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Abstract

How and under what circumstances can adjusting the inflation target serve as a
stabilization-policy tool and contribute to welfare improvement? We answer these
questions quantitatively with a standard New Keynesian model that includes cost-
push type shocks. Our proposed inflation target rule calls for the target to be adjusted
in a persistent manner and in the opposite direction to the realization of a cost-push
shock. The inflation target rule, combined with a Taylor-type rule, significantly reduces
inflation fluctuations originating from cost-push shocks and mitigates the stabilization
trade-off, resulting in a similar level of welfare to that associated with the Ramsey
optimal policy.
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1 Introduction

The constancy of the central bank’s inflation target has been one of the most enduring

features in stabilization policy studies in the literature. These studies, whether they focus

on positive or normative aspects of monetary policy, assume that the central bank stabilizes

inflation around a constant, long-run target. From an empirical standpoint, however, several

studies have documented that historically trend inflation has not been constant, see e.g.,

Kozicki and Tinsley (2003), Ireland (2007), and Cogley, Primiceri and Sargent (2010) for

studies using U.S. data. Time-varying trend inflation can be interpreted as adjustments to

the central bank’s implicit inflation target (or to the public’s inflation-target expectations).

This observation raises the question of whether such adjustments play an important role in

central bank’s stabilization policy. How and under what circumstances are these adjustments

warranted and possibly welfare-improving?

In this paper we investigate the role of inflation target adjustment in central banks’ stabi-

lization policy. We propose a scenario, as in Ireland (2007), where the central bank’s inflation

target is endogenous and depends on the state of the economy. In particular, the adjustment

of the target is conditional on the realization of cost-push shocks.1 It is well known that

cost-push shocks create a trade-off between inflation and output-gap stabilization. In this

paper, we refer to these types of shocks as “cost-push shocks” but they potentially represent

any shock that creates such a trade-off including variations in tax, changes in desired price

markups by firms and wage markups by households, and oil price shocks.2

We show that adjustment of the inflation target, done properly, improves the central

bank’s policy-stabilization trade-off and can lead to a substantial welfare improvement. In

fact, despite the existence of cost-push shocks, an interest-rate rule with an optimal inflation

target adjustment is able to closely replicate the Ramsey allocation. The extent of the

improvement in the policy trade-off and the welfare gain are above and beyond what is

1Ireland (2007) assumes that adjustment of the inflation target is conditional on the realization of cost-
push shocks as well as technology shocks and that the central bank stabilizes inflation around the time-varying
target. Unlike Ireland (2007), however, we focus on the normative aspects of such adjustments, instead of
the positive aspects.

2See Clarida, Gaĺı and Gertler (1999), Erceg, Henderson and Levin (2000), Steinsson (2003), Smets and
Wouters (2007), and Natal (2012) for details. Blanchard and Gaĺı (2007) note that such a trade-off means
the “divine coincidence” no longer holds with respect to these shocks.
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attainable in the conventional Taylor-type-rule policy environment with a constant, long-

run inflation target.

The theoretical framework used for our analysis is a simple, microfounded New Key-

nesian model, along the lines of Rotemberg and Woodford (1997) and Steinsson (2003).

The baseline model has two standard market distortions: the relative-price distortion aris-

ing from nominal price rigidity and the average markup distortion due to firms’ monopoly

power. Aggregate fluctuations are driven by productivity, government spending, and cost-

push (markup) shocks. Despite its simplicity, our model is rich enough to capture important

implications of larger-scale, empirically-driven models used to analyze the effects of monetary

policy. We also consider extended versions of the model that include capital accumulation

and nominal wage rigidity. Our main findings hold true in those models, as long as there

exists a trade-off between different stabilization goals. The cost-push shock itself in our

model can be treated as a familiar and convenient proxy for any shock that creates such a

trade-off.3

We first show that in the face of cost-push shocks, it is not possible to achieve a similar

welfare level to that associated with the Ramsey policy in an environment in which the

monetary authority conducts policy through a standard Taylor-type rule with a constant

inflation target. In particular, there still exists a non-trivial welfare cost, relative to the

optimal Ramsey allocation, even under an optimized, implementable Taylor-type rule. Note

that if only productivity and government spending shocks exist, there is no stabilization

trade-off and the central bank can stabilize inflation and output at the same time. As shown

by Schmitt-Grohé and Uribe (2007), in such an environment an optimized Taylor rule with

a constant inflation target can mimic the Ramsey allocation quite well.

We then consider our proposed policy. In addition to adjusting the nominal interest-rate

using a Taylor rule, the monetary authority also adjusts the inflation target in response

to cost-push shocks. We allow this adjustment to be temporal, using a persistent inflation

target that follows an autoregressive process. This implies that the nominal interest rate

now responds to the inflation gap, defined by the difference between actual inflation and the

3Smets and Wouters (2007) find that cost-push shocks in their model, in the form of wage markup and
price markup shocks, are largely responsible for inflation fluctuations in the postwar U.S. economy.
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medium-run inflation target, as well as the output gap.

The optimal target adjustment calls for changing the inflation target in the opposite

direction to the realization of cost-push shocks. That is, we find that when there is a

positive cost-push shock that raises inflation and leads to a negative output gap on impact,

it is optimal for the monetary authority to decrease the inflation target. For any inflation rate

above the initial target, a decreased target in turn leads to a bigger inflation gap compared

to that in the standard Taylor rule and translates to a more aggressive response to the cost-

push shock through a larger increase in the nominal interest rate. This policy combination

leads to lower inflation expectations, resulting in significant welfare gains because inflation

variability is sufficiently reduced without generating too large of an increase in output gap

variability. These results are robust to various extensions and changes to the model such as

capital accumulation, nominal wage rigidity, and different interest-rate rules.

From a positive standpoint, several studies such as Bomfim and Rudebusch (2000), Or-

phanides and Wilcox (2002), and Ireland (2007) discuss the possibility that over the postwar

period the Federal Reserve consistently translated adverse supply shocks (positive cost-push

shocks) into more persistent inflation (a higher inflation target).4 Our finding implies that

such an action is unwarranted and welfare-reducing.

We also note that this more-aggressive response to cost-push shocks in our target rule is

not equivalent to simply increasing the inflation feedback coefficient in the Taylor-type rule

from a welfare perspective. Even when the cost-push shock is the dominant driving process

in the economy, it may not be optimal to increase the inflation feedback coefficient beyond

a certain value because (i) the variability of the output gap is also a relevant determinant

of welfare and (ii) the welfare loss from increasing the variation in the output gap may

dominate the welfare gain from reducing the variation in inflation for too large values of

the inflation coefficient in the Taylor-type rule.5 In particular, we show that even when we

allow for a wider range of possible values of the Taylor-type rule feedback coefficients, it is

4Ireland (2007), however, finds that in the postwar U.S. economy a model with the endogenous movements
in the inflation target is statistically indistinguishable from the exogenous inflation target model. Garnier,
Mertens and Nelson (2015) obtain the same result using unobserved components models of trend inflation
and the inflation gap in the U.S. economy.

5Woodford (2002) and Benigno and Woodford (2005) derive a welfare-based loss function and show that
it depends on the variability of inflation and an output-gap measure. See also our discussion in Section 4.
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not possible to achieve a similar welfare level to that associated with our optimized inflation

target rule. Thus, the apparent improvement in the trade-off between inflation and output-

gap stabilization is mainly attributable to the adjustment of the inflation target, and not

because of any implementability restriction on the policy coefficients.

Our investigation also reveals that the extent of the welfare gain from the inflation target

adjustment depends on the slope of the Phillips curve. Various studies in the literature have

documented a flattening of the Phillips curve for the U.S. and other advanced economies

in recent years.6 One possible reason for this flattening is the increase in the degree of

nominal rigidity, e.g., the probability of price fixity in the familiar Calvo (1983) model, as

pointed out by Blanchard (2016). A flatter Phillips curve makes the task of an inflation-

targeting monetary authority more difficult, as inflation becomes less responsive to output-

gap fluctuations. We show that the welfare gain from adjusting the inflation target is larger

when the slope of the Phillips curve is flatter.

Our finding is also potentially relevant to the current economic environment of low infla-

tion rates under a flat Phillips curve, especially in advanced economies such as the U.S. and

the Euro area. Blanchard (2016) argues that the flat Phillips curve raises serious challenges

for monetary policy and may require very flexible inflation targeting. However, he does

not propose how to implement flexible inflation targeting in practice or consider its welfare

implications. If a negative realization of a cost-push shock or similar shocks contributes to

a low-inflation environment, our finding suggests that an appropriate policy response is to

simply increase the medium-run inflation target. In a broader context, the finding in our

paper can also serve as a justification for the practice of central banks in several countries

of regularly readjusting and announcing their medium-run inflation targets.7 For example,

in September 2016, the Bank of Japan introduced an inflation-overshooting commitment,

under which it aims to exceed the inflation target of 2% and stay above the target in a

stable manner. The Bank of Japan plans to make policy adjustments conditional on devel-

opments in economic activity and prices, as well as financial conditions, in order to achieve

its inflation target of 2% in the long run. Though motivated by a different set of objectives,

6See e.g., Roberts (2006), Kuttner and Robinson (2010), and Blanchard (2016).
7A non-exhaustive list of countries currently practising this policy includes Brazil, India, Indonesia,

Nigeria, and South Korea.
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our finding suggests that such a conditional adjustment might be welfare-improving.

The rest of this paper is organized as follows. Section 2 presents the model used for

welfare analysis and its calibration. Section 3 introduces monetary policy rules and discusses

a measure of household welfare. Section 4 conducts welfare analysis for our proposed policy

of adjusting the inflation target compared to the Taylor-type rule. Section 5 provides some

extensions and robustness analysis. Section 6 concludes.

2 Model and calibration

We consider a New Keynesian model along the lines of Rotemberg and Woodford (1997) and

Steinsson (2003). The baseline model consists of a representative household, a continuum of

monopolistically-competitive firms producing differentiated varieties, and a monetary pol-

icy authority. Our baseline model is closest to the cashless model in Schmitt-Grohé and

Uribe (2007), although we abstract from capital accumulation and fiscal policy.8 Aggre-

gate fluctuations are driven by three exogenous shocks: productivity, government purchase,

and cost-push shocks. As we discussed, the inclusion of a cost-push shock is important be-

cause it creates a trade-off between inflation stabilization and output-gap stabilization, as in

Steinsson (2003) and is consistent with empirical findings in the literature.

2.1 Households

The representative household maximizes a discounted sum of utilities of the form

Et

∞∑
s=0

βs
[Ct+s(1−Nt+s)

γ]1−σ − 1

1− σ
, (1)

where β ∈ (0, 1) is the discount factor and Nt denotes the household’s labor supply. The

consumption index Ct is a Dixit-Stiglitz CES aggregator of differentiated consumption goods

8 We abstract from fiscal policy dynamics by assuming that it follows a passive policy, in the sense
of Leeper (1991). Schmitt-Grohé and Uribe (2007) find that monetary distortions are not quantitatively
important in comparison to cashless economy and passive fiscal policy is optimal. We also consider extended
models involving capital accumulation and nominal wage rigidity in Appendix C and show that our results
are robust to the extensions.
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or varieties, given by

Ct =

[∫ 1

0

Ct(i)
1/(1+θt)di

]1+θt

, (2)

where θt = 1/(ηt − 1) is the firms’ average markup at time t and ηt is the elasticity of

substitution across varieties. The average markup follows

log(θt) = (1− ρθ) log(θ̄) + ρθ log(θt−1) + εθ,t, (3)

with εθ,t ∼ i.i.d.N(0, σ2
θ).

Households earn nominal wage Wt by supplying Nt and have access to a domestic bond

market where the riskless one-period nominal government bonds, Bt, are traded. These

bonds pay the gross interest rate Rt. Households also receive firms’ profits, Πprof
t , and

government transfers or taxes, Tt. Thus, the one-period budget constraint is given by

∫ 1

0

Pt(i)Ct(i)di+Bt ≤ Rt−1Bt−1 +WtNt + Πprof
t + Tt, (4)

where Pt(i) denotes the nominal price of variety i. Solving the household’s problem and

taking first-order approximations of the resulting efficiency conditions around the long-run

steady-state equilibrium yield a standard consumption Euler equation. Additional details

on the households’ optimality conditions are contained in Appendix A.

2.2 Firms

Each monopolistically-competitive firm uses labor to produce a differentiated variety i, with

a production function

Yt(i) = ztNt(i), (5)

where Yt(i) is the production of good i and zt is the aggregate productivity shock, which is

assumed to follow a univariate autoregressive process

log(zt) = ρz log(zt−1) + εz,t, (6)

with εz,t ∼ i.i.d.N(0, σ2
z).
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Following Calvo (1983) and Yun (1996), only a (1−α) ∈ [0, 1) fraction of firms are allowed

to optimally adjust their prices in any given time period. We assume that an α fraction of

firms that are not allowed to optimally reset their prices simply index their prices to the

steady-state gross inflation, Π, which coincides with the monetary authority’s time-invariant

long-run inflation target. Thus, each optimizing firm i chooses an identical optimal nominal

price, P̃t(i) = P̃t, to maximize the expected discounted sum of profits

∞∑
s=0

αsQt,t+s

[
P̃t(i)Π̄

sYt+s(i)−Wt+s(i)Nt+s(i)
]
, (7)

where Qt,t+s = βs λt+s/Pt+s
λt/Pt

is the nominal stochastic discount factor between time t and t+ s

and λt is the marginal utility of consumption.

The resulting first-order condition of the firms’ optimal pricing problem and the associ-

ated aggregate-price level equation

Pt =
[
(1− α)(P̃t)

− 1
θt + α

(
ΠPt−1

)− 1
θt

]−θt
make up the pricing block of the model. Taking first-order approximations of these equations

around the long-run steady-state equilibrium leads to the following New Keynesian Phillips

curve (NKPC) equation (see Appendix A for more details):

π̂t = βEtπ̂t+1 + λm̂ct + ût, (8)

where λ ≡ (1−αβ)(1−α)
α

, ût is the reduced-form cost-push shock, which is a function of the shock

to the average markup (θ̂t),
9 and m̂ct is log deviation of the real marginal cost. Alternatively,

we can write the NKPC as a function of the output gap, xt ≡ Yt/Y
∗
t :

π̂t = βEtπ̂t+1 + κx̂t + ût. (9)

The coefficient on the output gap, i.e., the slope of the NKPC, is κ =
[
(1− ḡ)−1 + N̄

1−N̄

]
λ,

with ḡ and N̄ denoting the steady-state government spending-output ratio and steady-state

9That is, ût ≡ (1−αβρθ)(1−α)
α

1
η̄−1 θ̂t.
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labor, respectively. Following Woodford (2003), we define potential output, Y ∗t , as the output

level under the flexible-price equilibrium with a constant average markup.

2.3 The monetary authority and government

The monetary authority follows a standard Taylor-type rule in which the authority engages

in interest-rate smoothing and responds to deviations of inflation from an inflation target,

as well as the output gap. We first present our benchmark rule in which the inflation target

is defined by the long-run inflation target (i.e., the steady-state inflation rate). We then

introduce our additional policy tool in which the inflation target is adjusted in response to

cost-push shocks.

• Benchmark: the long-run inflation targeting rule

log(Rt/R̄) = φR log(Rt−1/R̄) + (1− φR)
[
φπ log(Πt/Π̄) + φy log(Yt/Y

∗
t )
]
, (10)

where Πt is the quarterly rate of inflation and R̄ is the steady state nominal interest rate.

We allow for interest-rate smoothing in the policy rule, with φR denotes the smoothing

parameter. In addition to matching the actual behavior of central banks in many developed

economies, many authors (see e.g., Levin, Wieland and Williams (1999), Williams (1999),

and Woodford (1999)) argue that a high degree of interest rate inertia may be consistent with

optimal policy. We examine the welfare implication of interest-rate smoothing in Section 5.4.

Alternatively, as in Ireland (2007), we consider that instead of using the long-run constant

inflation target, the monetary authority reacts to the deviation of inflation from the poten-

tially time-varying, medium-run inflation target, which is adjusted in response to cost-push

shocks.10

10Ireland (2007) also considers the inflation target’s response to a technology shock, but we do not take
it into account in our policy framework because this shock does not create a trade-off between inflation and
output stabilization.
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• Proposed policy: the medium-run inflation targeting rule

log(Rt/R̄) = φR log(Rt−1/R̄) + (1− φR) [φπ log(Πt/Π
∗
t ) + φy log(Yt/Y

∗
t )] (11)

log(Π∗t ) = log(Π̄) + µπ∗υπ∗,t (12)

where υπ∗,t = ρπ∗υπ∗,t−1 + εθ,t and εθ,t is the innovation in the markup shock, as previously

defined in (3). The medium-run inflation targeting rule (MRIT) in (12) shows that the

medium-run inflation target, π∗t ≡ log(Π∗t ), is the sum of two distinct components. The first

component, π̄ ≡ log(Π̄), is the long-run inflation target. The second component, µπ∗υπ∗,t,

constitutes the endogenous adjustment of the target, where its evolution is directly controlled

by the monetary authority through the coefficients µπ∗ and ρπ∗ . The µπ∗ coefficient can be

interpreted as the instantaneous response to the markup shock, while ρπ∗ can be thought of

as the smoothness parameter, i.e., how the monetary authority spreads the target adjustment

across multiple periods.

The government issues one-period nominal risk-free bonds, makes transfers, imposes

taxes, and faces an exogenous expenditure stream, Gt. Thus, the one-period government

budget constraint is given by

Bt = Rt−1Bt−1 + PtGt + Tt. (13)

Government spending is assumed to follow a univariate autoregressive process of the form

log(Gt/Ḡ) = ρg log(Gt−1/Ḡ) + εg,t, (14)

with εg,t ∼ i.i.d.N(0, σ2
g).

2.4 Competitive equilibrium

The stationary equilibrium in our economy is characterized by prices and quantities that

satisfy the optimality conditions of the households and firms, in addition to a monetary policy

rule and the aggregate market clearing condition for goods, labor, and assets. Aggregate

10



Table 1: Calibration: baseline model

Parameter Value Description
σ 2.00 preference parameter
γ 3.86 preference parameter
β 1.04−1/4 quarterly discount rate
θ̄ 0.25 steady-state price markup 25%; price elasticity of demand 5
Ḡ/Ȳ 0.17 steady-state government spending to output ratio
α 0.80 share of firms that cannot change their price each period
φπ 1.50 inflation reaction
φy 0.50 output gap reaction
φR 0.80 interest-rate smoothing
ρz 0.95 persistence of productivity shock
ρθ 0.64 persistence of cost-push shock
ρg 0.56 persistence of government spending
σz 0.007 standard deviation of productivity innovation
σθ 0.115 standard deviation of cost-push innovation
σg 0.224 standard deviation of government spending innovation

employment is given by the sum of employment across firms:

Nt =

∫ 1

0

Nt(i)di. (15)

We assume that the government minimizes the cost of producing Gt. Thus, the public good

demand for each intermediate good i is given by Gt(i) =
(
Pt(i)
Pt

)− 1+θt
θt Gt. Thus, aggregate

demand is given by

Yt = Ct +Gt (16)

where Yt(i) =
(
Pt(i)
Pt

)− 1+θt
θt Yt and Yt(i) = Ct(i)+Gt(i). We provide the complete equilibrium

equations in Appendix A.

2.5 Calibration

Table 1 presents the model’s calibration, based on the U.S. economy. The choice of γ implies

that the steady-state labor N̄ is 0.20. η̄ = 5 corresponds to the steady-state average price

markup of θ̄ = 0.25. The steady-state ratio of government spending to output is Ḡ/Ȳ = 0.17.
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These values are consistent with the calibrated values of structural parameters in Schmitt-

Grohé and Uribe (2007). The steady-state gross inflation, or the long-run inflation target,

is Π̄ = 1. This zero net inflation coincides with the (Ramsey) optimal steady-state inflation

in our model.11 The Calvo parameter α, which is a key parameter for the welfare analysis

in the next section, is set to 0.8, implying an average duration of price fixity of 5 quarter.12

This calibrated Calvo parameter corresponds to the NKPC slope of λ = 0.052 in (8) when

marginal cost is used as the driving process for inflation and the NKPC slope of κ = 0.084

in (9) when the output gap is used.

Following the real business cycle literature, the persistence parameter ρz and the standard

deviation σz for the productivity shock are taken to be 0.95 and 0.007, respectively. For

monetary policy, we assume the standard Taylor-rule coefficients of φπ = 1.5 and φy = 0.5

with interest rate smoothing φR = 0.8 for the baseline case. This value of φR is consistent

with the estimate in Smets and Wouters (2007). The remaining four parameters for the

structural shock processes, ρg, ρθ, σg, and σθ are set to closely match four moments of

economic variables under the baseline model to the same moments for the postwar U.S.

economy: the standard deviations of inflation, the output gap, and the nominal interest

rate and the correlation between inflation and the output gap. The first three moments are

closely related to the utility-based welfare loss function, often represented by the weighted

sum of their variances, see e.g., Rotemberg and Woodford (1997), Rudebusch and Svensson

(1999), Woodford (2003), and Steinsson (2003) among others. In our cashless model, only the

variances of inflation and output gap affect welfare. We additionally consider the correlation

between inflation and the output gap because it is related to the magnitude of the trade-off

between inflation and output gap stabilization. Kiley (2013) shows that the estimate of

the welfare-relevant output gap from the Federal Reserve Board’s estimated New Keynesian

DSGE model of the U.S. economy is similar to the gap from the Congressional Budget Office

11The model contains two market distortions: the relative-price distortion due to sticky prices and the
average markup distortion arising from firms’ monopoly power. As shown in various studies, e.g., Benigno
and Woodford (2005), Khan, King and Wolman (2003), King and Wolman (1999), and Woodford (2002),
zero inflation minimizes both distortions and constitutes the optimal policy.

12Estimates in the literature of the Calvo parameter range from 0.72 to 0.83 for the postwar U.S. economy.
For example, they are found to be 0.83 in Levin et al. (2005), 0.79 for a DSGE-VECM model, 0.83 for a
DSGE model in Del Negro et al. (2007), and 0.72 in Herbst and Schorfheide (2014). The average of these
estimates is 0.79, which is quite close to our calibrated parameter value of α = 0.8.
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(CBO). Thus, we calculate these moments using postwar U.S. data of CPI inflation, the

CBO output gap, and the federal funds rate.13 The standard deviations of CPI inflation, the

CBO output gap, and the federal funds rate are 3.24, 2.37, and 3.40, respectively, while those

for the calibrated model are 3.24, 2.37, and 3.15, respectively.14 The correlation between

CPI inflation and the CBO output gap is 0.06 while that for the calibrated model is 0.07.

Thus, our calibration of the baseline model successfully reproduce the key moments for our

analysis.

3 Monetary policy and welfare

We conduct welfare analysis for four different policies in comparison to the Ramsey optimal

policy:

(i) Taylor rule: the standard Taylor rule (φπ = 1.5, φy = 0.5, φR = 0.8) without the MRIT;

(ii) Taylor-MRIT rule: the optimal MRIT conditional on the Taylor rule;

(iii) Optimized Taylor rule: the optimal implementable Taylor rule without the MRIT;

(iv) Optimized Taylor-MRIT rule: the optimal implementable Taylor rule with the MRIT.

The Taylor-MRIT rule (ii) entails a monetary authority that adjusts the medium-run

inflation target by choosing the parameter values µπ∗ and ρπ∗ in (12) to maximize the welfare

of the representative household, conditional on the Taylor rule coefficients φπ = 1.5, φy = 0.5,

and φR = 0.8. Under the optimized Taylor rule (iii), the monetary authority simply chooses

the welfare-maximizing values of φπ, φy and φR in (10), without adjusting the medium-run

inflation target. In policy (iv), all five policy parameters may be optimized. Formally, for

policies (ii), (iii), and (iv) we search for the relevant policy parameters that maximize the

13We use the sample period of 1949:Q1 to 2008:Q4. The CBO output gap is available from 1949:Q1. The
federal funds rate is available from 1954:Q3. Thus, we use the three month Treasury Bill rate for the period
before 1954:Q3. Note that the correlation between the federal funds rate and the three month Treasury Bill
rate is 0.99 for the sample period of 1954:Q3 to 2008:Q4.

14The standard deviations of inflation and the nominal interest rate are calculated using annualized rates.
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unconditional expectation of lifetime utility, E(Vt), where

Vt = Et

∞∑
s=0

βsU(Ct+s, Nt+s) (17)

and E denotes the unconditional expectation operator.15 For the welfare measure in (17) to

adequately capture the effect of uncertainty, we compute the second-order accurate solution

to the equilibrium policy functions, including for Vt.
16

Following Schmitt-Grohé and Uribe (2007), in searching for the optimal values of the

Taylor parameters, we restrict φπ ∈ (1, 3] and φy ∈ (0, 3] for policies (iii) and (iv). Schmitt-

Grohé and Uribe (2007) argue that policy coefficients larger than 3 would be difficult for

policymakers to communicate to the public. We also rule out those parameter values that

yield an indeterminate equilibrium. In addition, we restrict |µπ∗ | < 0.15 and ρπ∗ ∈ [0, 1)

when searching for the optimized coefficients in policies (ii) and (iv). The restriction on

the value of µπ∗ is somewhat arbitrary. However, an excessively large value of µπ∗ may

undermine the credibility of the monetary authority in delivering the stated objectives for

the same reason as Taylor-type rule parameters greater than 3.17

3.1 The Ramsey policy

To evaluate and compare the various policy rules above we use the time-invariant (timeless

perspective) stochastic Ramsey optimal policy. Under the Ramsey policy, the policy au-

thority acts benevolently and searches for the allocation that maximizes the welfare of the

representative agent. Following the standard approach in the literature, we abstract from

any specific form of the policy rule and search instead for the optimal Ramsey allocation.18

In addition, as in the competitive equilibrium, the Ramsey equilibrium is solved up to a

15Our results continue to hold if, instead, the policy parameters used are those that maximize the condi-
tional expectation, E0V0, i.e., conditional on the initial state of the economy being the nonstochastic steady
state.

16See Schmitt-Grohé and Uribe (2004) for a discussion on why a second-order approximation to the
equilibrium solution is needed for an accurate welfare computation. Also see Johnston, King and Lie (2014)
for the detail of the solution method that we use.

17We sidestep this possible credibility issue in this paper and leave it for future research.
18See, for example, Erceg, Henderson and Levin (2000), Khan, King and Wolman (2003), Lie (2015), and

Schmitt-Grohé and Uribe (2007).
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second-order approximation. Appendix A contains additional details on the derivation and

computation of the Ramsey policy. Armed with the Ramsey policy, we can then calculate the

conditional and unconditional welfare costs of any alternative policy relative to the Ramsey

policy, which is described in the following section.

3.2 Welfare cost measure

As in Schmitt-Grohé and Uribe (2007), we define the welfare cost of implementing an alterna-

tive policy as the fraction of consumption that the representative household would be willing

to give up under the Ramsey policy environment to be equally well off, as under the alter-

native policy environment. Specifically, let {Cr
t , N

r
t } and {Ca

t , N
a
t } be the state-contingent

plans for consumption and labor under the Ramsey policy and under the alternative policy,

respectively. The conditional welfare cost, λc, is implicit in the expression

E0

∞∑
t=0

βtU(Ca
t , N

a
t ) = E0

∞∑
t=0

βtU((1− λc)Cr
t , N

r
t ).

The expectation operator above makes clear that the welfare cost is conditional on the

initial state at time t = 0, which we assume to be the deterministic steady state under the

Ramsey policy. The deterministic steady state under the alternative policy is assumed to be

identical to that under the Ramsey policy. Similarly, the unconditional welfare cost, λu, can

be obtained from

E

∞∑
t=0

βtU(Ca
t , N

a
t ) = E

∞∑
t=0

βtU((1− λu)Cr
t , N

r
t ).

Here, E is the unconditional expectation operator. For the specific form of the utility

function and the calibrated parameters in Table 1, we can then calculate the second-order

approximations to λc and λu for any alternative policy rule.19

19In fact, since our utility function in (1) is identical to that in Schmitt-Grohé and Uribe (2007), we obtain
the same expressions for both λc and λu — see equations (38) and (39) in the expanded version of their
paper, Schmitt-Grohé and Uribe (2006).

15



Table 2: Baseline model: welfare costs of various policies

Conditional Unconditional

Policy Parameters Welfare Cost Welfare Cost σ(π̂t) σ(x̂t) σ(R̂t)
φπ φy φR µπ∗ ρπ∗ λc × 100 λu × 100

(i) Taylor rule 1.50 0.50 0.80 — — 0.298 0.312 3.240 2.368 3.150
(ii) Taylor-MRIT 1.50 0.50 0.80 -0.084 0.72 0.106 0.109 1.648 3.378 3.596
(iii) Optimized Taylor 3.00 0.16 0.80 — — 0.183 0.186 2.317 3.028 3.239
(iv) Optimized Taylor-MRIT 3.00 2.48 0.80 -0.150 0.72 0.035 0.034 1.242 2.920 5.846

Notes: (1) The conditional and unconditional welfare costs are in terms of percent consumption loss relative
to the Ramsey allocation. (2) The standard deviation σ(·) is expressed in percent (annualized for inflation
and nominal interest rate). (3) For the Taylor-MRIT rule (ii), we search for µπ∗ and ρπ∗ that maximize the
unconditional welfare, while fixing φπ = 1.5, φy = 0.5, and φR = 0.80. (4) For the optimized Taylor-MRIT
rule, we search for optimal φπ, φy, and µπ∗ , while fixing ρπ∗ to the optimized value found in rule (ii) and
φR = 0.80. (5) We restrict 1 ≤ φπ ≤ 3, 0 ≤ φy ≤ 3, and |µπ∗ | ≤ 0.15 when searching for optimized

coefficients. (6) Under the Ramsey policy, σ(π̂t) = 1.187, σ(x̂t) = 2.492, σ(R̂t) = 11.90.

4 The optimality of medium-run inflation target ad-

justment in the face of cost-push shocks

In this section, we evaluate the various policies discussed in the previous section. We analyze

how and why adjusting the medium-run inflation target in the face of cost-push shocks may

lead to a more optimal equilibrium allocation and improve households’ welfare.

4.1 Welfare under medium-run inflation targeting

Table 2 reports the conditional and unconditional welfare cost measures, λc and λu, in

comparison to the Ramsey policy. We find that the Taylor rule (i) yields conditional and

unconditional welfare costs of 0.298% and 0.312% of consumption relative to the Ramsey

policy. This is in fact quite a sizable business-cycle cost and is comparable to the finding in

Schmitt-Grohé and Uribe (2007).

We next study the implication of our proposed policy, the Taylor-MRIT rule (ii), where

the monetary authority can additionally adjust the medium-run inflation target in response

to cost-push shocks over time. Our numerical search finds optimal MRIT coefficients of

µπ∗ = −0.084 and ρπ∗ = 0.72.20 The negative value of µπ∗ implies that the monetary

20When we use the conditional welfare function as the criterion, the optimal parameter values that max-
imize E0(V0) are µπ∗ = −0.080 and ρπ∗ = −0.73, with λc × 100 = 0.106 and λc × 100 = 0.109. The
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authority decreases the medium-run inflation target when inflation increases due to a positive

realization of cost-push shock. All else equal, this policy action leads to a bigger inflation gap

(Πt/Π
∗
t ) compared to the standard Taylor rule (i) in (10) without the MRIT adjustment.

The bigger inflation gap translates to a more aggressive response to the cost-push shock

through a larger increase in the nominal interest rate, as evident from (11). In addition,

the substantial inertia in the Taylor-MRIT rule means that the monetary authority needs to

react to a realization of the cost-push shock in a highly persistent manner. This smoothing

adjustment can be explained by the persistent effect of the cost-push shock on inflation.

The welfare gain from the MRIT adjustment is significant. The Taylor-MRIT rule (ii)

yields conditional and unconditional welfare costs of 0.106% and 0.109% of consumption

relative to the Ramsey policy. When compared to the welfare costs associated with the

Taylor rule (i), the welfare gain implies that agents would be willing to give up more than

20 basis points of their consumption stream under the Taylor-MRIT rule (ii) to be as well

off as under the Taylor rule (i). Alternatively, using the unconditional cost measure, we can

say that the welfare gain from adopting the Taylor-MRIT rule over the Taylor rule is 65%.21

To better understand the reason for the welfare gain, we compute the standard deviations

of inflation (σ(π̂t)), the output gap (σ(x̂t)), and the nominal interest rate (σ(R̂t)). The

standard deviations σ(π̂t) and σ(x̂t) for the Taylor rule (i) are 3.24 and 2.37, respectively,

while they are 1.65 and 3.38 for the Taylor-MRIT rule (ii). These calculations show that

the MRIT, which allows for a more aggressive reaction to inflation due to cost-push shocks,

reduces inflation volatility by a factor of two, but only increases the volatility of the output

gap by about 43%. This, coupled with the fact that inflation variation carries a much larger

weight in the utility-based welfare measure relative to the output-gap variation, is the source

of the significant welfare gain.22

In addition to increasing output-gap volatility, another potential cost of adjusting the

MRIT in policy (ii) may arise from higher nominal interest-rate volatility: σ(R̂t) is 3.60 in

rule (ii) versus 3.15 in rule (i) under the standard Taylor rule. This potential cost, however,

welfare ranking across policy rules is also identical. Hence, the results are robust to the choice of the welfare
criterion.

21We find the welfare gain based on (0.312-0.109)/0.312 = 0.65.
22This much-larger weight on inflation variation can be seen by deriving the welfare-theoretic loss function,

as in Woodford (2003) and Benigno and Woodford (2005). We also illustrate this in Appendix D in the paper.
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does not affect welfare since in our cashless model the welfare function only depends on the

volatility of inflation and the output gap, as shown in Rotemberg and Woodford (1999),

Woodford (2003), and Benigno and Woodford (2005). We show later that even when we put

some weight on nominal interest-rate volatility in the welfare loss function, the welfare gain

from the huge reduction in inflation volatility dominates the cost of higher output-gap and

nominal interest-rate volatilities.

We next investigate whether the optimized Taylor rule (iii) can produce a welfare gain

comparable to the Taylor-MRIT rule (ii). In the first instance we only search for optimal

values of φπ and φy, while fixing φR to its calibrated value of 0.8. In Section 5.4, we explore

the welfare implication of interest rate smoothing. We find that the best implementable

Taylor-type rule requires an aggressive response to inflation and a somewhat muted response

to the output gap fluctuation. The optimized Taylor rule entails φπ = 3, which is the largest

allowable value, and φy = 0.16.

Our finding on the optimality of applying the largest allowable value for the inflation

coefficient is consistent with that in Schmitt-Grohé and Uribe (2007). It reflects the fact

that inflation variation is the most important element of the welfare function: a higher value

of φπ reduces the volatility of inflation arising from all three shocks. We find, however,

the optimal φy is not zero, in contrast to their finding. This discrepancy comes from two

important differences between our economy and the one considered in Schmitt-Grohé and

Uribe (2007): the presence of cost-push shocks in our model and the assumption that the

monetary authority responds to the deviation of output from its natural output level (i.e.,

the output gap), instead of deviations from the constant steady-state level. Since it is the

volatility of the output gap that matters for welfare instead of output, the optimal φy may no

longer be zero. Despite this, φy should not be too large, as responding too strongly to output-

gap fluctuations may be suboptimal because it may lead to higher inflation volatility coming

from cost-push shocks. Thus, the existence of the policy stabilization trade-off between

inflation and the output-gap due to the presence of cost-push shocks is responsible for the

low optimal value of φy relative to φπ — here, the trade-off is resolved in favor of inflation

stabilization. If there is no cost-push shock, and productivity and government spending

shocks are the only source of aggregate fluctuations, the inflation and the output-gap respond
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to them in the same direction. This means it does not matter whether the monetary authority

reacts strongly to inflation or output-gap fluctuations.23

In terms of welfare implications, the optimized Taylor-rule (iii) still yields non-negligible

conditional and unconditional welfare costs of 0.183% and 0.186%, respectively, under fixed

φR = 0.8. Thus, relative to the Taylor-MRIT rule (ii), the welfare gain from the optimized

Taylor-rule (iii) over the standard Taylor rule (i) is smaller. The standard deviation of

inflation in the optimized Taylor-rule is about 40% larger compared to that in the Taylor-

MRIT rule, while the standard deviation of the output gap is only about 10% smaller.

Hence, it appears that adjusting the medium-run inflation target leads to a better trade-off

between inflation and output-gap variations. We investigate this important finding in the

next section.

4.2 The trade-off between stabilizing inflation and the output gap

The extent of the inflation-output trade-off is an important consideration when conducting

monetary policy. The greater the trade-off is, the more difficulty the monetary authority

faces in stabilizing inflation and the output gap. We argue that the ability of the monetary

authority to adjust the medium-run inflation target in the face of cost-push shocks leads to a

more favorable inflation-output trade-off. This improvement in the trade-off leads to welfare

gain, above and beyond what is attainable in the standard Taylor-rule policy. This source

of inflation-output trade-off improvement, to the best of our knowledge, is a new result in

the literature.24

4.2.1 The improvement in the trade-off

We first show this improvement by comparing the impulse responses to a 1% cost-push

shock for various policies described above. As depicted in Figure 1, a positive cost-push

shock raises inflation and lowers the output gap on impact under all policies, including the

23In fact, without the cost-push shock (σθ = 0), we find that the optimized Taylor-type rule entails
φπ = φy = 3.

24Other sources have been identified in the literature. For example, Clarida, Gaĺı and Gertler (1999)
show that adopting a pre-commitment policy leads to an improved inflation variability-output variability
compared to a discretionary policy.
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Figure 1: Impulse response functions to a 1% cost-push shock

Notes: In generating the impulse responses, we calibrate the size of the innovation to the average markup,
εθ,t in (3), so that ut in (9) increases by one percent on impact relative to its steady-state value. The policy
coefficients for rules (i), (ii), and (iii) are presented in Table 2.

Ramsey policy.25 Under the Taylor rule (i), inflation jumps the highest on impact and reverts

25Under the Ramsey policy, complete price stability in response to a cost-push shock is not optimal. This
partial accommodation of the inflationary pressure is optimal because in addition to inflation variation, the
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back to the steady-state level slowly. The optimized Taylor rule (iii) with φπ = 3, φy = 0.16,

and φR = 0.8 produces only marginally smaller inflation fluctuations than the Taylor rule (i).

This, however, is enough to make the welfare costs smaller in the optimized Taylor rule in

spite of larger output gap fluctuations (bottom left panel), reflecting the fact that inflation

variation is more important than output-gap variation for welfare.

Meanwhile, under the Taylor-MRIT rule (ii) the response of inflation almost perfectly

matches that under the Ramsey policy throughout all periods. Inflation increases by less on

impact compared to rules (i) and (iii), and unlike those two policies, both the Ramsey policy

and the Taylor-MRIT rule (ii) induce a period of the inflation rate below its target following

an inflationary cost-push shock. The output gap, on the other hand, is less stabilized under

the Taylor-MRIT rule, consistent with the results in Table 2. However, output-gap move-

ments closely match those under Ramsey, and hence constitute a near-optimal response to

the cost-push shock.

One way to assess the relative improvement in the inflation-output trade-off is to calculate

output-gap variation relative to inflation variation when the monetary authority switches

from the Taylor-rule (i) to an alternative rule (j), for j=ii, iii, and iv, as

ε(j) = −
log(σ(x̂t)(j)/σ(x̂t)(i))

log(σ(π̂t)(j)/σ(π̂t)(i))
, (18)

where σ(x̂t)(j) and σ(π̂t)(j) are the standard deviations of the output gap and inflation,

respectively, under the monetary policy rule (j). The standard deviations represent the

variations in inflation and the output gap. As reported in Table 2, switching from the Taylor

rule (i) to each alternative rule of (ii)-(iii) always improves welfare, decreases the standard

deviation of inflation, and increases variation in the output gap. Thus, a larger value in (18)

implies a smaller trade-off improvement. Using (18) and the standard deviations reported in

Table 2, we find ε(ii) = 0.53 and ε(iii) = 0.72. The calculated value of ε(ii) = 0.53 implies, for

example, that reducing inflation variation by one percent through switching from the Taylor-

rule (i) to the Taylor-MRIT rule (ii) requires increasing output-gap variation by 0.53 percent.

Thus, adopting MRIT using rule (ii) has a larger inflation-output trade-off improvement

welfare function also depends on output-gap variation.
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compared to the optimized Taylor rule (iii). The improvement is more pronounced for the

optimized Taylor-MRIT rule (iv), which leads to a similar welfare level to that associated

with the Ramsey policy.

To further understand the intuition behind the improvement in the trade-off and the as-

sociated welfare gain, the top right panel of Figure 1 plots the impulse response of one-period

ahead expected inflation. The ability of the monetary authority in the Taylor-MRIT rule to

lower the inflation target following an inflationary cost-push shock leads to much-lower in-

flation expectations compared to standard Taylor rule (i) and the optimized Taylor rule (iii).

Lower expected inflation in turn yields lower current inflation for a given output gap and a

given realization of the cost-push shock. These responses in inflation and expected inflation

under the Taylor-MRIT rule are reminiscent of those under an optimal pre-commitment pol-

icy, i.e., the Ramsey policy. As discussed in Clarida, Gaĺı and Gertler (1999) and Steinsson

(2003) for example, in response to an inflationary cost-push shock, the optimal policy un-

der commitment entails lower inflation expectations than the optimal discretionary policy,

causing the inflation rate to be below its long-run target in some periods, as depicted in

Figure 1. Indeed, the impulse responses of expected inflation under the Taylor-MRIT rule

closely match those under Ramsey policy. In a way, one can view proper adjustments in the

medium-run inflation target as an additional commitment device, which improves welfare.

On the impulse response of the nominal interest rate, the Taylor-MRIT rule (ii) implies a

larger increase in the nominal rate in all periods than in the standard Taylor rule (i). Hence,

consistent with the results reported in Table 2, adjusting the medium-run inflation target

entails higher nominal interest-rate volatility, although it is comparable to the optimized

Taylor rule (iii). The higher volatility does not adversely affect welfare, however, in our

cashless model. In fact, the Ramsey allocation necessitates even larger nominal interest

rate fluctuations in response to the cost-push shock. It is noteworthy that the nominal rate

decreases on impact under Ramsey, instead of increasing as in the other three rules. The

Taylor-type rules (i)-(iii) restrict the dynamics of the nominal interest rate as a function of

inflation and the output gap and make the impulse response functions die out smoothly over

time. However, the Ramsey policy determines the optimal path of the nominal interest rate

without any such restrictions. This flexibility helps generate a smaller decline in the output
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gap in the first period compared to the Taylor-MRIT rule (ii), despite an almost-identical

increase in inflation.

4.2.2 The extent of the improvement

How much of an improvement in the inflation-output trade-off can the MRIT policy generate?

Can we achieve a similar welfare level to that under Ramsey with such a policy? To answer

these questions, we consider the optimized Taylor-MRIT rule (iv), where we search jointly

for optimal φπ, φy, and µπ∗ . The coefficient ρπ∗ is fixed at 0.72, which is the optimal value

under the Taylor-MRIT rule (ii).26 We also fix φR = 0.8.

The last row of Table 2 reports the results. Compared to the Taylor-MRIT rule (ii) in

which we fix the Taylor coefficients at φπ = 1.5 and φy = 0.5, the welfare costs are now

much smaller at 0.034-0.035% of consumption per capita. The optimized Taylor-MRIT rule

thus appears to be able to replicate the Ramsey allocation quite well. This policy calls for

the maximum allowable value for φπ = 3, a much larger value of φy = 2.48 compared to the

output-gap coefficient of 0.16 in the optimized Taylor rule (iii), and µπ∗ = −0.15. Thus, in

the face of a positive cost-push shock, the monetary authority responds more aggressively

to output gap fluctuations. It is optimal to do so because the monetary authority can now

respond to the inflationary pressure by further reducing the medium-run inflation target, i.e.,

a more negative value of µπ∗ . Without the ability to adjust the medium-run inflation target,

reacting strongly to the output gap (φy = 2.48) would not be optimal, as is apparent from

the optimized Taylor rule (iii). In this standard policy environment with a fixed inflation

target, a much-more aggressive response to inflation fluctuations originating from cost-push

shocks, i.e., a relatively larger value of φπ and a lower value of φy, is optimal because

inflation fluctuations are much more important than output-gap fluctuations in the utility-

based welfare measure.

The larger extent of the improvement in the trade-off and the associated larger welfare

gain under the optimized Taylor-MRIT rule are apparent if we look at the standard deviations

of inflation and the output gap. Not only are σ(π̂t) and σ(x̂t) smaller than those under the

Taylor-MRIT rule (ii), they are also both smaller than those under the optimized Taylor

26The results do not materially change when we also numerically search for optimal ρπ∗ .
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rule (iii). Moreover, based on (18), we find ε(iv) = 0.22. The improvement is much more

pronounced for the optimized Taylor-MRIT rule (iv), which leads to a similar welfare level

to that associated with the Ramsey policy.

4.2.3 Unconstrained Taylor-rule coefficients

The findings above also raise the question of whether the allocation under the optimized

Taylor-MRIT rule (iv) can be achieved solely with an unconstrained Taylor rule, i.e., when

we remove the upper limit of φπ and φy coefficients. If so, the improvement in the inflation-

output trade-off under the MRIT policy is just a mirage, arising from an implementability

restriction. To investigate this, we look at the implications of various values of φπ and φy

for unconditional welfare costs, while setting µπ∗ = 0 throughout. The results are shown in

Figure 2.

The top panel of Figure 2 depicts the welfare cost when we vary φπ, while fixing φy = 0.16,

which is the optimal value in the optimized Taylor rule (iii). The panel shows that the

unrestricted optimal value of φπ is 25 — above this value, the welfare cost starts increasing

again. Intuitively, a too-high value of φπ means that the monetary authority responds too

aggressively to inflation fluctuations and too timidly to output-gap fluctuations given the

trade-off originating from cost-push shocks. The middle and bottom panels of Figure 2

depict the welfare cost when we vary φy, given a value of φπ. When the value of φπ is fixed

to 3, the optimal φy value is 0.16. The welfare cost is larger when 0 < φy < 0.16 since

the monetary authority’s response to output-gap fluctuations is too timid. On the contrary,

when φy > 0.16 it responds too aggressively. When φπ is fixed at a larger value of 50 (bottom

panel), the optimal value of φy becomes larger.27 All in all, the results depicted in Figure 2

imply that the jointly optimized values of φπ and φy should be finite and relatively small.

More importantly, at least for the range of coefficient values considered in Figure 2, the

welfare costs appear to be at least 0.05%, which is greater than the welfare cost from the

optimized Taylor-MRIT rule (iv). Thus, the improvement in the inflation-output trade-off

under the MRIT policy is evident.

27This makes sense since in the presence of a policy stabilization trade-off between inflation and output-
gap, a more aggressive response to inflation fluctuations calls for a more aggressive response to output-gap
fluctuations, albeit to different degrees.

24



Figure 2: Unconditional welfare costs under the Taylor-type rule

Notes: In each panel, we fix one of policy coefficients, φπ or φy, and vary the other parameter. The asterisk
mark indicates the smallest welfare cost for each setup.

Figure 3 offers a more comprehensive, three-dimensional picture of the unconditional

welfare costs when we jointly vary φπ ∈ (1, 100] and φy ∈ (0, 10]. Again, the figure shows

that the joint optimal values of φπ and φy are finite. The smallest unconditional welfare cost is
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Figure 3: Unconditional welfare costs under the Taylor-type rule for various values of φπ and
φy

Notes: We plot the unconditional welfare costs when we jointly vary the monetary policy coefficients φπ and
φy. All other parameter values are set to those for the baseline model presented in Table 1.

at λu = 0.05%, which is achieved at φπ = 73 and φy = 5.28 We note that this combination of

optimal Taylor-rule coefficients is not unique. For example, one can always achieve a similar

optimal allocation by increasing both φπ and φy appropriately. Despite this, it is not possible

to reduce the welfare cost much beyond λu = 0.05%. This indicates that the improved

inflation-output trade-off under the MRIT policy is not due to the restriction on the values

φπ and φy. Treating the optimized Taylor-MRIT rule (iv) in Table 2 as the best attainable

policy, the monetary authority could further reduce the welfare cost by 32% using the MRIT

rule.29 In addition, we search over the policy coefficients under the Taylor-type rule with

µπ∗ = 0 that would lead to the same welfare level associated with the Taylor-MRIT rule (ii).

We find that multiple pairs of coefficients—for example, (φπ, φy) = (7.5, 0.0), (27.5, 6.5)—

can achieve a similar welfare level, but they require impractically-high inflation-feedback

coefficients. The inflation-feedback coefficient of φπ = 7.5 is the lower bound.

28Unlike the result in Schmitt-Grohé and Uribe (2007), it is not possible in our environment to fully
replicate the Ramsey allocation (i.e., zero welfare cost) due to the existence of the cost-push shock.

29That is, (0.05− 0.034)/0.05 = 0.27.
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5 Robustness analysis

This section explores the robustness of our results along several key dimensions. We first

examine the relationship between the welfare gains from the MRIT policy and the Phillips

curve’s slope, which is governed by the Calvo parameter. Second, we explore the potential

implication of interest rate volatility on the welfare cost. Third, we consider the extent to

which our results are sensitive to different Taylor-rule specifications, particularly involving

the measure of real activity the monetary authority reacts to. Fourth, we examine the

importance of nominal interest-rate smoothing. Fifth and finally, we consider to what extent

adding capital accumulation and sticky wages (i.e., richer model features) affects our findings

and find that they are robust to the additions.

5.1 The NKPC slope

The flattening of the NKPC since the mid-1980s has been widely documented in the liter-

ature.30 As discussed in Appendix D, the flattening of the NKPC complicates the conduct

of monetary policy from three perspectives: (i) the fraction of inflation variation due to

cost-push shocks becomes increasingly substantial; (ii) controlling inflation through mone-

tary policy becomes much harder in the face of cost-push shocks; and (iii) inflation becomes

completely dominant over the output gap in determining household welfare. For a given

monetary policy rule, such an environment results in lower welfare. It is therefore impera-

tive to assess how the extent of the welfare gain from the MRIT policy varies with the slope

of the NKPC.

The NKPC slope in (8) is given by λ = (1 − αβ)(1 − α)/α and is mainly governed

by the Calvo parameter α. To establish the relationship between the NKPC slope and the

effectiveness of monetary policy, we set α = 0.70 for a steep slope and α = 0.85 for a flat slope.

These values are closely matched to the pre- and post-1980 U.S. economies. For example,

Bhattarai, Lee and Park (2016) estimate the Calvo parameter to be 0.67 for 1960:Q1 to

1979:Q2 and 0.84 for 1982:Q4 to 2008:Q2. These Calvo parameter values correspond to

0.166 for the pre-1980 period and 0.032 for the post-1980 period under the marginal-cost-

30See our discussion in introduction and references therein for more details.
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Table 3: The Phillips curve slope: welfare cost of various policies

Conditional Unconditional

Policy Parameters Welfare Cost Welfare Cost σ(π̂t) σ(x̂t) σ(R̂t)
φπ φy φR µπ∗ ρπ∗ λc × 100 λu × 100

(a) flat Philips curve: α = 0.85

(i) Taylor rule 1.50 0.50 0.80 — — 0.503 0.537 3.458 2.464 3.136
(ii) Taylor-MRIT rule 1.50 0.50 0.80 -0.091 0.72 0.099 0.100 1.593 4.672 4.665

(b) steep Phillips curve: α = 0.70

(i) Taylor rule 1.50 0.50 0.80 — — 0.171 0.176 3.228 2.138 3.292
(ii) Taylor-MRIT rule 1.50 0.50 0.80 -0.076 0.72 0.123 0.127 2.397 2.392 3.259

Notes: (1) For each α case, the standard deviation of the innovation in the markup shock εθ,t is rescaled so
that the variance of the reduced-form cost-push shock ût in the NKPC remains the same as in the baseline
case (α = 0.80) — all other parameter values are set to those in Table 1. (2) In rule (ii) in each case
we fix ρπ∗ = 0.72, i.e., the optimal value found in the baseline case in Table 2. (3) The conditional and
unconditional welfare costs are in terms of percent consumption loss relative to the Ramsey allocation in
each α case, i.e., we resolve the Ramsey allocation for each case. (4) The standard deviation σ(·) is expressed
in percent (annualized for inflation and nominal interest rate).

based NKPC in (8). In addition, the slope κ in the output-gap-based NKPC in (9) is equal

to 0.268 and 0.052 for the same two sub-periods. Thus, the slope of the NKPC appears to

have flattened substantially, with the slope coefficient reduced to about a fifth of its pre-1980

period size.

Table 3 reports the welfare implications of the two different slopes of the NKPC under

the Taylor rule (i) and the Taylor-MRIT rule (ii). In each case, we rescale the standard

deviation of the innovation in the markup shock εθ,t so that the variance of the reduced-form

cost-push shock ût in the NKPC in (9) remains the same as in the baseline case of α = 0.8.

We do this to focus on the impact of the change in the slope of the NKPC on the effectiveness

of monetary policy rules.

When the NKPC is flat (α = 0.85), the standard Taylor rule implies a conditional and

an unconditional welfare cost of 0.503% and 0.537%, respectively. The larger welfare costs

than those under α = 0.70 and α = 0.80 in the baseline case are to be expected, since as

mentioned above and discussed in Appendix D, a flatter NKPC makes it relatively harder

for the monetary authority to stabilize inflation. However, the monetary authority can do

better by adjusting the medium-run inflation target in the face of cost-push shocks when
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the Phillips curve becomes flatter. Here, the optimal µπ∗ value is more negative at −0.091

and the welfare gain is significantly larger compared to the baseline case reported in Table 2.

The reverse occurs under a steep Phillips curve (α = 0.70): the optimal µπ∗ value is less

negative at −0.076 and the welfare gain appears to be lower. Using the unconditional

welfare cost criterion, we can calculate the welfare gain by (λu,i − λu,ii)/λu,i where λu,i and

λu,ii are the unconditional welfare costs for the Taylor rule (i) and the Taylor-MRIT rule

(ii), respectively. We find that the welfare gain from adopting the Taylor-MRIT rule over

the Taylor rule increases from 28% for α = 0.70 to 81% for α = 0.85. In the baseline case of

α = 0.8, reported in Table 2, the corresponding welfare gain is 65%.

The findings in Table 3 indicate that our proposed policy of properly adjusting the

medium-run inflation target is even more appealing with the flattening of the Phillips curve.

Considering the current economic environment of low inflation rates under a flat Phillips

curve in many developed economies, the welfare benefit of such a policy is non-trivial and

can even be substantial.

5.2 Aversion to interest-rate volatility

One potential cost of the MRIT policy is a higher nominal interest-rate volatility σ(R̂t), as is

evident from its standard deviations reported in Table 2 and from the impulse responses in

Figure 1. In our cashless model, it is well-known that the utility-based welfare function does

not depend on nominal interest rate fluctuations.31 A high value of σ(R̂t) therefore does

not adversely affect welfare. Nonetheless, here, we perform a check on the possible welfare-

reducing effect of nominal interest rate fluctuations. Instead of building a monetary model

with an explicit consideration for σ(R̂t), we perform an ad-hoc check using the following

quadratic welfare loss function:

L = σ(π̂t)
2 + λxσ(x̂t)

2 + λRσ(R̂t)
2 (19)

31See the derivations of the quadratic loss function in Benigno and Woodford (2005), Rotemberg and
Woodford (1999), Steinsson (2003), and Woodford (2003).
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Table 4: Welfare losses of various policies based on simple loss functions

Model Woodford’s (2003) loss function Williams’s (1999) loss function
standard deviations (λx = 0.048) (λx = 1)

σ(π̂t) σ(x̂t) σ(R̂t) λR = 0 λR = 0.077 λR = 0.154 λR = 0 λR = 0.02 λR = 0.04
(i) Taylor rule 3.240 2.368 3.150 10.77 11.53 12.29 16.11 16.30 16.50
(ii) Taylor-MRIT 1.648 3.378 3.596 3.26 4.26 5.26 14.13 14.39 14.64
(iii) Optimized Taylor 2.317 3.028 3.239 5.81 6.62 7.42 14.54 14.75 14.96
(iv) Optimized Taylor-MRIT 1.242 2.920 5.846 1.95 4.58 7.21 10.07 10.75 11.44

Notes: The welfare loss function has a general form of L = σ(π̂t)
2 + λxσ(x̂t)

2 + λRσ(R̂t)
2. The standard

deviation σ(·) is expressed in percent (annualized for inflation and nominal interest rate).

where λx and λR represent the relative weight on the output-gap and the nominal interest

rate stabilization, respectively. We consider several different values of λx and λR, based

on the values used in Williams (1999) and Woodford (2003): the former considers λx = 1

(hence, equal weights between inflation and output stabilization) and λR = 0.02, while the

latter uses λx = 0.048 and λR = 0.077, based on reasonable calibrations of a micro-founded

model. In addition, we consider a more conservative case in which the importance of nominal

interest rate stabilization (λR) is doubled for both welfare loss functions.

Table 4 reports the findings. First, based on Woodford’s loss function (with λR = 0.077),

it turns out that the Taylor-MRIT rule (ii) yields the smallest welfare loss compared to the

other three policies. Even though inflation is the least volatile in the optimized Taylor-MRIT

rule (iv), the cost in terms of a higher σ(R̂t) makes it less desirable than the Taylor-MRIT

rule (ii). The welfare ranking across policies is the same as in Table 2, however, when we

assume no direct welfare implication of nominal interest rate fluctuations (λR = 0). Here, for

example, the optimized Taylor rule (iii) has three times the welfare loss than the optimized

Taylor-MRIT rule (iv). In fact, across the different values of λR, the optimized Taylor

rule (iii) has the largest welfare loss compared to the two policies with MRIT adjustments

(policies (ii) and (iv)), despite of having the lowest σ(R̂t). This remains true even when the

importance of nominal interest rate stabilization is doubled (λR = 0.154).

Under Williams’ loss function we find that for all three values of λR we consider (λR = 0,

0.02, and 0.04), the optimized Taylor-MRIT rule (iv) yields the smallest welfare loss. It is

still the case that compared to MRIT policies (ii) and (iv), the optimized Taylor rule (iii) has

the largest welfare loss. Thus, while the welfare gains from MRIT adjustments are reduced
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Table 5: Welfare cost of various policies under different Taylor-rule specifications

Conditional Unconditional

Policy Parameters Welfare Cost Welfare Cost σ(π̂t) σ(x̂t) σ(R̂t)
φπ φy φgy µπ∗ λc × 100 λu × 100

(a) log(Rt/R̄) = φR log(Rt−1/R̄) + (1− φR)[φπ log(Πt/Π̄) + φgy{log(Yt/Y
∗
t )− log(Yt−1/Y

∗
t−1)}]

(i) Taylor rule 1.50 — 0.50 — 0.351 0.363 3.085 3.441 2.856
(ii) Taylor-MRIT 1.50 — 0.50 -0.021 0.299 0.308 2.638 3.840 2.875
(iii) Optimized Taylor 3.00 — 0.25 — 0.190 0.193 2.220 3.316 3.080
(iv) Optimized Taylor-MRIT 3.00 — 0.00 -0.014 0.167 0.168 1.782 3.786 3.243

(b) log(Rt/R̄) = φR log(Rt−1/R̄) + (1− φR)[φπ log(Πt/Π̄) + φy log(Yt/Y
∗
t ) + φgy{log(Yt/Y

∗
t )− log(Yt−1/Y

∗
t−1)}]

(i) Taylor rule 1.50 0.25 0.25 — 0.296 0.309 3.099 2.741 2.936
(ii) Taylor-MRIT 1.50 0.25 0.25 -0.052 0.158 0.163 1.959 3.503 3.135
(iii) Optimized Taylor 3.00 0.16 0.92 — 0.178 0.183 2.371 2.814 3.791
(iv) Optimized Taylor-MRIT 3.00 2.54 2.74 -0.150 0.025 0.025 1.340 2.575 6.265

Notes: In all cases, we fix φR = 0.80 — furthermore, for the MRIT policies (ii) and (iv), we fix ρπ∗ = 0.72,
equal to its optimal value in the baseline case reported in Table 2. All other aspects are identical as in
Table 2, including the parameter values and the standard deviations of the exogenous shocks.

when the welfare function depends on nominal interest rate fluctuations in addition to those

of inflation and the output gap, it does not nullify them altogether.

5.3 Alternative Taylor-rule specifications

We next investigate whether the welfare gains from the MRIT policy are sensitive to assuming

different Taylor-rule specifications.32 In particular, instead of responding to the output-

gap, we consider alternative scenarios where the monetary authority responds to a different

measure of real economic activity in the Taylor rule (10) or (11). The findings for various

policy rules (i)-(iv) are reported in Table 5, where in all cases, we fix φR = 0.8. Furthermore,

for the MRIT policies (ii) and (iv), we fix ρπ∗ = 0.72, equal to its optimal value in the

baseline case reported in Table 2.

32We thank an anonymous referee for suggesting this analysis.
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5.3.1 Responding to output gap growth

We first consider a case where the measure of real activity is the growth rate of the output

gap, log(Yt/Y
∗
t )− log(Yt−1/Y

∗
t−1), so the Taylor-rule specification is given by

log(Rt/R̄) = φR log(Rt−1/R̄) (20)

+(1− φR)
[
φπ log(Πt/Π

∗
t ) + φgy

{
log(Yt/Y

∗
t )− log(Yt−1/Y

∗
t−1)
}]

We assume φπ = 1.50 and φgy = 0.50 for the standard Taylor rule (i). As reported in panel

(a) of Table 5, both conditional and unconditional welfare costs of the Taylor rule (i) are

larger compared to the corresponding rule in Table 2. Although the rule specification (20)

yields a slightly lower σ(π̂t), the standard deviation of the output gap σ(x̂t) is appreciably

higher.

Why are the welfare costs larger when the monetary authority responds to output gap

growth than when responding to the output-gap level? Consider a persistent inflationary

cost-push shock, which reduces the output gap on impact. When the economy was initially at

the steady state, this shock implies negative output gap growth on impact — but assuming

no other shock after the impact period, the growth rates become positive in subsequent

periods. All else equal, this means that responding to the output gap growth (φgy > 0) leads

to a smaller increase in Rt on impact, but a larger increase in Rt after that. The former leads

to a higher σ(π̂t) and lower σ(x̂t), while the latter implies a lower σ(π̂t) and higher σ(x̂t).

These conflicting effects in turn imply that the welfare costs may be largely insensitive to

the value of φgy and reacting too strongly to the fluctuations in output gap growth could

be welfare-reducing.33 In fact, we find that setting φgy = 0—while leaving other parameters

unchanged—yields a smaller unconditional welfare cost of 0.342% in comparison to 0.363%

when φgy = 0.5.34 Simply put, the growth rate of the output gap is not a welfare-relevant

measure of real activity in the Taylor-type rule. Since in the model it is the output gap level,

not its growth rate, that matters for welfare, the monetary authority should respond to the

33A similar logic applies for the other two shocks. Under a positive productivity shock (or a negative
government purchase shock) starting at the steady state, for example, output gap growth is negative on
impact, while it’s always positive in subsequent periods.

34When φgy = 0, σ(π̂t) = 2.982 and σ(x̂t) = 3.470.
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fluctuations of the former. This point is important when assessing the extent of the welfare

gain under the MRIT policies (ii) and (iv) below.

Under the Taylor-MRIT rule (ii) (where we still fix φπ = 1.50 and φgy = 0.50), while

there still exists a welfare improvement from the MRIT adjustment, the extent of the im-

provement is considerably smaller than under the baseline Taylor-rule specification discussed

in Section 4. Here, the optimal µπ∗ value is less negative at −0.021 and the unconditional

welfare cost is still 0.308%, which implies a welfare gain is only 15% compared to the Taylor

rule (i).

The optimized Taylor rule (iii) is able to produce lower welfare costs than rule (ii). Here,

the optimal φπ is 3 and the optimal φgy is 0.25. The larger reduction in the welfare costs under

this policy stems mostly from the higher value of φπ, which reduces inflation variation arising

from cost-push shocks and both inflation and output gap variations arising from productivity

and government purchase shocks. It is possible, however, to lower the welfare costs further

by additionally adjusting the medium-run inflation target under the optimized Taylor-MRIT

rule (iv), though to a smaller extent compared to in the baseline Taylor-rule specification

(11). Recall that under the baseline specification, the optimal policy combination in the

face of cost-push shocks is to aggressively adjust the inflation target (µπ∗ = −0.15) and

to strongly respond to output gap fluctuations (φy = 2.48). This policy combination is

infeasible under the specification (20).

5.3.2 Responding to the output gap level and growth rate

What happens when we assume the following Taylor-rule specification,

log(Rt/R̄) = φR log(Rt−1/R̄) + (1− φR)

 φπ log(Πt/Π
∗
t ) + φy log(Yt/Y

∗
t )

+φgy
{

log(Yt/Y
∗
t )− log(Yt−1/Y

∗
t−1)
}
 , (21)

where the monetary authority responds to the fluctuations in both the level and the growth

rate of the output gap. This specification is used in the estimated model for the U.S. economy

in Smets and Wouters (2007). Panel (b) in Table 5 reports the findings, assuming φπ = 1.50

and the equal weight of φy = φgy = 0.25 in rules (i) and (ii).

Looking at the result under the Taylor-MRIT rule (ii), it is apparent that the optimal µπ∗
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is found to be between the optimal value based on the baseline specification of responding to

the output gap only (11) reported in Table 2 and the specification of responding to output

gap growth only (20) reported in panel (a) of Table 5. The unconditional welfare gain

from the MRIT adjustment is (0.309 − 0.163)/0.309 = 47%, which is smaller than under

the baseline specification (65%) but larger than in the case where the monetary authority

responds to output gap growth only (15%). The Taylor-MRIT policy (ii) also yields slightly

lower welfare costs compared to the optimized Taylor-rule policy (iii), where we fix µπ∗ = 0

but search for the optimal set of {φπ, φy, φgy} values.

Importantly, with specification (21) in which the monetary authority can respond to

the variation in the welfare-relevant output gap level, the optimized Taylor-MRIT policy

(iv) is now able to replicate the Ramsey allocation: the welfare costs are trivial at 0.025%

of consumption per capita. Once again, the optimal policy combination involves a strong

response to inflation fluctuations (φπ = 3), a strong response to output gap fluctuations

(φy = 2.54), and an aggressive adjustment of the medium-run inflation target (µπ∗ = −0.15).

The value of φgy hardly matters for welfare. When we set φgy = 0 instead of φgy = 2.74 in

policy (iv) for example, the unconditional welfare cost is now 0.034%.

To sum up, with either alternative rule specification, we still find that adopting the

MRIT policy is welfare-improving. But the extent of the improvement does depend on the

Taylor-type rule specification.

5.4 Interest-rate smoothing

Next, we assess the importance of interest-rate smoothing in the Taylor-type rule for our

results. Figure 4 plots the unconditional welfare costs under the optimized Taylor rule (iii)

for different values of the smoothing parameter φR. For each φR ∈ [0, 1) we compute the

optimal {φπ, φy} coefficients and the associated welfare cost. Also plotted in the figure

are the unconditional welfare costs under the Taylor-MRIT rule (ii), fixing φR = 0.8 (the

benchmark value) and φR = 0 (no interest-rate smoothing).

In line with the discussions in Levin, Wieland and Williams (1999), Williams (1999), and

Woodford (1999), we find that a high degree of interest rate inertia improves welfare. Here,

the welfare cost is at its minimum when φR = 0.76, with φπ = 3 and φy = 0.15, resulting
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Figure 4: Unconditional welfare costs under the optimized Taylor rule (iii) for different
degrees of interest-rate smoothing

Notes: (1) We plot the unconditional welfare cost for the optimized Taylor rule (iii) given each value of φR
(solid line). The asterisk mark indicates the lowest welfare cost with λu = 0.185%, achieved when φπ = 3,
φy = 0.15, and φR = 0.76. We restrict 1 ≤ φπ ≤ 3 and 0 ≤ φy ≤ 3 when searching for the optimal coefficients
as in the baseline case. (2) Under the Taylor-MRIT rule (ii) when φR = 0 (dotted line), the unconditional
welfare cost is λu = 0.147% and the optimal MRIT coefficients are µπ∗ = −0.072 and ρπ∗ = 0.79. (3) Under
the Taylor-MRIT rule (ii) when φR = 0.8 (dashed line), the unconditional welfare cost is λu = 0.109% and
the optimal MRIT coefficients are µπ∗ = −0.084 and ρπ∗ = 0.72.

in an unconditional welfare cost of 0.185%.35 These policy coefficients and the associated

welfare cost are very similar to those under rule (iii) in Table 2 when we fix φR = 0.8. More

importantly, we find that irrespective of the degree of interest-rate smoothing, the welfare

costs under the optimized Taylor rule (iii) are higher than the cost under the Taylor-MRIT

rule (ii). Not only this is true when φR = 0.8 in the benchmark case presented in Table 2,

but also when there is no smoothing (φR = 0) where the welfare cost is higher. Thus, our

results do not appear to be sensitive to the degree of interest-rate smoothing in the policy

rule.

35Note that the optimal {φπ, φy, φR} values under rule (iii) would be exactly {3, 0.15, 0.76} if we search
for all three parameter values that minimize the unconditional welfare cost.

35



5.5 Extensions with capital accumulation and sticky wages

We also examine the robustness of our results when we extend the model to include cap-

ital accumulation or nominal wage rigidity. As shown in Appendices B and C, although

each feature affects the extent of the welfare improvement, our policy prescription of MRIT

adjustment still yields a non-trivial welfare gain that is not attainable within a standard

Taylor-type rule with a constant inflation target. There is evidence that capital accumu-

lation makes the policy prescription even more potent. That is, a given decrease in the

medium-run inflation target following an inflationary cost-push shock leads to a higher wel-

fare gain than in the baseline model without capital accumulation. With sticky wages,

there is an additional implication involving the trade-off between the stabilization of the

output-gap, price inflation, and wage inflation. This additional friction changes the way the

stabilization trade-off is improved. There is an indication that the MRIT policy leads to an

improved trade-off between wage inflation stabilization and the other two stabilization goals

(price inflation and the output gap).

6 Conclusion

In this paper we show that there is an important role for inflation target adjustment in a

central bank’s stabilization policy. Our findings demonstrate that it is welfare-improving

to adjust the medium-run inflation target in the opposite direction to a realization of a

cost-push shock. That is, the target needs to be increased when negative cost-push shocks

contribute to a low-inflation environment. This additional policy tool improves the policy

stabilization trade-off and leads to significant welfare improvement that is not attainable in

a conventional interest-feedback rule with a constant long-run inflation target. Moreover,

the welfare implications are more pronounced under a flatter Phillips curve. Our results are

robust to various extensions and changes to the model such as capital accumulation, nominal

wage rigidity, and different interest-rate rules.

Our proposed scenario is relevant to the current U.S. low-inflation environment since the

recovery from the Great Recession. Inflation has been persistently below the Fed’s 2% target

since the target was introduced in 2012 and the economy appears to have approached the
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long-run unemployment rate in 2017. In addition, the Phillips curve appears to be flatter

than in the past as pointed out by Blanchard (2016). If inflation continues to undershoot the

2% target while job growth remains strong and the unemployment rate is below the long-

run unemployment rate, low inflation and low unemployment can be largely attributable to

negative “cost-push” or similar types of shocks such as changes in price and wage markups

and oil price shocks. If this is the case, our findings suggest that it may be prudent for the

Federal Reserve to increase its inflation target, at least in the medium run.
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Appendices

A Model

This appendix describes additional details of the model and computational issues.

Our model consists of a representative household, a continuum of monopolistically-

competitive firms producing differentiated varieties, and a monetary policy authority. The

model is close to the model used in Schmitt-Grohé and Uribe (2007), although we abstract

from monetary distortions, capital accumulation, and fiscal policy.

A.1 Households

Households choose the state-contingent consumption, Ct, labor service, Nt, and one-period

discount bond, Bt, to maximize the lifetime utility,

Et

∞∑
s=0

βs
[Ct+s(1−Nt+s)

γ]1−σ − 1

1− σ
,

subject to the per-period nominal budget constraint

PtCt +Bt ≤ Rt−1Bt−1 +WtNt + Πprof
t + Tt,

or, in real terms,

Ct + bt ≤ Rt−1
bt−1

Πt

+ wtNt +
Πprof
t

Pt
+ τt.

bt ≡ Bt/Pt is real bond, Rt is the nominal interest rate, wt is the real wage,
Πproft

Pt
is the proceed

of real profits from intermediate-goods firms (owned by households), and τt is the real tax

or transfer. The consumption index Ct is a Dixit-Stiglitz CES aggregator of differentiated

consumption goods or varieties, given by

Ct =

[∫ 1

0

Ct(i)
1/(1+θt)di

]1+θt

(A.1)
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where

θt = 1/(ηt − 1) (A.2)

is the firms’ stochastic average markup at time t and ηt is the elasticity of substitution across

varieties.

The resulting households’ efficiency conditions:

0 = C−σt (1−Nt)
γ(1−σ) − λt (A.3)

0 = −γC1−σ
t (1−Nt)

γ(1−σ)−1 + λtwt (A.4)

0 = λt − βRtEt
λt+1

Πt+1

(A.5)

Here, λt is the Lagrange multiplier (the shadow cost of consumption).

A.2 Firms

Firms produce the differentiated varieties using the production function

Yt(i) = ztNt(i).

The labor market is global. Firms face infrequent opportunities to adjust their prices opti-

mally in a Calvo (1983) manner, with probability 1− α every period. When a firm i is not

allowed to adjust optimally, with probability α, it simply indexes its current prices to the

constant long-run (steady-state) inflation target:

Pt(i) = Pt−1(i)Π.

Given the CES aggregation and the above structure, the demand for each variety i at

time t+ j for firms that last adjusted its price optimally at time t is

Yt+j(i) =

[
P̃tΨjt

Pt+j

]−ηt
Yt+j,
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where, given the indexation scheme,

Ψjt = Π
j

Yt is the aggregate output and P̃t is the common optimal price at t chosen by all optimizing

firms, satisfying

0 = Et

∞∑
j=0

αjQt,t+jYt+jP
ηt
t+jΨ

1−ηt
jt

[
P̃t −

ηt
ηt − 1

MCt+jΨ
−1
jt

]
.

Qt,t+j ≡ βjEt
λt+j/Pt+j
λt/Pt

, MCt, and Pt denoting the nominal stochastic discount factor (between

time t and t+ j), nominal marginal cost, and the aggregate price level, respectively.

The aggregate price level is given by

P 1−ηt
t = (1− α)(P̃t)

1−ηt + α
(
ΠPt−1

)1−ηt

Equating aggregate demand with aggregate supply, we obtain (after some rearranging)

ztNt = Yt∆t, (A.6)

Yt = Ct +Gt, (A.7)

where ∆t =
1∫
0

(Pt(i)/Pt)
−ηt di is a measure of price dispersion, i.e., the relative-price distor-

tion. Gt is the aggregate government spending, aggregated the same way as in (A.1).

A.3 Recursive representations

The optimal price equation (A.2) and the aggregate price equation (A.2) can be expressed

recursively as

p̃t ≡
P̃t
Pt

=
ηt

ηt − 1

K1t

K2t

(A.8)

K1t = λtYtmct + Et

[
αβΠ

−ηt
Πηt
t+1K1,t+1

]
(A.9)

K2t = λtYt + Et

[
αβΠ

1−ηt
Πηt−1
t+1 K2,t+1

]
(A.10)

1 = (1− α)(p̃t)
1−ηt + α

(
ΠΠ−1

t

)1−ηt
. (A.11)
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mct ≡MCt/Pt is the average real marginal cost — given the production function,

mct = wt/zt. (A.12)

We can also recursively write the relative-price distortion as

∆t = (1− α)(p̃t)
−ηt + α

(
ΠΠ−1

t

)−ηt
∆t−1 (A.13)

A.4 The monetary policy rule and the adjustment of the medium-

run inflation target

In the baseline model without the adjustment of the medium-run inflation target (MRIT),

the monetary policy authority is assumed to follow a Taylor-type rule,

log(Rt/R̄) = φR log(Rt−1/R̄) + (1− φR)
[
φπ log(Πt/Π̄) + φy log(Yt/Y

∗
t )
]
, (A.14)

where Y ∗t is the potential or natural level of output, defined as the level of output in the

flexible-price equilibrium with constant markup, satisfying

Y ∗t =

(η̄−1)
η̄
zt + γGt

γ + (η̄−1)
η̄

. (A.15)

In an alternative model with our proposed policy, the monetary authority employs the

modified Taylor-type rule and adjusts the MRIT in response to the markup shock:

log(Rt/R̄) = φR log(Rt−1/R̄) + (1− φR) [φπ log(Πt/Π
∗
t ) + φy log(Yt/Y

∗
t )] (A.16)

log(Π∗t ) = log(Π̄) + µπ∗υπ∗,t (A.17)

υπ∗,t = ρυπ∗υπ∗,t−1 + εθ,t (A.18)

Here, we assume that the adjustment of the MRIT is endogenous, i.e., it evolves due to the

monetary authority’s action, rather than exogenously. Setting µθ = 0 yields the standard

assumption that the medium-run inflation target is equal to its constant long-run inflation
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target.

A.5 Evolution of exogenous variables

The model has three exogenous variables: productivity, zt, government spending, Gt, and

average markup, θt. Their evolutions follow

log(zt) = ρz log(zt−1) + εz,t, (A.19)

log(Gt/Ḡ) = ρg log(Gt−1/Ḡ) + εg,t, (A.20)

log(θt) = (1− ρθ) log(θ̄) + ρθ log(θt−1) + εθ,t. (A.21)

Aggregate fluctuations are driven by three exogenous shocks: εz,t ∼ i.i.d. N (0, σ2
z), εg,t ∼

i.i.d. N (0, σ2
g), and εθ,t ∼ i.i.d. N (0, σ2

θ).

A.6 Complete equilibrium equations (competitive equilibrium)

In the standard model without MRIT, the complete equilibrium conditions (under competi-

tive equilibrium) are given by equations (A.2), (A.3), (A.4), (A.5), (A.6), (A.7), (A.8), (A.9),

(A.10), (A.11), (A.12), (A.13), (A.14), (A.15), and the evolution equations of exogenous vari-

ables (A.19)- (A.21). The corresponding endogenous variables are Ct, Yt, Nt, λt, wt, Rt, Πt,

p̃t, K1t, K2t, ∆t, mct, Y
∗
t , and ηt.

In the model with the MRIT adjustment, the policy rule (A.14) is replaced with (A.16)-

(A.18). The medium-run inflation target, Π∗t , is now an endogenous variable. We solve for

the equilibrium using a perturbation method, up to a second-order approximation — see

Johnston, King and Lie (2014) for the detail of the solution method.

A.7 Ramsey policy

We derive the Ramsey equilibrium by formulating a recursive Lagrangian as in Marcet and

Marimon (2011). The objective function is the households’ welfare as the Ramsey policy

authority is benevolent. The Ramsey authority conducts policy in a decentralized setting.
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This means that all the private-sector efficiency conditions described above have to be re-

spected, and becomes the constraint set in the optimal policy problem (the Lagrangian). As

is standard in the literature, we do not take a stand on the form of the optimal policy rule

and search instead for the equilibrium allocation under the Ramsey policy — in technical

term, this means that policy rule (A.14) is not part of the Ramsey authority’s constraint set.

The Ramsey policy is solved under the assumption of a constant long-run inflation target,

Π∗t = Π̄.

B Further robustness: Adding capital accumulation

In this appendix, we examine whether our results are robust to including capital accumula-

tion into the model. In this extended model, we assume that households accumulate physical

capital Kt with the evolution of the capital stock:

Kt+1 = (1− δ)Kt + It (B.1)

where It is investment and δ is the depreciation rate. The period budget constraint in real

terms becomes

Ct + It + bt ≤ Rt−1
bt−1

Πt

+ wtNt +
Πprof
t

Pt
+ τt

On the production side, each intermediate-goods firm now produces a differentiated variety

i using capital and labor with a production technology

Yt(i) = ztKt(i)
χNt(i)

1−χ, (B.2)

where χ is the share of capital. Other aspects of the model are identical to those of the

baseline model in Appendix A.

We calibrate δ = 0.024 and χ = 0.3 as in Schmitt-Grohé and Uribe (2007). All other

parameter values are the same as in the baseline model (see Table 2 in the main text), except

for the standard deviation of the average markup shock, σθ. We re-calibrate σθ so that the

model matches the standard deviation of inflation in the data for the post-war U.S. economy
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Table B.1: Model with capital accumulation: welfare cost of various policies

Conditional Unconditional

Policy Parameters Welfare Cost Welfare Cost σ(π̂t) σ(x̂t) σ(R̂t)
φπ φY φR µπ∗ ρπ∗ λc × 100 λu × 100

(i) Taylor rule 1.50 0.50 0.80 — — 0.286 0.303 3.240 1.646 1.854
(ii) Taylor-MRIT 1.50 0.50 0.80 -0.018 0.93 0.031 0.038 1.765 2.714 1.496
(iii) Optimized Taylor 3.00 0.35 0.80 — — 0.107 0.125 1.918 3.177 1.162
(iv) Optimized Taylor-MRIT 3.00 1.01 0.80 -0.020 0.93 0.027 0.027 1.750 2.588 1.233

Notes: The conditional and unconditional welfare costs are in terms of consumption loss relative to the
Ramsey allocation with capital. The standard deviation σ(·) is expressed in percent (annualized for inflation
and nominal interest rate).

(3.24% per annum), under the Taylor-rule coefficients φπ = 1.5, φy = 0.5, and φR = 0.8.

This requires σθ = 0.123, versus 0.115 in the baseline case. Given the calibration, we obtain

C̄/Ȳ = 0.66, Ī/Ȳ = 0.17, and Ḡ/Ȳ = 0.17 in the steady state. We re-solve the model’s

equilibrium, including the Ramsey allocation. Note that the optimal steady-state inflation

rate under the Ramsey policy is still zero in this extended model with capital — see Faia

(2008) for more details.

Table B.1 presents the welfare costs of rules (i)-(iv) based on this extended model. Under

the Taylor rule (i), the unconditional welfare cost is 0.303%, with σ(π̂t) = 3.24 and σ(x̂t) =

1.65. As in the baseline model, the welfare cost is quite high under rule (i); these costs are

not directly comparable to those in the baseline model, however, as the Ramsey allocations

are not the same in the two models. The output gap is less volatile in the model with capital.

Under the Taylor-MRIT rule (ii), the reductions in both welfare cost measures com-

pared to rule (i) are sizeable. Here, for example, the unconditional welfare cost is merely

0.038%, indicating that the Taylor-MRIT can closely replicate the Ramsey allocation. Look-

ing at the standard deviations, it appears this much lower welfare cost arises due to a much

lower σ(π̂t).
36 This much lower inflation variation is achieved with a relatively small value of

µπ∗=−0.018, somewhat surprisingly. Thus, with capital accumulation, the monetary author-

ity does not have to decrease the medium-run inflation target by much to stabilize inflation

36As shown by Edge (2003), in a sticky-price model with capital accumulation, the utility-based welfare
criterion—based on a second-order approximation to the utility function—is a complicated function of other
variables (e.g. the squared deviations of investment and capital from their flexible-price levels) in addition
to inflation and output-gap variations. Inflation variation, however, is still the most important determinant
of welfare.
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following an inflationary cost-push shock — our proposed MRIT policy appears to be more

effective with the additional propagation mechanism arising from capital accumulation. The

target adjustment, however, needs to be more persistent than in the baseline model without

capital accumulation, since it endogenously induces a more persistent effect of a cost-push

shock.

While the optimized Taylor rule (iii) also results in lower welfare costs, the extent of

the welfare improvement is smaller. In fact, we find that when considering {φπ, φy} > 0

without an upper bound, the optimal values of φπ and φy are 4.55 and 0.54, respectively,

with the conditional and unconditional welfare cost given by λc = 0.105% and λu = 0.122%,

respectively. The extent of the welfare improvement from the inflation-target adjustment

under rule (ii) is thus not achievable in a conventional Taylor-type rule with a constant

inflation target. Under the optimized Taylor-MRIT rule (iv), the welfare costs are even

lower as expected, though not by much. The optimal value of µπ∗ is also very similar to that

in rule (ii) and hence, the adjustment of the inflation target following a cost-push shock is

of a smaller magnitude compared to that in the baseline model without capital. As in the

baseline model, however, policy (iv) also entails a strong response to output-gap fluctuations,

i.e., a relatively high value of φy.

Figure B.1 plots the impulse responses to a 1% cost-push shock based on the extended

model. The addition of capital accumulation induces more-protracted responses in all vari-

ables, as expected. Importantly, we find that it remains the case that the MRIT policies

(ii) and (iv) produce more-subdued inflation movements following the inflationary cost-push

shock, compared to the rules (i) and (iii) with a constant inflation target. Similarly to the

baseline model without capital, we also observe that the reductions in the medium-run infla-

tion target under rules (ii) and (iv) induce a period of the inflation rates below its long-run

target) and yield lower inflation expectations comparable to that under the Ramsey policy.

The improvement in the inflation-output trade-off from the MRIT adjustments is clearly

visible from the responses of inflation and the output gap on impact. Comparing the Taylor-

MRIT rule (ii) and the optimized Taylor rule (iii), for example, the latter rule incurs a larger

output-gap loss and a (slightly) larger increase in inflation on impact. Thus, our results are

robust to adding capital accumulation into the model.
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Figure B.1: Model with capital accumulation: impulse responses to a 1% cost-push shock

Note: The policy coefficients for rules (i)-(iv) are given in Table B.1.

C Further robustness: Adding sticky wages

In the model in the main text, the labor market is assumed to be perfectly competitive and

nominal wages are flexible. In this appendix, we examine the robustness of our results when

we augment the model to include nominal wage rigidity. We follow the set-up in Erceg,

Henderson and Levin (2000) and introduce wage rigidity via the Calvo (1983) staggered

contract — see also Rabanal and Rubio-Ramı́rez (2005) and Smets and Wouters (2007) for a

similar approach. This augmented model thus has an additional friction arising from sticky

nominal wages. In the set-up, households supply differentiated labor services, which gives

them some monopoly power in setting their own wages. These differentiated labor services
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are combined by a labor union into a composite labor, which is used by the intermediate-

goods firms as an input into production. For a more detailed exposition of the set-up, we

refer the interested readers to the aforementioned papers.

To allow for a straightforward aggregation of the welfare function we assume, as in

Erceg, Henderson and Levin (2000), that the period utility function of household l ∈ [0, 1]

is separable in consumption and labor, given by

U(ct, Nt(l)) =
C1−σ
t

1− σ
−Ψ

Nt(l)
1+γ

1 + γ
(C.1)

The aggregate welfare function is then

Vt =

∫ 1

0

W̃t(l)dl (C.2)

where

W̃t(l) = U(ct, Nt(l)) + βEtWt+1(l)

The function (C.2) can be recursively written as

Vt =

[
C1−σ
t

1− σ
− Ψ

1 + γ
υwt Nt

1+γ

]
+ βEtVt+1 (C.3)

where Nt is the aggregate labor and

υwt ≡
∫ 1

0

(
Wt(l)

Wt

)−φ(1+γ)

dl

is a measure of wage dispersion. This is recursively given by

υwt = (1− αw) (w∗t )
−φ(1+γ) + αw (πwt )φ(1+γ) υwt−1 (C.4)

where w∗t is the optimal real wage chosen by households that are able to change their wage

(with probability 1 − αw), πwt ≡ Wt/Wt−1 is the wage inflation, which is linked to price

inflation πt via the relationship

πwt =
wt
wt−1

πt, (C.5)
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and Wt and wt are aggregate nominal wage and real wage, respectively. Other elements of

the augmented model are the same as in baseline model, e.g., labor is the only input into

production and there is no capital accumulation. The cost-push shocks are also assumed to

arise from shocks to firms’ average price markup. Note that with sticky wages, technology

and government spending shocks also create a trade-off between various stabilization goals.

We still consider, however, that the monetary authority adjusts the medium-run inflation

target in the face of cost-push shocks only.

Parametrization The inverse elasticity of intertemporal substitution is set to σ = 2 as

in the baseline model. We calibrate the inverse Frisch labor supply elasticity γ so that the

augmented model and the baseline model have the same elasticity under the steady-state

labor of N̄ = 0.2 — this requires γ = 0.73. The scaling parameter Ψ in (C.1) is set so

that N̄ = 0.2 in the Ramsey steady state. The Calvo wage-rigidity parameter αw is set to

0.8, equal to the value of the corresponding price-rigidity parameter α. The elasticity of

substitution across labor types is set to φ = 6, as in Rabanal and Rubio-Ramı́rez (2005).

All other parameter values are the same as in the baseline model (see Table 2 in the main

text), except for the standard deviation of the average markup shock, σθ. We re-calibrate

σθ so that the augmented model matches the standard deviation of inflation in the data for

the post-war U.S. economy (3.24% per annum), under the Taylor-rule coefficients φπ = 1.5,

φy = 0.5, and φR = 0.8. This requires σθ = 0.161, versus 0.115 in the baseline case.

Given the parametrization above, we re-solve the model’s equilibrium, including the

Ramsey allocation, up to a second-order approximation. We use Vt in (C.3) as our aggregate

welfare measure — this measure is also the objective function of the benevolent Ramsey

planner. Based on this welfare function, we can calculate the second-order approximation to

the welfare cost measures—λc and λu—for any alternative policy rule, in a similar manner

as described in the main text. Note that in our cashless model, the Ramsey steady-state

price inflation rate and wage inflation rate are both zero.

Results Table C.1 reports the welfare costs of policies (i)-(iv) based on this extended

model. We also report the standard deviation of wage inflation, σ(π̂wt ), since with sticky
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Table C.1: Model with sticky prices and sticky wages: welfare cost of various policies

Conditional Unconditional
Policy Parameters Welfare Cost Welfare Cost σ(π̂t) σ(x̂t) σ(π̂wt )

φπ φY φR µπ∗ ρπ∗ λc × 100 λu × 100

(i) Taylor rule 1.50 0.50 0.80 — — 0.220 0.230 3.240 2.772 0.952
(ii) Taylor-MRIT 1.50 0.50 0.80 -0.008 0.91 0.156 0.162 3.121 2.898 0.769
(iii) Optimized Taylor 1.22 0.13 0.80 — — 0.117 0.117 3.207 3.478 0.602
(iv) Optimized Taylor-MRIT 1.38 0.14 0.80 -0.005 0.91 0.054 0.052 3.086 3.575 0.282

Notes: The conditional and unconditional welfare costs are in terms of consumption loss relative to the
Ramsey allocation with both nominal price and wage rigidities. The standard deviation σ(·) is expressed in
percent (annualized for price inflation σ(π̂t) and wage inflation σ(π̂wt )).

wages the welfare-theoretic loss function depends on the variation in wage inflation, in addi-

tion to output-gap and inflation variations (see Erceg, Henderson and Levin (2000)). Under

the Taylor rule (i) the unconditional welfare cost is 0.230%, with σ(π̂t) = 3.24, σ(x̂t) = 2.77,

and σ(π̂wt ) = 0.95. The welfare cost is not directly comparable to that in the baseline model

with flexible wages, in part because the Ramsey allocations are different in the two models.

Notwithstanding, the welfare cost of adopting the Taylor rule is non-trivial.

The Taylor-MRIT rule (ii) is associated with optimal MRIT coefficients of µπ∗=−0.008

and ρπ∗=0.91. The additional friction due to sticky wages calls for a much less negative con-

temporaneous response with more persistent inflation target adjustment than in the baseline

model with flexible wages. The different values of the optimal coefficients reflect the fact that

with nominal wage rigidity. the monetary authority faces an additional trade-off involving

the stabilization of wage inflation. We find that the reduction in the welfare cost over the

Taylor rule (i) is substantial. The unconditional welfare cost is now 0.162%, versus 0.230%

in rule (i). Here, it has to take into account that the MRIT adjustment also affects the

welfare-relevant variation in wage inflation. Looking at the standard deviations, it appears

that the welfare gain is mostly due to the reduction in wage-inflation variation (σ(π̂wt )),

notwithstanding a slightly lower price-inflation variation, σ(π̂t).

Under the optimized Taylor rule (iii), the optimal inflation-feedback and output-feedback

coefficients are φπ = 1.22 and φy = 0.13. The additional policy trade-off involving wage-

inflation stabilization is responsible for the relatively-low optimal value of the inflation-

feedback coefficient φπ (< 3). What’s the role of other shocks than a cost-push shock in the
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stabilization trade-off? When shutting down the cost-push shock, we find that the optimal

policy coefficient values are given by φπ = 2.02 and φy = 0.16, which are smaller than

those in the baseline model with flexible wages in which the optimized Taylor rule calls for

the maximum allowable value of φπ = φy = 3 when there is no cost-push shock. Hence,

our finding suggests that even without the cost-push shock, there is a non-negligible trade-

off between wage inflation and price inflation/output stabilization. Consistent with this

interpretation, we observe that the lower unconditional welfare cost under rule (iii) (0.117%)

versus rule (ii) (0.162%) stems from a lower σ(π̂wt ) — both σ(π̂t) and σ(x̂t) are actually higher

under rule (iii) despite the lower welfare cost. The importance of wage-inflation stabilization

under nominal wage rigidity is consistent with the finding in Erceg, Henderson and Levin

(2000) who show that price-inflation targeting leads to a very large welfare loss compared to

wage-inflation targeting, although as discussed in Chugh (2006), the inclusion of fiscal policy

and fiscal shocks may alter this conclusion.

Under the optimized Taylor-MRIT rule (iv), we find an even lower welfare cost: the un-

conditional welfare cost is now only 0.05% of consumption relative to the Ramsey allocation.

The optimal value of µπ∗ is −0.005, with φπ = 1.38 and φy = 0.14, which are very similar

to the optimal {φπ,φy} in rule (iii). We again observe that the reduction in σ(π̂wt ) is largely

responsible for the much-lower welfare cost — here, σ(π̂t) is only slightly lower compared to

that in rule (iii), with σ(x̂t) slightly higher. There is a sense that the target adjustment in the

face of a cost-push shock leads to an improved trade-off between wage-inflation stabilization

and the other two stabilization goals (price inflation and output gap).

As a further check, Figure C.1 plots the impulse responses to a 1% cost-push shock. We

observe that the responses of price-inflation (top left panel) are roughly the same under all

four policy rules — in fact, they replicate the Ramsey dynamics quite well. It is still the

case that decreasing the inflation target following the inflationary cost-push shock in rule

(ii) and rule (iv) leads to lower expected inflation compared to either rule (i) or rule (iii),

where the inflation target remains constant. But this effect is small, especially compared to

the effect on the dynamics of wage inflation. We observe that under rules (ii) and (iv) with

inflation-target adjustments, wage-inflation (bottom left panel) is much more stabilized. The

same holds true for expected wage-inflation (bottom right panel). Hence, consistent with
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Figure C.1: Model with sticky prices and sticky wages: impulse responses to a 1% cost-push
shock

Note: The policy coefficients for rules (i)-(iv) are given in Table C.1.

the findings in Table C.1, the welfare improvement from the inflation-target adjustment is

due to this policy yielding lower wage-inflation volatility. This is true in spite of relatively

higher output-gap volatility (middle left panel).

We conclude that our proposed MRIT policy still leads to a welfare improvement, even

with nominal wage rigidity. The improvement is not attainable with a standard Taylor-type
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rule with a constant inflation target. The additional friction, however, affects the extent of

the welfare gain, and changes the way that the stabilization trade-off is altered and improved.

D Illustration of the monetary-policy implications of a

flat NKPC in the face of cost-push shocks

To illustrate the implications of a flatter (or steeper) NKPC for monetary policy in the pres-

ence of cost-push shocks, we consider a prototypical three-equation New Keynesian model.

The log-linearized version of the prototype New Keynesian model yields the following rep-

resentation for the New Keynesian Phillips curve, the IS curve, and the monetary policy

rule:

πt = βEtπt+1 + κyt + µt (D.1)

yt = Etyt+1 − (R̂t − Etπt+1) (D.2)

R̂t = φπ(πt − π∗) + φyyt (D.3)

where πt is inflation, yt is the output gap, R̂t is the short-term nominal interest rate, π∗ is

the (long-run) inflation target, and µt is a cost-push shock.

Now, we consider the policy response to cost-push shocks in this model. A positive

realization of these shocks creates an upsurge in inflation and a negative output gap. Iterating

the NKPC in (D.1) forward indicates that inflation is a function of the expected discounted

sum of the future output gap yt and cost-push shock µt:

πt = Et

∞∑
s=0

βs (κyt+s + µt+s) . (D.4)

The strength of the link between inflation and the output gap is directly governed by the

slope parameter κ in (D.4). When κ is small (i.e., the NKPC is flat), the output gap hardly

drives inflation dynamics and the variation in inflation would be mostly explained by the

cost-push shocks, µt. In addition, the IS curve in (D.2) shows that the output gap is a
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function of the sum of expected future real interest rates by iterating the IS curve forward:

yt = −Et
∞∑
s=0

(Rt+s − πt+s+1). (D.5)

Thus, the monetary authority can influence the output gap by manipulating the real rate

indirectly through adjustments of the short-term nominal interest rate given sticky prices

using the Taylor-type policy rule in (D.3). In response to the increase in inflation, the

monetary authority raises the nominal interest rate by amounts greater than increases in

inflation so that the real interest rate goes up.37 The IS curve in (D.5) implies that the

increase in the real interest rate lowers the output gap further and in turn, inflation is

reduced through the NKPC relationship.

However, as pointed out in the cost-push channel for inflation, a flat NKPC implies

that the effect of output gap on inflation fluctuations is limited so that monetary policy

is less effective in controlling inflation in the face of cost-push shocks. Thus, the effect of

cost-push shocks on inflation would last longer. It is also notable that the decrease of the

output gap arising from the positive cost-push shocks lowers the nominal interest rate in the

opposite direction compared to the effect of inflation gap on the adjustment of the nominal

interest rates, as noted in the monetary policy rule (D.3). In the presence of the trade-off

between inflation stabilization and output-gap stabilization, e.g., due to the existence of the

cost-push shock, this offsetting effect weakens the monetary authority’s reaction to inflation

fluctuations and presents an additional difficulty in conducting monetary policy

A flat NKPC has also an important welfare implication that the inflation variation be-

comes enormously more important than the output gap fluctuation. Following Rotemberg

and Woodford (1997, 1999), Woodford (2003), and Steinsson (2003), the utility-based welfare

loss function in period t can be represented by

Lt = −1

2

[
π2
t +

κ

η
y2
t

]
(D.6)

where η is the steady-state elasticity of substitutions between intermediate-good varieties.

37The increase in the nominal interest rate is due to φπ > 1. More precisely, we consider the determinate
regions of the parameter space for φy, φπ, and κ. For more details, see Bullard and Mitra (2002).
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Woodford (2003) shows that the weight on the output gap κ/η in the loss function (D.6) is

small using the conventional calibrated parameters so that inflation plays a primary role in

determining household welfare. In addition, we can see that as the NKPC becomes flatter

(i.e., κ → 0), the inflation variation becomes even more important because the weight on

the output gap in the loss function gets smaller.

In short, the flattening of the NKPC complicates the conduct of monetary policy and

results in a difficulty of improving household welfare through monetary policy from three

perspectives: (i) the fraction of inflation variation due to cost-push shocks becomes increas-

ingly substantial; (ii) controlling inflation through monetary policy becomes much harder

in the face of cost-push shocks; and (iii) inflation becomes completely dominant over the

output gap in determining household welfare.

E Responding to the natural rate of interest

Here, we consider a modified version of Taylor-type rule in which the nominal interest rate

responds to the natural rate of interest in addition to inflation and the output gap as follows:

log(Rt/R̄) = φR log(Rt−1/R̄) + (1− φR)
[
φπ log(Πt/Π

∗
t ) + φY log(Yt/Y

∗
t ) + φrn log(rnt Π/R)

]
where rnt is the natural rate of interest, defined as the interest rate under the flexible-price

equilibrium with no mark-up shock.

We first set the natural rate reaction coefficient φrn to 1, which is the prescribed optimal

value with productivity and spending shocks (see e.g., Gaĺı (2015)). All other structural

parameter values are set to those for the baseline model presented in Table 1. As shown in

Table E.1 (a), we find that reacting one-to-one to the natural interest rate in the Taylor-type

rule (the Taylor-natural rate rule, hereafter) improves welfare upon the Taylor rule, but it is

not large enough to outperform our proposed Taylor-MRIT rule. In addition, we also search

for the optimized value of φrn that minimizes the unconditional welfare measure, and it is

found to be φrn = 0.62. But the improvement is marginal and the welfare cost is still greater

than that under the Taylor-MRIT rule.
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Table E.1: Reacting to the natural rate of interest under the Taylor rule and the welfare cost

Conditional Unconditional

Policy Parameters Welfare Cost Welfare Cost σ(π̂t) σ(x̂t) σ(R̂t)
φπ φY ρR φrn µπ∗ ρπ∗ λc × 100 λu × 100

(a) All three shocks

Taylor rule, φrn = 0 1.50 0.50 0.80 0 — — 0.298 0.312 3.240 2.368 3.150
Taylor rule, φrn = 1 1.50 0.50 0.80 1 — — 0.259 0.274 3.275 1.395 4.368
Taylor rule, optimized φrn 1.50 0.50 0.80 0.62 — — 0.238 0.252 3.126 1.606 3.852

(b) Technology and gov’t spending shocks only (No markup shock)

Taylor rule, φrn = 0 1.50 0.50 0.80 0 — — 0.105 0.109 1.164 2.260 2.710
Taylor rule, φrn = 1 1.50 0.50 0.80 1 — — 0.066 0.071 1.258 1.202 4.062
Taylor rule, optimized φrn 1.50 0.50 0.80 0.62 — — 0.045 0.048 0.793 1.443 3.501

In Table E.1 (b), we shut down the mark-up (cost-push) shock and perform the same

analysis. We find that the Taylor-natural rate rule can reach the unconditional welfare

cost of 0.071% with φrn = 1 and 0.048% with the optimized coefficient φrn = 0.62. Thus,

we conclude that additionally responding to the natural rate of interest cannot achieve the

welfare level associated with our proposed policy rule when cost-push shocks are present.

The MRIT policy works through a different channel than the Taylor-natural rate rule.
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