal interest rate may break down, as nominal shocks (e.g., an increase in the inflation

target) have short-run effects on the real interest rate.

1.2 Main findings and contribution

In this paper, we investigate the Neo-Fisherian property, which we define, following Gaŕın,

Lester and Sims (2018), as a positive comovement between the nominal interest rate and

inflation conditional on a change in the inflation target. We do this first analytically within

a small-scale New Keynesian model, where there exists a closed-form solution, and then

numerically in a medium-scale model of the U.S. economy in Smets and Wouters (2007),

containing much richer dynamics. We also use the Smets and Wouters model to assess the

effectiveness of raising the inflation target in the presence of large contractionary shocks

whereby the ZLB on the nominal interest rate may be binding. Our main findings and

contributions are summarized as follows.

First, we investigate the relationship between Neo-Fisherism and the monetary policy

stance, in conjunction with the deep parameters in the small-scale model involving backward-

looking and forward-looking elements. We show that as the monetary authority reacts more

aggressively to the deviation of inflation from its target, inflation and the nominal interest

rate are less likely to comove positively following an increase in the inflation target. In

addition, a positive comovement is less likely as the degree of backward-lookingness in the

model—such as price indexation to past inflation or habit formation in consumption—gets

higher. However, we find that the model is most likely to exhibit Neo-Fisherism for a range

of reasonable structural parameter values unless the monetary authority reacts to inflation
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in an extremely aggressive manner, close to strict inflation targeting. This is true even under

a high degree of backward-lookingness in the model.

The intuition behind this finding can be understood from the Fisher equation (1). When

the target is raised, the real interest rate decreases contemporaneously irrespective of the

value of the inflation reaction coefficient in the policy rule. When the central bank reacts

extremely aggressively to the inflation deviation, e.g., under strict inflation targeting, infla-

tion and expected inflation are largely stabilized around the target level. It follows then,

from (1), that the nominal interest rate is less likely to increase in the short run, in line

with the reduction in the real rate. Allowing for backward-looking elements in the model

also enhances the likelihood of a contemporaneous decrease in the nominal interest rate, as

these elements reduce the change in expected inflation and cause a larger decrease in the

real interest rate following an increase in the inflation target. On the other hand, when

the inflation reaction coefficient is low, e.g., a Taylor-rule coefficient of 1.5, agents expect

inflation to be less stabilized, which implies that expected inflation jumps more following

an increase in the inflation target. This in turn enhances the possibility of short-run co-

movement between inflation and the nominal interest rate. Here, the increase in expected

inflation is sufficiently high to counteract the decrease in the real interest rate. We find that

the upper bound of the inflation reaction coefficient that guarantees Neo-Fisherian results is

considerably larger than most reasonable values found for the U.S. and other economies in

the literature. Thus, standard New Keynesian models with typical parameterizations of a

Taylor-type rule and other standard model equations considered in the literature will most

likely exhibit Neo-Fisherism.

Second, we show that our finding above also translates to the Smets and Wouters (SW)

model, augmented with an inflation target shock. The SW model has much richer dynamics

compared to the small-scale model: it contains rich backward-looking elements such as sticky

nominal price and wage settings with indexation to past inflation, habit formation in con-

sumption, investment adjustment costs, and interest-rate smoothing. Our results show that

the SW model exhibits Neo-Fisherism over a wide range of empirically-plausible parameter

values. Despite the presence of rich backward-looking elements, the positive comovement be-

tween inflation and the nominal interest rate is only reversed for an empirically-implausibly
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large value of the inflation reaction coefficient in the policy rule. Conditional on the values

of the monetary policy rule parameters reported in Smets and Wouters (2007), even full

price indexation to past inflation or full habit formation in consumption cannot break down

Neo-Fisherism.

Third, using the SW model with an explicit ZLB constraint on the nominal interest rate,

we show that raising the inflation target could be an effective policy tool to mitigate the

potentially large output loss arising from a binding ZLB constraint and large contractionary

shocks. We illustrate this using a scenario whereby the economy is hit by a series of large,

contractionary risk-premium shocks. When the inflation target is kept unchanged at its

current level, these shocks cause the ZLB constraint on the nominal rate to be binding for

several periods. On the other hand, the ZLB never binds when the target is raised instead.

The cumulative output gain of raising the inflation target from 2% to 4% per annum is as

much as 47% in our counterfactuals.

1.3 Related literature

Our paper is closely related to several recent studies in the literature.

We contribute to resolving the discrepancy between theoretical and empirical findings on

Neo-Fisherism in New Keynesian models.1 For example, Ireland (2007), Cogley, Primiceri

and Sargent (2010), and Castelnuovo (2012) among others find that a highly persistent or a

permanent change in the inflation target leads to a short-run positive comovement between

inflation and the nominal interest rate, based on estimated models for the U.S. economy

with rich backward-looking elements. Fève, Matheron and Sahuc (2010) also find a positive

comovement based on an estimated New Keynesian model of euro area. Gaŕın, Lester and

Sims (2018) meanwhile argue that a modest, empirically plausible degree of backward-looking

behavior in the NKPC (through ”rule-of-thumb” price setters) can eliminate Neo-Fisherism

using a strict inflation targeting rule, even when the monetary authority raises the inflation

target almost permanently. Our first main finding provides an answer on why they reach

different conclusions. As we discussed above, the strict inflation targeting rule overstates the

1For a recent literature focusing on a liquidity trap, see Schmitt-Grohé and Uribe (2014, 2017) and Bilbiie
(2018).
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role of the backward-looking component in the NKPC in breaking down Neo-Fisherism and

understates the role of the forward-looking effect in inflation expectations formation.

The finding that strict inflation targeting understates the role of forward-looking elements

in inflation expectations formation is also consistent with the implications of Bhattarai, Lee

and Park (2014a), who consider a purely forward-looking New Keynesian model. They find

that inflation almost always overshoots changes in the inflation target for plausible param-

eterizations in the literature. Our findings show that allowing for backward-looking com-

ponents in the model under strict inflation targeting may alter their conclusion. However,

regardless of the existence of backward-looking components, the monetary policy stance af-

fects inflation expectations formation in the same way. The inflation overshooting identified

by Bhattarai, Lee and Park (2014a) is equivalent to the positive comovement between infla-

tion and the nominal interest rate in our paper, given that the nominal interest rate reacts

positively to the inflation gap—the difference between inflation and its target—in the policy

rule. More importantly, they show that a stronger reaction to inflation in a Taylor-type rule

decreases the response of inflation, implying that Neo-Fisherian results are less likely.

Finally, we also contribute to the literature on alternative monetary policy frameworks

to alleviate the potential economic costs associated with the ZLB constraint on the nominal

rate in a low natural interest rate (r∗) world.2 Blanchard, Dell’Ariccia and Mauro (2010),

Ball (2014), and Krugman (2014) argue that raising the inflation target can help avoid

frequently hitting the ZLB. We show that raising the inflation target is an effective policy

tool in mitigating the potentially large output loss in such an environment in addition to

necessitating a short-run increase in the nominal (policy) interest rate, rather than a decrease.

1.4 Organization

The rest of this paper is organized as follows. Using a simple, small-scale New Keynesian

model, Section 2 analytically studies the relationship between Neo-Fisherism and monetary

2Three other notable alternative frameworks that have been proposed are price-level targeting (e.g., Gas-
par, Smets and Vestin (2010), Bernanke (2017), Williams (2017)), nominal-income targeting (e.g., McCallum
and Nelson (1999), Frankel (2013), Williams (2016)), and average inflation targeting (e.g., Nessén and Vestin
(2005), Svensson (2019), Eo and Lie (2020)). For other studies on changing the inflation target, see Williams
(2016), Rosengren (2018), and Summers, Wessel and Murray (2018).
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policy stance as well as several key structural parameters of the model. Section 3 investigates

the short-run comovement in the medium-scale model in Smets and Wouters (2007) and

assesses the effectiveness of raising the inflation target when the ZLB constraint on the

nominal rate is present. Section 4 concludes.

2 Analysis with a small-scale model

2.1 A small-scale New Keynesian model with inflation target ad-

justments

We consider a small-scale New Keynesian model along the line of the textbook model in Gaĺı

(2015). This simple model has a rich enough propagation mechanism for our purpose and

it allows us to derive a closed-form analytical solution. In particular, we consider a hybrid

New Keynesian Phillips curve (NKPC) or hybrid IS curve to examine the interaction between

monetary policy stance and the backward-looking element in the model.

The hybrid NKPC equation is given by

πt − τπt−1 = βEt [πt+1 − τπt] + κyt (2)

where

κ =
(1− θβ)(1− θ)(σ + η)

θ
, (3)

πt denotes inflation deviation from its steady state, and yt denotes the output gap, defined as

the log deviation of output from its natural level. The slope of the NKPC κ is a function of

structural parameters. Here, β ∈ (0, 1) is the discount factor, σ > 0 is the inverse elasticity

of intertemporal substitution (EIS), and η ≥ 0 is the Frisch inverse elasticity of labor supply.

As in Calvo (1983) and Yun (1996), a θ ∈ [0, 1) fraction of the firms are not allowed to

optimally adjust their prices at any given period. Hence, they simply index their prices to a

weighted average of past gross inflation Πt−1 and steady-state gross inflation Π̄, and τ in (2)

is associated with the degree of indexation to Πt−1 as in Christiano, Eichenbaum and Evans

(2005). When τ = 0 the NKPC above reduces to a purely forward-looking version.
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The log-linearized version of the hybrid IS curve is the following:

yt =
1

1 + h
Etyt+1 +

h

1 + h
yt−1 − σ−1 1− h

1 + h
(it − Etπt+1), (4)

where it is the nominal interest rate deviation from its steady state and h ∈ [0, 1) is the

habit parameter.3

In terms of monetary policy, the authority adjusts the nominal interest rate according to

it = ψπ(πt − π∗t )4 (5)

and the inflation target is adjusted as follows:

π∗t = φπ∗π∗t−1 + επ∗,t (6)

where π∗t is the inflation target deviation from steady-state inflation, 0 < φπ∗ ≤ 1, and

επ∗,t 6= 0 when the central bank newly adjusts the inflation target.5

As a special case of this Taylor-type rule, under strict inflation targeting, the monetary

authority puts a high weight on inflation such that ψπ →∞ in (5), resulting in

πt = π∗t . (7)

2.2 Analytical results with the hybrid NKPC

In this section we analytically show how the comovement between inflation and the nominal

interest rate depends on the inflation gap reaction coefficient in a Taylor-type rule interacting

with the backward-looking component in the NKPC. We focus on the backward-looking

component in the NKPC here and set h = 0 in (8), resulting in a standard forward-looking

3Without loss of generality, we assume away the usual structural shocks, e.g., technology and preference.
4This interest-rate rule is assumed to respond to the inflation gap only to be comparable to the strict

inflation targeting rule. This specification also helps to find an analytical solution when allowing for a
backward-component in the model. We will consider a Taylor-type rule in which the nominal interest rate
responds to the output gap in addition to the inflation gap in Section 3.

5This autoregressive specification follows that considered in Cogley, Primiceri and Sargent (2010), Del Ne-
gro, Giannoni and Schorfheide (2015), and Bhattarai, Lee and Park (2016). When φπ∗ = 1, the inflation
target is adjusted permanently, and it is equivalent to shifting its long-run target (steady-state inflation).
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IS curve

yt = Etyt+1 − σ−1(it − Etπt+1). (8)

We will confirm our findings numerically in a more general setting based on a medium-scale

model calibrated to the postwar U.S. economy in the next section.

The inflation reaction coefficient ψπ in (5) is restricted to be greater than one to ensure

equilibrium determinacy and less than infinity to distinguish a Taylor-type rule from strict

inflation targeting.6 Under the Taylor-type rule (5), the solutions for inflation and the

nominal interest rate are given by

πt = Φ0(Θ)π∗t + Φ1(Θ)πt−1, (9)

it = Γ0(Θ)π∗t + Γ1(Θ)πt−1, (10)

where the coefficients Φ0(Θ), Φ1(Θ), Γ0(Θ), and Γ1(Θ) are all functions of the structural

parameters Θ = (φπ∗ , ψπ, τ, θ, σ, β, η).7

Using this solution, we analytically characterize the responses of the nominal interest rate

conditional on changes in the inflation target with respect to the monetary policy stance ψπ

when allowing for price indexation to past inflation.

Proposition 1 Under the Taylor-type rule (5) with the hybrid NKPC (2) and the IS curve (8),

(i) the model is least likely to exhibit a comovement between inflation and the nominal

interest rate conditional on changes in the inflation target (Neo-Fisherism) under strict

inflation targeting compared to a Taylor-type rule, all else equal, and

(ii) inflation always increases in the inflation target.

Proof. See Appendix A.

Proposition 1 above has an important implication for our assessment on the interaction

between the backward-looking component in the NKPC and Neo-Fisherism. Gaŕın, Lester

6Bhattarai, Lee and Park (2014b) analytically show that the Taylor principle, under which the nominal
interest rate reacts to more than one-for-one to inflation in the long-run, is a necessary and sufficient condition
for determinacy in the New Keynesian model with backward-looking elements. Thus, the lower bound for
ψπ is set to one in our analysis. For details on the Taylor principle, see Bullard and Mitra (2002).

7See Lemma 1 in Appendix A for the solution.
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and Sims (2018) argue that a modest degree of backward-looking behavior in the NKPC

can eliminate Neo-Fisherism under strict inflation targeting. However, Proposition 1 indi-

cates that assuming strict inflation targeting may overstate the role of the backward-looking

component in breaking down Neo-Fisherism, resulting in understating the possibility of Neo-

Fisherism. Furthermore, as strict inflation targeting is a special case of the Taylor-type rule

when ψπ →∞, Proposition 1 implies that Neo-Fisherism can be less likely as ψπ gets larger.

The intuition behind Proposition 1 is as follows. Under strict inflation targeting, inflation

and expected inflation are completely stabilized at the inflation target level. Under a Taylor-

type rule, however, agents expect inflation to be less stabilized, i.e., expected inflation and

inflation jump more following an increase in the inflation target. All else equal, and given the

Fisher equation, this higher jump in expected inflation makes a contemporaneous increase

in the nominal interest rate more likely and increases the possibility of Neo-Fisherism. Note

that the comovement also depends on the response of the real interest rate. Following the

increase in the inflation target, the real interest rate decreases contemporaneously, both

under strict inflation targeting and a Taylor-type rule. The occurrence of Neo-Fisherism

thus depends on whether the increase in expected inflation is high enough to counteract the

decrease in the real interest rate.

We confirm our intuition using the impulse response functions to an inflation target shock

for two different values of inflation reaction coefficient, ψπ. The benchmark case assumes

the standard Taylor-rule coefficient of ψπ = 1.5 as in Taylor (1993), while we set a higher

value of ψπ = 40 in the second case to mimic strict inflation targeting. We set τ = 0.5. This

large value of τ implies a degree of backward-lookingness in the NKPC that is close to the

highest value for the U.S. economy reported in Galı and Gertler (1999).8 The persistence

parameter of the inflation target shock is set to φπ∗ = 0.95. Other parameters are set as

follows: β = 0.99, σ = 1, η = 1, and θ = 0.7. Because Γ1 in (10) is always positive, we check

the sign of Γ0—the contemporaneous response of the nominal interest rate conditional on a

change in the inflation target—to verify Neo-Fisherism in the model.

Panel (a) of Figure 1 shows that in spite of the presence of a significant degree of

8The degree of backward-lookingness in our NKPC is given by γb = τ/(1 +βτ) = 0.33, when τ = 0.5 and
β = 0.99. This is in line with the upper estimate of γb in Galı and Gertler (1999) — see their Table 2.
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Figure 1: Impulse response functions to an inflation target shock for different values of the
inflation reaction coefficient
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(a) nominal interest rate
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(b) inflation
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(c) expected inflation (Etπt+1)
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(d) real interest rate
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(f) inflation target

Note: The figure plots the impulse response functions of selective variables to a 1% per annum inflation
target shock for different values of the inflation reaction coefficient in a Taylor-type rule ψπ. The high value
of ψπ = 40 is chosen to mimic strict inflation targeting. Other parameters are set to τ = 0.5, φπ∗ = 0.95,
β = 0.99, σ = 1, η = 1, θ = 0.7, and h = 0.

backward-looking component in the NKPC, the nominal interest rate increases on impact

when ψπ = 1.5. On the other hand, when ψπ = 40, raising the inflation target necessitates a

contemporaneous decrease in the nominal interest rate. Panels (b) and (c) of Figure 1 con-

firm that both expected inflation and inflation increase by more when ψπ = 1.5 compared

to the case when ψπ = 40. Here, expected inflation rises by 2.3% on impact following a

1% increase in the inflation target, while it increases slightly less than the inflation target

(by 0.98%) when ψπ = 40. Notice that the real interest rate decreases by less on impact
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for smaller ψπ, which also contributes to the occurrence of Neo-Fisherism when ψπ = 1.5.

In sum, the nominal interest rate under ψπ = 1.5 increases by 1.3% on impact, but under

ψπ = 40 it decreases by 0.8%.

The implication that strict inflation targeting may understate the forward-looking effect

is consistent with the finding in Bhattarai, Lee and Park (2014a), who consider a purely

forward-looking New Keynesian model and focuses on the inflation dynamics with the same

monetary policy rule as ours. They find that inflation almost always overshoots the inflation

target for reasonable parameterizations in the literature. More importantly, they show that

a stronger reaction to inflation in a Taylor-type rule decreases the response of inflation to

the inflation target shock.9 While their model lacks any backward-looking component, the

key intuition is applicable to our analytical findings. In a way, strict inflation targeting

understates the role of the forward-looking element and overstates the role of the backward-

looking element in the NKPC in forming inflation expectations.

We next examine how the inflation reaction coefficient ψπ affects the Neo-Fisherism region

across the parameter space of (τ, φπ∗), using the same values of ψπ above. Other parameter

values are set as noted previously. Figure 2 shows that the Neo-Fisherian region is markedly

smaller under ψπ = 40. In contrast, under the standard Taylor-rule coefficient of ψπ = 1.5,

even with a completely backward-looking NKPC (τ = 1), there is a positive comovement

between inflation and the nominal interest rate as long as the persistence of the inflation

target shock is roughly greater than 0.83. This corresponds to a half-life of the inflation

target shock of only 3.7 quarters for the model to exhibit Neo-Fisherism.

2.3 Analytical results with the hybrid IS curve

The analysis now focuses on the role of the backward-looking component in the IS curve in

leading to the comovement. To simplify the analysis and permit an analytical solution, we

set τ = 0 in the NKPC (2), resulting in a purely forward-looking version,

πt = βEtπt+1 + κyt. (11)

9See Propositions 1 and 2 in Bhattarai, Lee and Park (2014a) for more details.
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Figure 2: Hybrid NKPC and Monetary policy: the Neo-Fisherian region in the (τ, φπ∗)
parameter space
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(a) ψπ = 1.5
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(b) ψπ = 40

Note: The sign of ‘+’ indicates a pair of (τ, φπ∗) values associated with the positive comovement between
inflation and the nominal interest rate conditional on a change in the inflation target. The parameter ψπ is
the reaction coefficient to the inflation gap in the Taylor-type rule. The high value of ψπ = 40 is chosen to
mimic strict inflation targeting. Other parameters are set to β = 0.99, σ = 1, η = 1, θ = 0.7, and h = 0.

Based on the analytical solution, we arrive at the following proposition.10

Proposition 2 Under the Taylor-type rule (5) with the hybrid IS curve (4) and the NKPC (11),

(i) the model is least likely to exhibit a comovement between inflation and the nominal

interest rate conditional on changes in the inflation target (Neo-Fisherism) under strict

inflation targeting compared to a Taylor-type rule, all else equal, and

(ii) inflation always increases in the inflation target.

Proof. See Appendix A.

The intuition and explanation associated with Proposition 1 apply to Proposition 2. The

increase in the inflation target lowers the real interest rate. Habit formation in consumption

makes the output gap less responsive to a given decrease in the real interest rate, resulting in

10The analytical solution is of a similar form to (9) and (10).
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Figure 3: Hybrid IS curve and monetary policy stance: the Neo-Fisherian region in the
(τ, φπ∗) parameter space
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(a) ψπ = 1.5
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(b) ψπ = 40

Note: The sign of ‘+’ indicates a pair of (h, φπ∗) values associated with the positive comovement between
inflation and the nominal interest rate conditional on a change in the inflation target. The parameter ψπ is
the reaction coefficient to the inflation gap in the Taylor-type rule. The high value of ψπ = 40 is chosen to
mimic strict inflation targeting. Other parameters are set to β = 0.99, σ = 1, η = 1, θ = 0.7, and τ = 0.

a weaker jump in inflation through the NKPC. Thus, the nominal interest rate in the model

with habit formation reacts less compared to the model with a forward-looking IS curve.

The effect of habit formation on inflation dynamics is then amplified when the central bank

reacts strongly to the inflation gap, as previously shown in the hybrid NKPC case. Figure 3

confirms the proposition with two different values of ψπ = 1.5 and ψπ = 40 and shows that

the Neo-Fisherian region shrinks as the degree of habit formation in consumption gets larger.

The positive comovement is also less likely for a higher ψπ.

2.4 The NKPC slope and elasticity of intertemporal substitution

This section examines how other structural parameters affect the comovement. Bhattarai,

Lee and Park (2014a) find that using a purely forward-looking New Keynesian model inflation

responds more than one-for-one to changes in the inflation target (i.e., the nominal interest
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rates increases given the Taylor-type rule (5)) if prices are sufficiently flexible, while Gaŕın,

Lester and Sims (2018) show that the New Keynesian model with a hybrid NKPC under strict

inflation targeting is more likely to exhibit Neo-Fisherism the more flexible are prices and

the higher is the EIS. We investigate whether these findings are still valid when considering

a more general model with the backward-looking components in the NKPC and IS curve.

Under the Taylor-type rule (5) with the hybrid NKPC (2) and the hybrid IS curve (4),

Figure 4 graphically illustrates the positive comovement for the parameter space of (τ, h)

with two different values of the Calvo parameter, θ = 0.7 (benchmark) and θ = 0.85, and

two different degrees of monetary policy aggressiveness, ψπ = 1.5 and ψπ = 40. The higher

value of θ implies that prices are stickier, resulting in a flatter NKPC slope of κ = 0.06, as

opposed to κ = 0.26 in the benchmark case.11 All other parameters are set as previously.

Compared to the benchmark case, the flatter NKPC slope shrinks the Neo-Fisherian region.

In addition, similar to the benchmark case, the model is less likely to exhibit Neo-Fisherism

as the value of τ and/or h increases or as the central bank reacts to the inflation gap more

aggressively.

The finding in Figure 4 shares similar intuition and implication as in Propositions 1 and 2.

A higher degree of backward-lookingness in the NKPC or in the IS curve makes inflation and

the output gap less responsive on impact and reduces the Neo-Fisherian region. Similarly,

as the slope of the NKPC gets flatter (i.e., prices are stickier), inflation is less responsive to

a given change in the output gap.

Following the same logic, the output gap is less sensitive to the real interest rate as the

EIS gets lower, implying a smaller likelihood of Neo-Fisherism.12 Figure 5 confirms this

prediction using two different values of the EIS: σ−1 = 1 (benchmark) and σ−1 = 0.2.13

Compared to the benchmark case, the model is less likely to exhibit a comovement between

11The flattening of the Phillips curve in the U.S. and other advanced economies since the early 1980s
has been documented in various studies, for example, Roberts (2006), Kuttner and Robinson (2010), and
Blanchard (2016). See Eo and Lie (2019) for its welfare implications.

12The increase in the EIS also reduces the slope of the NKPC as presented in (3), making inflation less
responsive to the change in the output gap. Thus, two effects offset each other and the net effect of changes

in the EIS depends on a model specification. However, in the benchmark model we find that ∂κσ−1

∂σ−1 > 0

where κ = (1−θβ)(1−θ)(σ+η)
θ as also shown in Figure 5.

13The EIS in the literature varies greatly, ranging from below 0.1 in Hall (1988) to 0.8∼1 in Kydland and
Prescott (1982).

15



Figure 4: NKPC slope and monetary policy stance: the Neo-Fisherian region in the (τ, h)
parameter space under the Taylor-type rule
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(a) θ = 0.70 (κ = 0.26) and ψπ = 1.5
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(b) θ = 0.85 (κ = 0.06) and ψπ = 1.5
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(c) θ = 0.70 (κ = 0.26) and ψπ = 40
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(d) θ = 0.85 (κ = 0.06) and ψπ = 40

Note: The sign of ‘+’ indicates a pair of (τ, h) values associated with the positive comovement between
inflation and the nominal interest rate conditional on a change in the inflation target. The Calvo parameter
θ is inversely related to the slope of the NKPC κ in (2). We set β = 0.99, σ = 1, and η = 1.

inflation and the nominal interest rate conditional on changes in the inflation target for a

smaller value of the EIS (i.e., as σ−1 in (8) gets smaller).
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Figure 5: EIS and NKPC slope: the Neo-Fisherian region in the (τ, h) parameter space
under the Taylor-type rule
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(a) θ = 0.70 (κ = 0.26) and σ−1 = 1
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(b) θ = 0.85 (κ = 0.06) and σ−1 = 1
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(c) θ = 0.70 (κ = 0.26) and σ−1 = 0.2
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(d) θ = 0.85 (κ = 0.06) and σ−1 = 0.2

Note: The sign of ‘+’ indicates a pair of (τ, h) values associated with the positive comovement between
inflation and the nominal interest rate conditional on a change in the inflation target. The Calvo parameter
θ is inversely related to the slope of the NKPC κ in (2). We set ψπ = 1.5, β = 0.99, and η = 1.
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3 The comovement and the effectiveness of raising the

inflation target in a medium-scale model

Our analytical finding in Section 2 that a reasonably-parameterized small-scale New Keyne-

sian model with a hybrid NKPC, a hybrid IS curve, and a Taylor-type rule is likely to exhibit

Neo-Fisherism naturally raises a question: Does the finding still apply in a larger-scale model

with richer dynamics? In this section, we answer this question using the Smets and Wouters

(2007) model, augmented with an inflation target process. We also use the model to assess

the effectiveness of raising the inflation target in an environment where the ZLB constraint

on the nominal interest rate is potentially binding.

3.1 The Smets and Wouters (2007) model with inflation target

adjustments

We augment the Smets and Wouters (SW) model by assuming that the monetary authority

can adjust its inflation target in a persistent manner, following the process as in (6):

π̂∗t = φπ∗π̂∗t−1 + ε̂π∗,t. (12)

ε̂π∗,t is the inflation target shock, with ε̂π∗,t 6= 0 when the central bank newly adjusts the

inflation target. We also modify the monetary policy rule accordingly to

r̂t = ρr̂t−1 + (1− ρ)
[
rπ(π̂t − π̂∗t ) + ry (ŷt − ŷpt ) + r∆y{(ŷt − ŷpt )−

(
ŷt−1 − ŷpt−1

)
}
]

+ ε̂rt , (13)

where all the hatted variables are in terms of their deviations from the steady state or the

balanced growth path. In the above—and throughout this section—we closely follow the

variable and parameter naming convention in Smets and Wouters (2007): r̂t is the nominal

interest (policy) rate, π̂t is inflation, ŷt is output, ŷpt is natural output level, ε̂rt is the monetary

policy shock, ρ is the interest-rate smoothing parameter, and rπ, ry and r∆y are feedback

coefficients. The only difference between (13) and the policy rule in the original SW model

is that the inflation target π̂∗t is constant in the latter. For a more detailed description of
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the SW model, we refer the reader to Appendix B and their paper.

Unless otherwise mentioned, we set the parameter values of the model to the posterior

mode estimates in Smets and Wouters (2007) for the sample period of 1984Q1-2004Q4 (see

their Table 5 or Table B.1 presented in Appendix B). Note that unlike in the small-scale

model in Section 2, the SW model has much richer dynamics with various forward- and

backward-looking elements, which means we cannot simply rely on the contemporaneous

response of the nominal rate to investigate its comovement with inflation when the monetary

authority adjusts the inflation target.

3.2 Impulse response functions to changes in the inflation target

To assess how changes in the inflation target affect various macroeconomic variables in

the SW model, Figure 6 plots the impulse responses to a 1% per-annum inflation target

shock. We consider two values of inflation target persistence—φπ∗ = 0.95 (benchmark)

and φπ∗ = 0.85—which correspond to the half life of the shock of 13.5 and 4.3 quarters,

respectively. The benchmark value of φπ∗ = 0.95 is lower than the value for the postwar U.S.

economy set in various studies in the literature (e.g. Cogley, Primiceri and Sargent (2010),

Del Negro, Giannoni and Schorfheide (2015), and Bhattarai, Lee and Park (2016)).14

Under the benchmark parameterization with φπ∗ = 0.95, inflation increases on impact

by more than 1% per annum. This positive inflation gap—the gap between inflation and

the inflation target—is due to a higher expected inflation, caused by the persistent (but

temporary) increase in the inflation target. Inflation remains elevated well above the initial

target even after 20 quarters. The real interest rates are temporarily lower as inflation

expectations rise, leading to a prolonged period of higher (positive) output gaps. A higher

inflation target is thus associated with a higher output level in the short run, consistent

with the VAR evidence in De Michelis and Iacoviello (2016) for both Japanese and U.S.

economies.15 Associated with the increase in the inflation target, the monetary authority

needs to contemporaneously raise the nominal interest rate by almost 0.3% per annum on

14Cogley, Primiceri and Sargent (2010) and Bhattarai, Lee and Park (2016) calibrate φπ∗ to 0.995, while
Del Negro, Giannoni and Schorfheide (2015) find a posterior mode of 0.99.

15For the VAR analysis applied to U.S. data, see Appendix A in their paper.
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Figure 6: Smets and Wouters model: Impulse responses to an inflation target shock for
different values of inflation target persistence

Note: The size of the inflation target shock is 1% per annum at period 0. φπ∗ = 0.95 and 0.85 correspond
to the half-life of the shock of 13.5 and 4.3 quarters, respectively. All other parameter values are set to the
posterior mode estimates in Smets and Wouters (2007) for the sample period of 1984Q1-2004Q4.

impact, with a hump-shaped response thereafter. The main finding is that there is a positive

comovement between inflation and the nominal interest rates throughout the periods.

When φπ∗ = 0.85 instead, even though the nominal interest rate only increases slightly

on impact, it still positively comoves with inflation throughout the periods. A much lower

increase in expected inflation causes inflation to increase by only 0.5% per annum in this

case. Thus, even with this relatively short half-life of 4.3 quarters, we observe Neo-Fisherism:

raising the inflation target necessitates a short-run increase in the nominal (policy) interest

rate.
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Figure 7: Smets and Wouters model: Impulse responses to an inflation target shock for
different values of selective parameters

(a) Inflation reaction coefficient

(b) NKPC price-indexation parameter

(c) Habit parameter

Note: The size of the inflation target shock in all cases is 1% per annum at period 0 with φπ∗ = 0.95.
In Panel (a), rπ = 6.3 is the largest rπ at which the contemporaneous response of the nominal interest
rate is non-negative. In Panel (b), ιp = 1 is the highest possible indexation value (degree of backward-
lookingness in the NKPC). In Panel (c), h = 1 is the highest possible value of the habit parameter. All
other parameter values are set to the posterior mode estimates in Smets and Wouters (2007) for the sample
period of 1984Q1-2004Q4.
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In Figure 7 we investigate how the comovement between inflation and the nominal interest

rate is affected by the monetary policy stance, i.e., the inflation reaction coefficient rπ, the

price indexation parameter ιp that governs the degree of backward-lookingness in the NKPC,

and the external habit parameter h that governs the degree of backward-lookingness in the

IS curve. We focus on the responses of the nominal rate, inflation, and expected inflation.

In all three cases, the size of the inflation target shock is 1% per annum at period 0, with

φπ∗ = 0.95.

Panel (a) of Figure 7 shows that inflation expectations jump by less for the higher rπ,

making a positive comovement less likely. This result is consistent with Propositions 1 and 2

in Section 2. Under the SW model, a positive comovement still occurs as long as rπ ≤ 6.3.

This threshold is higher than all known estimates of the parameter for the U.S. economy.

When rπ > 6.3, the nominal interest rate decreases on impact, even though the comovement

may still be positive in subsequent periods.

The effect of a higher degree of backward-lookingness in the NKPC is depicted in Panel (b)

of Figure 7. Here, even with the highest possible degree of indexation (ιp = 1), there is still

a positive comovement between inflation and the nominal rate. Even though the nominal

interest rate increases by less in the case of ιp = 1—consistent with that in the small-scale

model—it may increase by more in the later periods, mirroring the responses of inflation

and expected inflation. This owes to the fact that the SW model has much richer backward-

looking dynamics.

In Panel (c) of Figure 7, we observe that increasing the value of the habit parameter

in the household preference from h = 0.68 to its maximum value of h = 1 still implies a

positive comovement. The nominal interest rate increases by less on impact—though only

barely—when h = 1 (a more backward-looking IS curve), consistent with our finding in

Section 2. Interestingly, both inflation and expected inflation jump by more in the case of

h = 1 despite a more backward-looking environment, implying lower real interest rates (not

shown).

In Appendix C, we also examine how the NKPC slope (the Calvo price parameter) and

the EIS affect the comovement in the SW model. We find that—consistent with the findings

in Figures 4 and 5 in Section 2—the SW model is less likely to exhibit Neo-Fisherism as
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prices are stickier (the NKPC slope is flatter) and the EIS is lower. Despite the alternative

parameterizations, however, the SW model still generates a positive comovement between

inflation and the nominal interest rate conditional on changes in the inflation target.

3.3 Raising the inflation target and the zero lower bound on the

nominal interest rate

Having established that the medium-scale model in Smets and Wouters (2007) exhibits

Neo-Fisherism for a wide range of parameter values, we now use the model to assess the

effectiveness of raising the inflation target when the ZLB on the nominal interest rate is

potentially binding.

We suppose a scenario where the economy is hit by a series of 4-standard deviation risk-

premium shocks for five consecutive periods (quarters 1-5). In the SW model, the exogenous

risk-premium process follows

ε̂bt = ρbε̂
b
t−1 + ηbt , (14)

where ηbt ∼ i.i.d.N(0, σ2
b ) is the risk-premium shock. This shock directly affects the con-

sumption Euler equation (the IS curve) and the unit price of capital Q̂t (Tobin’s Q) through

the relationships

ĉt =

[
h/γ

1 + h/γ

]
ĉt−1 +

[
1

1 + h/γ

]
Etĉt+1 −

[
1− h/γ

σ(1 + h/γ)

] (
r̂t − Etπ̂t+1 − ε̂bt

)
+

[
(σ − 1)θlc
σ(1 + h/γ)

](
L̂t − EtL̂t+1

)
(15)

and

Q̂t = −
(
r̂t − Etπ̂t+1 − ε̂bt

)
+

[
r̄k

r̄k + (1− δ)

]
Etr̂

k
t+1 +

[
(1− δ)

r̄k + (1− δ)

]
EtQ̂t+1 (16)

where ĉt is aggregate consumption, L̂t is aggregate labor, and r̂kt is the rental rate of capi-

tal. The parameters h, γ, σ, δ, r̄k, and θlc denote habit, trend productivity growth, inverse

of EIS, capital depreciation rate, steady-state rental rate of capital, and steady-state labor

income to consumption ratio, respectively. Risk-premium shocks thus affect the intertem-
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poral margin of consumption and investment. All else equal, a contractionary risk-premium

shock (ε̂bt < 0) reduces current consumption and—through a decrease in the unit price of

capital—investment. This shock is akin to a net worth shock in financial accelerator models

à la Bernanke et al. (1999).

Our choice of risk-premium shocks is motivated by the findings in Furlanetto and Groshenny

(2016) and Kulish, Morley and Robinson (2017) of the occurrence of large contractionary

risk-premium shocks in the U.S. economy during the Great Recession. Specifically, Kulish,

Morley and Robinson (2017) estimate the Smets and Wouters (2007) model for the sample

period of 1983Q1-2014Q2, which includes the period where the ZLB was effectively binding

in the U.S. economy. These shocks are found to be largely responsible for the large negative

output gap from 2009 up to the end of the sample in 2014Q2 (see Appendix E of their

paper).16

Figure 8 plots the impulse responses based on the assumed scenario above for two alter-

native inflation target policies.17 In the first policy, the central bank is assumed to keep its

current inflation target of 2% per annum (dashed line), whereas the target is instead raised

from 2% to 4% at quarter 1 under the second policy (solid line). To account for the ZLB

constraint, we solve the model under each policy using the OccBin toolkit described in Guer-

rieri and Iacoviello (2015). The figure also includes a notional case where the target is kept

at 2% and the ZLB constraint were not imposed (dash-dotted line). In all cases, we assume

that the economy is initially at quarter 0 with 2% per annum inflation and inflation target,

2.5% per annum nominal interest rate, 0.5% per annum real interest rate, zero output gap,

and expected inflation coinciding with its target. This starting point is consistent with the

recent estimate of the natural rate of interest for the U.S. economy as suggested by Holston,

Laubach and Williams (2017) and Del Negro et al. (2019), among others.

As shown in Figure 8, with a constant inflation target, the contractionary risk-premium

shocks cause the nominal (policy) rate to fall significantly and eventually lead to a binding

16Furlanetto and Groshenny (2016) estimate a medium-scale model with search and matching frictions in
the labor market in addition to sticky prices and wages and find that the rise in the unemployment rate
during the Great Recession is mainly attributed to a series of negative demand shocks including risk-premium
shocks.

17Irrespective of the inflation target policy, the monetary authority still conducts an interest-rate feedback
policy according to the Taylor-type rule in (13).
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Figure 8: Smets and Wouters model: Raising the inflation target under large contractionary
shocks with the ZLB

Note: This figure compares the impulse responses of selective variables to a series of large contractionary
shocks in which the monetary authority (i) raises its inflation target from 2% to 4% per annum at quarter
1 (solid line), and (ii) keeps the 2% target, with (dashed line) and without (dash-dotted line) the zero
lower bound constraint on the nominal interest rate. The contractionary shocks are given by four standard
deviation risk-premium shocks of five consecutive quarters at quarters 1-5. We assume φπ∗ = 0.95, while all
other parameters are set to the posterior mode estimates in Smets and Wouters (2007) for the sample period
of 1984Q1-2004Q4. The economy is initially at quarter 0 with 2% inflation target and inflation per annum,
2.5% nominal interest rate per annum, 0.5% real interest rate per annum, and 0% output gap.
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ZLB at quarters 4-5. Both inflation and expected inflation fall to roughly 1% per annum

after five quarters. The real interest rate declines in the first several quarters as the nominal

rates decrease by more than expected inflation. In fact, the real rates are negative and do not

turn positive until quarter 9. The increase in the risk premium leads to output contractions

initially, with the output gap reaching −4% at its trough in quarter 5. Starting in quarter

6, the ZLB constraint is no longer binding and the nominal rate slowly rises again, as do

inflation and the output gap. The effect of the shocks on the economy appears to completely

dissipate after 25 quarters. Comparing the responses to the notional responses in which the

ZLB constraint were not imposed, the differences are quantitatively minor. In the latter,

despite the large contractionary shocks, the notional policy rate turns negative only for two

periods in quarters 4-5, with a trough of −0.54%.

When the inflation target is raised instead in conjunction with the contractionary risk-

premium shocks, the nominal rates do decrease in the first five quarters. But the rate is

never in danger of reaching its 0% lower bound and is only as low as 1.2% in quarter 5.

This stark contrast to the first policy is a direct consequence of the monetary authority

needing to increase the nominal rate in order to raise the inflation target, as previously

shown in Figure 6—or put another way, the marginal effect of raising the inflation target

on the nominal rate relative to no target increase is positive. Under this alternative policy,

even with the presence of large contractionary risk-premium shocks inflation increases in the

first two quarters. Expected inflation increases in quarter 1 by more than the increase in the

inflation target, highlighting the forward-looking dynamics of the price-setting mechanism in

the model. This leads to a much larger decline in the real rates and to less negative output

gaps. In fact, the output gaps are positive starting from quarter 9.

The result in Figure 8 shows that raising the inflation target could be an effective tool

to mitigate the output loss and the cost of potentially hitting the ZLB on the nominal rate

amidst the prospect of large contractionary shocks when the natural rates of interest are

already low. Relative to keeping the inflation target at 2% with a ZLB constraint (dashed

lines), we find that over 25 quarters, raising the inflation target to 4% at quarter 0 would

result in a cumulative gain of output of 35.6%.18 This substantial output gain and the fact

18Kulish, Morley and Robinson (2017) take the same approach to calculate the loss of output relative to

26



that the ZLB constraint on the nominal interest rate is less likely to bind over time make

raising the inflation target an appealing policy option.

More persistent, but smaller risk-premium shocks To generate a binding ZLB con-

straint in Figure 8 we rely on a series of fairly large (4-standard deviation) risk-premium

shocks. Even then, the ZLB only binds for two quarters and the associated cost of the con-

straint is relatively minor: relative to the notional case of no ZLB constraint (dash-dotted

line), the cumulative output loss over 25 quarters is only 3.4%. One main reason for this re-

sult is that the estimated persistence of the risk-premium shock in Smets and Wouters (2007)

is quite low, with the posterior mode of the AR(1) parameter ρb equal to 0.14 for the sam-

ple period of 1984Q1-2004Q4. Kulish, Morley and Robinson (2017), however, find a much

higher estimate of ρb = 0.95 when including the post-2009 period. This implies the ZLB

constraint could now be binding for smaller contractionary shocks, increasing the possibility

and the cost of hitting the ZLB. We investigate this scenario by reproducing the experiment

in Figure 8 but with ρb = 0.5, depicted in Figure 9. Here, we assume that from quarters 1-5,

the economy is hit by a series of 2-standard deviation contractionary risk-premium shocks.

All other parameter values and assumptions are identical as previously.

Under these more persistent but smaller risk-premium shocks, the ZLB on the nominal

rate is now binding for four periods from quarters 3-6 when the inflation target is kept at 2%

(dashed line). Inflation and expected inflation decline by more compared to their responses

in Figure 8. The output gap turns more negative and is now −6.5% at its trough in quarter

5. Despite the smaller shock, the cost of binding ZLB constraint is markedly higher when

the shocks are more persistent. In the notional case of no ZLB constraint (dash-dotted

line), the monetary authority would set negative policy rates from quarters 3-8, resulting in

higher inflation expectations and more negative real rates. Relative to the case with a ZLB

constraint, the cumulative loss of output over 25 quarters would have been 15% lower if the

monetary authority were able to set negative nominal interest rates.

Raising the inflation target would further mitigate the output loss. Under this policy

(solid line), output would be cumulatively higher by 47% relative to the constant inflation

the counterfactual.
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Figure 9: Smets and Wouters model: Raising the inflation target under large contractionary
shocks with the ZLB — a higher shock persistence

Note: This figure reproduces Figure 8, but under ρb = 0.50 (higher persistence of the risk-premium shock)
instead of the benchmark ρb = 0.14. The contractionary shocks are now given by two standard deviation
risk-premium shocks of five consecutive quarters at quarters 1-5. All other parameter values and assumptions
are as in Figure 8.

target policy (dashed line). The driver for this output gain is the increase in expected

inflation, leading to more negative real rates. The ZLB constraint on the nominal interest
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rate never binds, owing to the Neo-Fisherian property in the model. A highly persistent

contractionary shock process thus makes raising the inflation target more appealing.

4 Conclusion

Would raising the inflation target require an increase in the nominal interest rate in the

short run? We answer this important policy question, first analytically in a small-scale

New Keynesian model with backward-looking components where a closed-form solution is

available, and then in a medium-scale model in Smets and Wouters (2007) calibrated to the

U.S. economy.

We find that the short-run comovement between inflation and the nominal interest rate

conditional on changes in the inflation target is more likely to be positive, all else equal, as

the monetary authority reacts less aggressively to the deviation of inflation from its target.

Meanwhile, features of the model that enhance backward-looking behavior, such as backward

price indexation and habit formation in consumption, are shown to reduce the likelihood of

the positive comovement. However, our investigations reveal that this positive comovement

or Neo-Fisherism occurs across a wide range of empirically-plausible parameter values.

The Neo-Fisherian property is also shown to be prevalent in the Smets and Wouters

(2007) model for various alternative parameterizations of the model. This result is robust to

the imposition of the zero lower bound constraint on the nominal interest rate. Our finding

thus indicates that the U.S. Federal Reserve would likely need to raise the federal funds

rate in the short run should it choose to raise the 2% inflation target. Using the Smets and

Wouters model, we also show that raising the inflation target could be an effective alternative

policy framework to reduce the possibility of a binding zero lower bound constraint on the

nominal interest rate and to mitigate the potentially large output loss.
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Appendices

A Proofs

Lemma 1 The solution for it to the New Keynesian Model with the IS curve (8), the hybrid

NKPC (2), and the Taylor-type rule (5) is given by

it = Γ0π
∗
t + Γ1πt−1 (A.1)

where

Γ0 =
1

λ2 − φπ∗

1

λ3 − φπ∗

ψπκσ
−1

β
×{

φπ∗ − (1− φπ∗)(1− βφπ∗)

κσ−1
− τ

κσ−1
{1 + β(1− φπ∗)}+

τ

κσ−1

(
λ2 + λ3 − φπ∗

λ2λ3

)}
,

Γ1 = λ1ψπ,

and λ1, λ2, and λ3 are eigenvalues associated with the model solution such that

|λ1| < 1 < |λ2| ≤ |λ3|,

λ1λ2 + λ2λ3 + λ3λ1 =
1 + γb + κ̃σ−1ψπ

γf
> 0,

λ1λ2λ3 =
γb
γf

> 0,

λ1 + λ2 + λ3 =
1 + γf + κ̃σ−1

γf
> 0;

γf =
β

1 + βτ
, γb =

τ

1 + βτ
, κ̃ =

κ

1 + βτ
.

Proof. The model is given by

yt = Etyt+1 − σ−1 (it − Etπt+1) , (A.2)

πt = γfEtπt+1 + γbπt−1 + κ̃yt, (A.3)

it = ψπ(πt − π∗t ). (A.4)
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We want to collapse the three equations in the model above into a single equation for it.

Push (A.4) one period ahead and take expectations of it in time t (i.e., Et) as

Etit+1 = ψπEt
(
πt+1 − π∗t+1

)
. (A.5)

Then substitute (A.5) into the IS curve (A.2) to remove Etπt+1 as

yt = Etyt+1 − σ−1Et

(
it −

1

ψπ
it+1 − π∗t+1

)
. (A.6)

Use a lag operator L as Etxt+1 = EtL
−1xt for a variable xt, (A.3) and (A.6) are expressed

as

Et(1− γfL−1 − γbL)πt = κ̃yt (A.7)

and

Et(1− L−1)yt = −σ−1Et

(
it −

1

ψπ
it+1 − π∗t+1

)
. (A.8)

Now, substitute (A.4) and (A.8) into (A.7) as

Et(1− γfL−1 − γbL)

(
1

ψπ
it + π∗t

)
= −Etκ̃σ−1(1− L−1)−1

(
it −

1

ψπ
it+1 − π∗t+1

)
= −Etκ̃σ−1(1− L−1)−1

(
(1− 1

ψπ
L−1)it − π∗t+1

)
.

(A.9)

Multiply both sides of (A.9) by (1− L−1) as

Et(1− L−1)(1− γfL−1 − γbL)

(
1

ψπ
it + π∗t

)
= −κ̃σ−1Et

(
(1− 1

ψπ
L−1)it − π∗t+1

)
.

(A.10)

Rearrange (A.10) and collect terms related to it and π∗t , respectively as

Et

[{
1 + γb − γbL− (1 + γf )L

−1 + γfL
−2

ψπ
+ κ̃σ−1

(
1− 1

ψπ
L−1

)}
it

]
= Et

[{
−1− γb + γbL+ (1 + γf )L

−1 − γfL−2 + κ̃σ−1L−1
}
π∗t
]
. (A.11)
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The LHS of (A.11) is given by

Et

[{
1 + γb − γbL− (1 + γf )L

−1 + γfL
−2

ψπ
+ κ̃σ−1

(
1− 1

ψπ
L−1

)}
it

]
=

1

ψπ
Et
[{

1 + γb − γbL− (1 + γf )L
−1 + γfL

−2 + κ̃σ−1ψπ − κ̃σ−1L−1
}
it
]

=
1

ψπ
Et
[{

(1 + γb + κ̃σ−1ψπ)− γbL− (1 + γf + κ̃σ−1)L−1 + γfL
−2
}
it
]

=
γf
ψπ
Et

[{
1 + γb + κ̃σ−1ψπ

γf
− γb
γf
L− 1 + γf + κ̃σ−1

γf
L−1 + L−2

}
it

]
=

γf
ψπ
Et
[
(1− λ1L)(λ2 − L−1)(λ3 − L−1)it

]
. (A.12)

The last line in (A.12) uses the following lag operator expression

(1−λ1L)(λ2−L−1)(λ3−L−1) = (λ1λ2 +λ2λ3 +λ3λ1)−λ1λ2λ3L− (λ1 +λ2 +λ3)L−1 +L−2.

(A.13)

In short, eigenvalues λ1, λ2, and λ3 are such that

λ1λ2 + λ2λ3 + λ3λ1 =
1 + γb + κ̃σ−1ψπ

γf
> 0, (A.14)

λ1λ2λ3 =
γb
γf

> 0, (A.15)

λ1 + λ2 + λ3 =
1 + γf + κ̃σ−1

γf
> 0, (A.16)

and

|λ1| < 1 < |λ2| ≤ |λ3| (A.17)

to ensure determinacy. Also, because γb, γf , κ̃, ψπ, and σ are all positive, λ1λ2+λ2λ3+λ3λ1 >

0, λ1λ2λ3 > 0, and λ1 + λ2 + λ3 > 0.

The RHS of (A.11) is given by

Et
[{
−1− γb + γbL+ (1 + γf )L

−1 − γfL−2 + κ̃σ−1L−1
}
π∗t
]

= Et
[{

(−1− γb) + (1 + γf + κ̃σ−1)L−1 − γfL−2
}
π∗t
]

+ γbπ
∗
t−1

=
{

(−1− γb) + (1 + γf + κ̃σ−1)φπ∗ − γfφ2
π∗

}
π∗t + γbπ

∗
t−1 (A.18)
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because Etπ
∗
t+1 = EtL

−1π∗t = φπ∗π∗t .

Combine (A.12) for the LHS of (A.11) and (A.18) for the RHS of (A.11) as

γf
ψπ
Et
[
(1− λ1L)(λ2 − L−1)(λ3 − L−1)it

]
=

{
(−1− γb) + (1 + γf + κ̃σ−1)φπ∗ − γfφ2

π∗

}
π∗t + γbπ

∗
t−1. (A.19)

Multiply both sides of (A.19) by (λ2 − L−1)−1(λ3 − L−1)−1 as

γf
ψπ
Et [(1− λ1L)it]

= Et
[
(λ2 − L−1)−1(λ3 − L−1)−1

{
(−1− γb) + (1 + γf + κ̃σ−1)φπ∗ − γfφ2

π∗

}
π∗t
]

+Et
[
(λ2 − L−1)−1(λ3 − L−1)−1γbπ

∗
t−1

]
. (A.20)

The RHS of (A.20) can be rearranged as

Et
[
(λ2 − L−1)−1(λ3 − L−1)−1

{
(−1− γb) + (1 + γf + κ̃σ−1)φπ∗ − γfφ2

π∗

}
π∗t
]

+Et
[
(λ2 − L−1)−1(λ3 − L−1)−1γbπ

∗
t−1

]
= Et

[
(λ3 − L−1)−1 1

λ2 − φπ∗

{
(−1− γb) + (1 + γf + κ̃σ−1)φπ∗ − γfφ2

π∗ +
γb
λ2

}
π∗t

]
+Et

[
(λ3 − L−1)−1 1

λ2

γbπ
∗
t−1

]
=

1

λ2 − φπ∗

1

λ3 − φπ∗

{
(−1− γb) + (1 + γf + κ̃σ−1)φπ∗ − γfφ2

π∗ +
γb
λ2

+
γb
λ3

− φπ∗γb
λ2λ3

}
π∗t

+
1

λ2

1

λ3

γbπ
∗
t−1

because

Et(λ2 − L−1)−1π∗t = Et
1

λ2

(
1 +

1

λ2

L−1 +
1

λ2
2

L−2 + · · ·
)
π∗t

= Et
1

λ2

(
π∗t +

1

λ2

π∗t+1 +
1

λ2
2

π∗t+2 + · · ·
)

=
1

λ2

(
π∗t +

φπ∗

λ2

π∗t +
φ2
π∗

λ2
2

π∗t + · · ·
)

=
1

λ2

1

1− φπ∗/λ2

π∗t =
1

λ2 − φπ∗
π∗t (A.21)
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and similarly

Et(λ2 − L−1)−1π∗t−1 = Et
1

λ2

(
1 +

1

λ2

L−1 +
1

λ2
2

L−2 + · · ·
)
π∗t−1 =

1

λ2

π∗t−1 +
1

λ2

1

λ2 − φπ∗
π∗t .

The derivations above also apply to expanding for (λ3 − L−1)−1. Note that (A.17) ensures

|φπ∗/λ2| < 1 and |φπ∗/λ3| < 1.

Finally, the solution is given by

it − λ1it−1

=
ψπ
γf

1

λ2 − φπ∗

1

λ3 − φπ∗

{
(−1− γb) + (1 + γf + κ̃σ−1)φπ∗ − γfφ2

π∗ +
γb
λ2

+
γb
λ3

− φπ∗γb
λ2λ3

}
π∗t

+
ψπ
γf

1

λ2

1

λ3

γbπ
∗
t−1

=
1

λ2 − φπ∗

1

λ3 − φπ∗

ψπ
β

{
κσ−1φπ∗ − (1− φπ∗)(1 + βτ − βφπ∗)

+τ

(
λ2 + λ3 − φπ∗

λ2λ3

− 1

)}
π∗t +

1

λ2

1

λ3

ψπτ

β
π∗t−1. (A.22)

Substitute it−1 = ψπ(πt−1 − π∗t−1) into (A.22) and rearrange it as

it = λ1ψπ(πt−1 − π∗t−1) +
1

λ2 − φπ∗

1

λ3 − φπ∗

ψπκσ
−1

β
×{

φπ∗ − (1− φπ∗)(1− βφπ∗) + {1 + β(1− φπ∗)} τ
κσ−1

+
τ

κσ−1

(
λ2 + λ3 − φπ∗

λ2λ3

)}
π∗t

+
1

λ2

1

λ3

ψπτ

β
π∗t−1

= λ1ψππt−1 +
1

λ2 − φπ∗

1

λ3 − φπ∗

ψπκσ
−1

β
× (A.23){

φπ∗ − (1− φπ∗)(1− βφπ∗) + {1 + β(1− φπ∗)} τ
κσ−1

+
τ

κσ−1

(
λ2 + λ3 − φπ∗

λ2λ3

)}
π∗t

because λ1ψπ = 1
λ2

1
λ3

ψπτ
β

for π∗t−1 from (A.15).

Thus, we show that the solution for it is expressed as

it = Γ0π
∗
t + Γ1πt−1 (A.24)
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where

Γ0 =
1

λ2 − φπ∗

1

λ3 − φπ∗

ψπκσ
−1

β
×{

φπ∗ − (1− φπ∗)(1− βφπ∗) + {1 + β(1− φπ∗)} τ
κσ−1

+
τ

κσ−1

(
λ2 + λ3 − φπ∗

λ2λ3

)}
Γ1 = λ1ψπ. (A.25)

Lemma 2 The solution for πt to the New Keynesian Model with the IS curve (A.2), the

NKPC (A.3), and the Taylor-type rule (A.4) is given by

πt = Φ0π
∗
t + Φ1πt−1 (A.26)

where

Φ0 =
1

(λ2 − φπ∗)(λ3 − φπ∗)

ψπκσ
−1

β
(A.27)

Φ1 = λ1 (A.28)

and λ1, λ2, and λ3 are eigenvalues associated with the model solution in Lemma 1.

Proof. We find the solution for πt using a similar approach in Lemma 1. Substitute (A.3)

into the IS curve (A.2) to remove it as

yt = Etyt+1 − σ−1Et (ψπ(πt − π∗t )− πt+1) . (A.29)

Use a lag operator as

Et(1− L−1)yt = Et
(
−σ−1ψπ + σ−1L−1

)
πt + σ−1ψππ

∗
t . (A.30)
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Then, we use a lag operator for the hybrid NKPC and substitute (A.30) into it as

Et(1− γfL−1 − γbL)πt = κ̃yt + µπ∗t (A.31)

= κ̃Et
[
(1− L−1)−1

(
−σ−1ψπ + σ−1L−1

)
πt + (1− L−1)−1σ−1ψππ

∗
t

]
.

Rearrange (A.31) and collect terms related to πt and π∗t , respectively as

Et
[
(1− γfL−1 − γbL)− κ̃(1− L−1)−1

(
−σ−1ψπ + σ−1L−1

)]
πt = Et

[
κ̃(1− L−1)−1σ−1ψπ

]
π∗t

(A.32)

Multiply both sides of (A.32) by (1− L−1) as

Et
[
(1− L−1)(1− γfL−1 − γbL)− κ̃

(
−σ−1ψπ + σ−1L−1

)]
πt = Et

[
κ̃σ−1ψπ

]
π∗t

Et
[(

1 + γb + κ̃σ−1ψπ
)
−
(
1 + γf + κ̃σ−1

)
L−1 − γbL+ γfL

−2
]
πt = Et

[
κ̃σ−1ψπ

]
π∗t

We express the solution using the eigenvalues λ1, λ2, and λ3 as

Et(1− λ1L)(λ2 − L−1)(λ3 − L−1)πt =
κ̃σ−1ψπ
γf

π∗t

(1− λ1L)πt = Et
κ̃σ−1ψπ
γf

(λ2 − L−1)−1(λ3 − L−1)−1π∗t

(1− λ1L)πt =
κ̃σ−1ψπ
γf

1

λ2 − φπ∗

1

λ3 − φπ∗
π∗t (A.33)

The solution for πt is then given by

πt =
1

λ2 − φπ∗

1

λ3 − φπ∗

ψπκσ
−1

β
π∗t + λ1πt−1. (A.34)

Lemma 3 0 < λ1 < 1.

Proof. We start with Lemma 1. It shows |λ1| < 1 to ensure determinacy in (A.17). We will

further show λ1 > 0. Suppose λ1 < 0. Since λ1λ2λ3 > 0 from (A.15) and |λ1| < 1, it requires

that λ2λ3 < 0. We know that λ1λ2 + λ2λ3 + λ3λ1 = λ1(λ2 + λ3) + λ2λ3 > 0 from (A.14).
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Since λ1 < 0 and λ2λ3 < 0, it requires that λ2 + λ3 < 0. However, it contradicts the fact

that λ1 + λ2 + λ3 > 0 from (A.16). In addition, since λ1λ2λ3 > 0, it requires that λ1 6= 0.

Therefore, it must be λ1 > 0. In combination with Lemma 1, we can show that 0 < λ1 < 1.

Lemma 4 λ2 > 1 and λ3 > 1.

Proof. We again start with Lemma 1. Because λ1 + λ2 + λ3 =
1+γf+κ̃σ−1

γf
= 1 + 1+κ̃σ−1

γf
> 1

and 0 < λ1 < 1, it requires that λ2+λ3 > 0. In addition, because λ1λ2λ3 > 0 and 0 < λ1 < 1,

it requires that λ2λ3 > 0. Then, because λ2 + λ3 > 0 and λ2λ3 > 0, it requires that λ2 > 0

and λ3 > 0. In combination with |λ1| < 1 < |λ2| ≤ |λ3|, we can show that λ2 > 1 and

λ3 > 1.

Lemma 5 As ψπ →∞, λ1 → 0 and λ1ψπ → τ
κσ−1 .

Proof. Note that the solution for strict inflation targeting with the hybrid NKPC (i.e.,

ψπ → ∞) is given by πt = π∗t . From (A.26) in Lemma 1, it requires that limψπ→∞Φ1 = 0

and limψπ→∞Φ0 = 1. Note that Φ1 = λ1. Therefore, limψπ→∞ λ1 = 0.

Now, we consider limψπ→∞Φ0 = 1. Note that Φ0 = 1
(λ2−φπ∗ )(λ3−φπ∗ )

ψπκσ−1

β
. Because

limψπ→∞Φ0 = 1, it requires that

lim
ψπ→∞

1

(λ2 − φπ∗)(λ3 − φπ∗)

ψπκσ
−1

β
= 1

where

1

(λ2 − φπ∗)

1

(λ3 − φπ∗)

ψπκσ
−1

β

=
1

λ2λ3 − φπ∗(λ2 + λ3) + φ2
π∗

ψπκσ
−1

β

=
1

τ
λ1β
− φπ∗(1+βτ

β
− λ1) + φ2

π∗

ψπκσ
−1

β

=
λ1ψπ

τ
β
− λ1φπ∗

1+βτ
β

+ λ2
1φπ∗ + λ1φ2

π∗

κσ−1

β
. (A.35)

Because limψπ→∞ λ1 = 0, it requires limψπ→∞ λ1ψπ = τ
κσ−1 . We will confirm theses conditions

in the case of the solutions for it in Lemma 6.
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Proof of Proposition 1

Proof. We first show that inflation increases in the inflation target. In Lemma 2, Φ1 is

always positive because Φ1 = λ1 and 0 < λ1 < 1 from Lemma 3. In addition, because λ2 > 1

and λ3 > 1 in Lemma 4, Φ0 is always positive. Thus, inflation always increases when the

monetary authority raises the inflation target.

Now, we consider the response of the nominal interest rate to the change in the inflation

target. Inflation always increases in the inflation target and so should the nominal interest

rate. Lemma 1 shows that the solution for it to the New Keynesian model is given by

it = Γ0π
∗
t + Γ1πt−1

where

Γ0 =
1

λ2 − φπ∗

1

λ3 − φπ∗

ψπκσ
−1

β
×{

φπ∗ − (1− φπ∗)(1− βφπ∗) + {1 + β(1− φπ∗)} τ
κσ−1

+
τ

κσ−1

(
λ2 + λ3 − φπ∗

λ2λ3

)}
,

Γ1 = ψπλ1.

Because 0 < λ1 < 1 in Lemma 3, Γ1 is always positive. In order for the model to exhibit

the comovement between inflation and the nominal interest rate, Γ0 should be positive. Thus,

we will find the condition for Γ0 > 0. Lemma 4 shows that λ2 > 1 and λ3 > 1 and it implies

that the scaling factor in Γ0, 1
λ2−φπ∗

1
λ3−φπ∗

ψπκσ−1

β
, is always positive because 0 < φπ∗ < 1 and

other structural parameters are positive. Therefore, the sign of Γ0 depends on the sign of

Ω = φπ∗ − (1− φπ∗)(1− βφπ∗)

κσ−1
− τ

κσ−1
{1 + β(1− φπ∗)}+

τ

κσ−1

(
λ2 + λ3 − φπ∗

λ2λ3

)
. (A.36)

We want to find how ψπ affects the role of the backward-looking component in breaking

down Neo-Fisherism. Note that eigenvalues λ2 and λ3 are functions of the model parameters
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including τ and ψπ and

λ2 + λ3 − φπ∗

λ2λ3

=

1+γf+κ̃σ−1

γf
− λ1 − φπ∗

γb
γfλ1

=
(1 + γf + κ̃σ−1)λ1 − γfλ2

1 − γfφπ∗λ1

γb

=
(1 + βτ + β + κσ−1)λ1 − βλ2

1 − βφπ∗λ1

τ

=
βλ1(1− λ1) + {βτ + κσ−1 + (1− φπ∗β)}λ1

τ

=
λ1 {β(1− λ1) + βτ + κσ−1 + (1− φπ∗β)}

τ
. (A.37)

Because 0 < λ1 < 1,
λ2 + λ3 − φπ∗

λ2λ3

> 0. (A.38)

It implies that as λ2+λ3−φπ∗
λ2λ3

gets smaller, Ω in (A.36) gets smaller.

In addition, from the fact that limψπ→∞λ1 = 0 in Lemma 5 and the equation in (A.37),

we can show that

limψπ→∞
λ2 + λ3 − φπ∗

λ2λ3

= 0. (A.39)

Therefore, under strict inflation targeting (i.e., ψπ →∞) Ω is the smallest and the model is

the least likely to exhibit Neo-Fisherism.

Lemma 6 As ψπ →∞, the solution for it in the model with the Taylor-type rule approaches

that in the model with strict inflation targeting.

Proof. Now, we confirm our conditions in the case of the solutions for it. Under strict

inflation targeting, Gaŕın, Lester and Sims (2018) show that

it =

[
φπ∗ − (1− φπ∗)(1− βφπ∗)

κσ−1
− τ

κσ−1
{1 + β(1− φπ∗)}

]
π∗t +

τ

κσ−1
π∗t−1. (A.40)

We will show limψπ→∞ Γ0 =
[
φπ∗ − (1−φπ∗ )(1−βφπ∗ )

κσ−1 − τ
κσ−1 {1 + β(1− φπ∗)}

]
and limψπ→∞ Γ1 =

τ
κσ−1 . Because Γ1 = λ1ψπ, it is straightforward to show that limψπ→∞ Γ1 = τ

κσ−1 from
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Lemma 5. Further, because

Γ0 =
1

λ2 − φπ∗

1

λ3 − φπ∗

ψπκσ
−1

β

×
[
φπ∗ − (1− φπ∗)(1− βφπ∗)

κσ−1
− τ

κσ−1
{1 + β(1− φπ∗)}+

τ

κσ−1

(
λ2 + λ3 − φπ∗

λ2λ3

)]
,

limψπ→∞
1

(λ2−φπ∗ )(λ3−φπ∗ )
ψπκσ−1

β
= 1, and limψπ→∞

λ2+λ3−φπ∗
λ2λ3

= 0, it is straightforward to show

that limψπ→∞ Γ0 =
[
φπ∗ − (1−φπ∗ )(1−βφπ∗ )

κσ−1 − τ
κσ−1 {1 + β(1− φπ∗)}

]
.

Proof of Proposition 2

Proof. Following a similar approach in Proposition 1, we find that the solution for it to the

New Keynesian model with (4), (5), and (11) is given by

it = ψπλ̃1πt−1 +
1

λ̃2 − φπ∗

1

λ̃3 − φπ∗

ψπκσ
−1(1− h)

β
×{

φπ∗ − (1− φπ∗ + h)(1− βφπ∗)

κσ−1(1− h)
+

h

κσ−1(1− h)

(
λ̃2 + λ̃3 − φπ∗

λ̃2λ̃3

)}
π∗t

where λ̃1, λ̃2, and λ̃3 are eigenvalues associated with the solution, 0 < λ̃1 < 1, λ̃2 > 1, and

λ̃3 > 1.19

Again, taking the same approach in Proposition 1, we can show that

λ̃2 + λ̃3 − φπ∗

λ̃2λ̃3

> 0 (A.41)

and

limψπ→∞
λ̃2 + λ̃3 − φπ∗

λ̃2λ̃3

= 0. (A.42)

Therefore, under strict inflation targeting the model is the least likely to exhibit Neo-

Fisherism.

Regarding the impulse response function of inflation to the inflation target shock, we

19They can be shown by taking similar approaches in Lemmas 3 and 4.
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take the same approach in Lemma 2. The solution for πt is then given by

πt = λ̃1πt−1 +
1

λ̃2 − φπ∗

1

λ̃3 − φπ∗

ψπκσ
−1(1− h)

β
π∗t . (A.43)

Because 0 < λ̃1 < 1, λ̃2 > 1, and λ̃3 > 1, the coefficients on πt−1 and π∗t in (A.43) are both

positive. Therefore, inflation always increases in the inflation target. All the details on the

proof are available upon request.

B The Smets and Wouters (2007) model

This appendix briefly describes the medium-scale model in Smets and Wouters (2007), which

we use in Section 3 in the main text. The model features sticky nominal price and wage

settings, capital formation with investment adjustment costs, and variable capital utilization.

The backward-looking behaviour is present in the household sector via habit formation, wage

indexation, and investment adjustment costs and in the intermediate-goods sector through

a backward price indexation. Aggregate fluctuations are driven by seven exogenous shocks:

total factor productivity (TFP), risk-premium, investment-specific technology, wage mark-

up, price mark-up, government spending, and monetary policy shocks. The central bank

conducts monetary policy through a Taylor-type rule. In order to investigate the effect of

changes in the inflation target, we augment the Smets and Wouters model with an exogenous

inflation target shock process.

The model is log-linearized around the steady state or the balanced growth path with

deterministic labor-augmenting technology, which we summarize below. We follow the vari-

able and parameter naming convention used in Smets and Wouters (2007). The variables in

the model are (in deviations from the deterministic trend): m̂ct real marginal cost; ẑt capital

utilization rate; r̂kt rental rate of capital; ̂̄kt physical capital; k̂t effective capital; Q̂t unit

price of capital; ĉt consumption; ît investment; ŷt output; L̂t labor; ŵt real wage; r̂t nominal

interest rate; π̂t inflation. The exogenous variables (with the i.i.d. shocks in the parenthesis)

are: ε̂at (ηat ) exogenous TFP; ε̂bt (ηbt ) risk premium; ε̂gt (ηgt ) government spending; ε̂it (ηit)

investment-specific technology; ε̂rt (ηrt ) monetary policy; ε̂pt (ηpt ) price mark-up; ε̂wt (ηwt ) wage
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Table B.1: Calibration of the Smets and Wouters model

Parameter Value Description
100(γ − 1) 0.44 trend productivity growth
σ 1.47 inverse of elasticity of intertemporal substitution
h 0.68 degree of external habit
β 0.9987 subjective discount factor
νl 2.30 labor supply elasticity parameter
α 0.21 capital share of production
ςw 0.46 degree of wage indexation
ςp 0.21 degree of price indexation
ξw 0.74 probability of wage fixity
ξp 0.73 probability of price fixity
ψ 0.69 variable utilization cost parameter
δ 0.025 capital depreciation rate
Φ 1.54 fixed cost of production
S ′′ = ϕ 6.23 steady-state elasticity of investment adjustment cost
φ̄ 0.67 steady-state quarterly inflation
ρ 0.84 Taylor-rule interest rate smoothing parameter
rπ 1.77 Taylor-rule inflation feedback coefficient
ry 0.08 Taylor-rule output gap feedback coefficient
r∆y 0.16 Taylor-rule change in output gap feedback coefficient

mark-up; π̂∗t (ε̂π∗,t) inflation target. We calibrate the model to the U.S. economy using the

posterior mode estimates reported in Smets and Wouters (2007) for the sample period of

1984Q1-2004Q4 (see their Table 5). These values are presented in Table B.1 for convenience.

Log-linearized equations

The log-linearized equations in the model are presented below.

Real marginal cost :

m̂ct = αr̂kt + (1− α)ŵt − εat (B.1)

Rate of capacity utilisation:

ẑt = z1r̂
k
t (B.2)

where z1 ≡ (1− ψ)/ψ.
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Optimal capital-labor ratio:

r̂kt = ŵt + L̂t − k̂t (B.3)

Link between physical capital, capital utilization, and effective capital :

k̂t = ̂̄kt−1 + ẑt (B.4)

Investment Euler equation:

ît =
1

(1 + β̄γ)

[̂
it−1 + β̄γEt̂it+1 +

1

γ2S ′′
Q̂t

]
+ ε̂it, (B.5)

where β̄ ≡ βγ−σ.

Unit price of capital : equation (16) in the main text.

Capital accumulation:

̂̄kt =
(

1− ı̄

k̄

) ̂̄kt−1 +
ı̄

k̄
µ̂t +

ı̄

k̄
ît (B.6)

where ı̄
k̄

is the steady-state investment to capital ratio and µ̂t is a reduced-form investment-

specific technology shock (a function of εit).

Consumption Euler equation: equation (15) in the main text.

Aggregate resource constraint :

ŷt =

(
c̄

ȳ

)
ĉt +

(
ı̄

ȳ

)
ît +

(
r̄kk̄

ȳ

)
ẑt + ε̂gt (B.7)

where c̄
ȳ
, ı̄
ȳ
, r̄kk̄

ȳ
denote the steady-state consumption to output ratio, investment to output

ratio, and capital rental income to output ratio.

Aggregate production function:

ŷt =

(
ȳ + Φ

ȳ

)[
αk̂t + (1− α)L̂t + εat

]
(B.8)
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Price Phillips curve:

π̂t =

[
ςp

1 + β̄γςp

]
π̂t−1 +

[
β̄γ

1 + β̄γςp

]
Etπ̂t+1 + κpm̂ct + ε̂pt , (B.9)

where κp ≡ A (1−ξpβ̄γ)(1−ξp)

(1+β̄γςp)ξp
. A is a reduced-form parameter that depends on the consumption

aggregator function.

Wage Phillips curve:

ŵt =

[
1

1 + β̄γ

]
ŵt−1 +

[
β̄γ

1 + β̄γ

]
Etŵt+1

+
1

1 + β̄γ

[
−(1 + β̄γςw)π̂t + ςwπ̂t−1 + β̄γEtπ̂t+1

]
(B.10)

+κw

[
1

1− h/γ
ĉt −

h/γ

1− h/γ
ĉt−1 + νlL̂t − ŵt

]
+ε̂wt ,

where κw ≡ (1−ξwβ̄γ)(1−ξw)

(1+β̄γ)ξw
.

Monetary policy rule: equation (13) in the main text.

Inflation target shock process : equation (12) in the main text.

C Smets and Wouters model: Further results on the

comovement under alternative parameterizations

In this appendix, we investigate how the Neo-Fisherian property in the Smets and Wouters

model is affected by the Calvo price parameter ξp, which governs the degree of price stickiness

and the NKPC slope, and the EIS σ−1, similar to what we do for the small-scale model in

Section 2.

As shown in Panel (a) of Figure C.1, a higher Calvo price parameter (ξp = 0.85) makes

a positive comovement less likely. In the benchmark case of ξp = 0.73, the nominal interest

rates increase by more throughout the periods. This result is consistent with that in the

small-scale New Keynesian model in Section 2 (see Figure 4). Still, even with a flatter price

Phillips curve under ξp = 0.85, the SW model exhibits Neo-Fisherism.
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Figure C.1: Smets and Wouters model: Comovement between inflation and the nominal
interest rate for different values of selective parameters (further results)

(a) Calvo price parameter

(b) Intertemporal substitution parameter

Note: The size of the inflation target shock in all cases is 1% per annum at period 0 with φπ∗ = 0.95. All
other parameter values are based on the posterior mode estimates for the sample period of 1984Q1-2004Q4
in Smets and Wouters (2007).

In Panel (b) of Figure C.1, we consider two values of σ: the posterior estimate based on

the U.S. data (σ = 1.47) and twice of that (σ = 2.94). The latter case thus implies a lower

EIS. Consistent with Figure 5 in Section 2, a lower elasticity makes a positive comovement

less likely. Here, for example, the nominal rate increases by less on impact when σ = 2.94.

It appears, however, that this parameter does not significantly affect the Neo-Fisherian

property in the SW model, as is apparent from the similar responses across the two different

values of σ. Both parameterizations imply a positive comovement between inflation and the

nominal rate.
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