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1 Introduction

The health concentration curve provides a profile of how health varies across the full dis-

tribution of living standards. It is one of the most widely accepted analytical tools in the

health inequality literature and is used to portray the evolution of socioeconomic health

inequalities from a global health perspective as well as a national perspective.1 Empirical

researchers often emphasize that it is crucial to test whether (or not), the health concen-

tration curve is statistically di↵erent from the 45-degree line (O’Donnell, van Doorslaer,

Wagsta↵ and Lindelow, 2008).2 Allowing researchers to address this question will provide

them with some guidance as to whether health inequality is an issue that needs further

consideration. Building on the literature on inference for Lorenz and concentration curves’

dominance, O’Donnell et al.(2008) propose testing for the equality of these two curves, but

on a predesignated grid of points. Hence, their testing procedure does not test for the

equality of the two curves over their domain of definition. An undesirable consequence of

their test is that it has no power against alternatives whose curves are equal at points in

the predesignated grid and di↵er at other points in their domain. This renders the test

inconsistent. A more desirable approach would be to compare the curves at all points in

the domain. This paper shows that testing for the equality of the health concentration

curve and the 45-degree line at all points between 0 and 1 is equivalent to testing that

the regression of health on income is equal to a constant function of income, where the

constant is the population mean health status. The consequence of this equivalence is that

tests for parametric specification of a regression function can be used to test for the equality

of health concentration curve and the 45-degree line, against a nonparametric alternative.

1To mention a few, Lindelow, 2006, van Doorslaer, Clarke, Savage, and Hall, 2008, Wagsta↵, 2010, Mills
et al., 2012, Powell-Jackson and Hanson, 2012, Randive, San Sebastian, De Costa and Lindholm, 2014,
Elgar et al., 2015, Mosquera et al., 2016.

2In the theoretical case where everyone has the same level of health (i.e., the same value for the health
variable), the health concentration curve is a 45-degree line.
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Tests of this sort are ubiquitous in econometrics (e.g., Azzalini, Bowman and Härdle, 1989,

Wooldridge, 1992, Yatchew, 1992, Härdle and Mammen, 1993, Liu, Stengos and Li, 2000,

and Tripathi and Kitamura, 2003), which provides a lot of choice for the practitioner. This

paper does not support the use of any particular test because such a choice would naturally

depend on which regularity conditions are appropriately satisfied in practice. To provide an

example of settings in which the result can be applied, we discuss in detail the implemen-

tation of the Härdle and Mammen (1993) test, and apply it to a data set. The rest of this

paper is organized as follows. In the next section, we present the measurement framework.

Section 3 presents our main result and the Härdle and Mammen (1993) test adapted to

our framework. Section 4 gives a brief empirical illustration using data from the National

Health Interview Survey 2014. Finally, Section 5 concludes the paper.

2 Measurement framework

The health concentration curve is a functional of the joint distribution of health, H, and

income Y .3 Without loss of generality, the random vector (H,Y ) has a joint density fH,Y

that is supported on H ⇥ Y, with marginal densities given by fH and fY , and marginal

cumulative distribution functions FH and FY .4 Let z(p) be the conditional expectation of

health, H, with respect to Y equal to its p-quantile. Formally,

z(p) = E[H|Y = F�1
Y (p)]. (1)

The health concentration curve, C(p), measures the socioeconomic health inequality.

It is the plot of the cumulative proportion of total health in the population against the

cumulative proportion of individuals ranked by socioeconomic statuses. It is defined on the

interval [0, 1] as

C(p) =
1

µz

Z p

0
z(u)du p 2 [0, 1]. (2)

3In this paper, we assume that this health measure is a ratio-scale variable.
4It is important to note that the assumption of (H,Y ) having a density can be relaxed.
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where, µz =
R 1
0 z(p)dp. Note that the concentration curve in equation (2) can be rewritten

as

C(p) =

R p
0 E

⇥
H | Y = F�1

Y (u)
⇤
du

R 1
0 E

⇥
H | Y = F�1

Y (u)
⇤
du

p 2 [0, 1]. (3)

When C(p) lies above the 45-degree line, health inequality is referred to as pro-poor

(i.e. the poor have better health than the rich). When it lies under the diagonal, health

inequality is considered pro-rich (Wagsta↵, Paci and van Doorslaer,1991).5 If the health

concentration curve lies on the 45-degree line, then there is no socioeconomic health inequal-

ity. In addition to its usual role in measuring the degree of health inequality associated with

socioeconomic status, the health concentration curves can be used to identify robust rank-

ings of socioeconomic health inequality when comparing two distributions (see Makdissi

and Yazbeck, 2014).

3 Result

This section presents the result of the paper, which yields a framework for testing the equal-

ity of the concentration curve with the 45-degree line (i.e. the line of perfect socioeconomic

health equality). The null hypothesis of interest is

H0 : C(p) = p 8p 2 (0, 1) versus H1 : C(p) 6= p for some p 2 (0, 1).

The following result is the basis for testing H0.

Proposition 1 Suppose that the joint density fH,Y (·, ·) is continuous on H⇥Y and bounded

away from zero such that E [H] 6= 0. Furthermore, let the function C(·) on [0, 1] be defined

as in (2). Then C(p) = p 8p 2 (0, 1) () E [H | Y = y] = E [H] 8y 2 Y.

Proof. See Appendix A.

5An opposite conclusion may be reached if the analysis is based on a ill-health variable.
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Proposition 1 implies that the null hypothesis for testing equality between the health

concentration curve and the 45-degree line is equivalent to testing whether the regres-

sion function of health on income is a constant function that is equal to E [H]. This is a

test for correct specification of a parametric regression function (i.e. a test of the para-

metric hypothesis) E [H | Y = y] = E [H] 8y 2 Y, against a nonparametric alternative,

where the (unknown) parameter is E [H] 2 H.

Many tests for correct parametric regression functional form were proposed in the liter-

ature (e.g., Azzalini, Bowman and Härdle, 1989, Wooldridge, 1992, Yatchew, 1992, Härdle

and Mammen, 1993, Liu, Stengos and Li, 2000, Tripathi and Kitamura, 2003 and Li and

Racine, 2007). The choice of a suitable test naturally hinges upon which regularity con-

ditions are appropriately satisfied. To provide an example of settings in which the result

can be applied, we discuss in detail the implementation of the Härdle and Mammen (1993)

test.

The test proposed by Härdle and Mammen (1993) employs the weighted L2-distance

between the nonparametric and parametric fits as a measure of discrepancy.6 Given a

random sample {(Hi, Yi)}ni=1 , the general form of their test statistic in our framework is

Tn = n
p
h

Z

Y

⇥
m̂(y)�H

⇤2
 (y)dy, (4)

where m̂(y) is the Nadaraya-Watson estimator of m(y) = E [H | Y = y] with bandwidth h

and kernel K,

m̂(y) =

Pn
i=1Kh (y � Yi)HiPn
i=1Kh (y � Yi)

, Kh (y � Yi) = h�1K

✓
y � Yi

h

◆
, (5)

H = 1
n

Pn
i=1Hi, and  (y) is a weight function on Y, its purpose is to control for areas

where there are relatively few observations.

6It should be noted that the code for Härdle and Mammen (1993) test is readily available in Stata. For
more details see Verardi and Debarsy (2012).
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In their paper, Härdle and Mammen propose to use a wild bootstrap testing procedure.

They employ regularity conditions on h,K(·), (·), and fH,Y (·, ·) that yields the validity of

their statistical test. In this paper, the regularity conditions required are the same as those

in Härdle and Mammen (1993). For ease of exposition, we state these conditions explicitly

in Appendix B.

As for the bootstrap procedure, it is as follows:

1. Using the data, estimate the nonparametric regression model m̂(y), compute H and

the test statistic Tn.

2. Compute the residuals "̂i = Hi �H.

3. Generate a bootstrap sample from the following data-generating process: H⇤

i = H +

"̂i⌘⇤i , which satisfiesH0, and where ⌘⇤i is a random draw from a probability distribution

with mean 0 and variance of 1.

4. Use this bootstrap sample to calculate a bootstrap test statistic T ⇤

n , in the same way

as the statistic Tn is computed.

5. Repeat the two preceding steps a large number of times, say, B = 999 times7, and

then construct the bootstrap P -value, pbs =
1
B

PB
j=1 1

h
T ⇤

n,j > Tn

i
.

6. “Reject H0” if pbs < ↵, where ↵ is the nominal level.

4 Empirical illustration

To illustrate the proposed methodology empirically, we use data from the National Health

Interview Survey 2014. We focus on comparisons of three health related behaviors that

have been of great interest in the health economics literature: cigarettes consumption,

7For work on the appropriate number of bootstrap replications, see, for example, Davidson and Mackin-
non (2000).
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overweightness, and sleeping habits. We measure sleep using reported daily sleep hours,

we also measure cigarette consumption by the reported number of cigarettes consumed per

day, finally, following Bilger, Kruger and Finkelstein (2016) we measure overweightness,

Ow, by taking the (max[0, BMI � 25]).8

The NHIS monitors health outcomes of Americans since 1957. It is a cross-sectional

household interview survey representative of American households and non-institutionalized

individuals. It contains data on a broad range of health topics that are collected via personal

household interviews. We use the 2014 public-use data and restrict our attention to adult

population for whom we have information about their socioeconomic status and at least one

of the three health-related behaviors. After applying all these restrictions to the data, we

end up with a sample size of 35,408 for sleep habit, 36,363 for cigarettes consumption and

35,408 for overweightness. We use the sample adult file to extract information on health-

related behaviour and use family income adjusted for family size to infer the socioeconomic

rank of individuals.9

Figure 1 illustrates the health concentration curves for our three health related be-

haviors. The concentration curve of sleep habit almost lies on the 45-degree line. The

concentration curve of overweightness is slightly above and the one for cigarettes consump-

tion seems further away above this 45-degree line. These three curves give us a perfect

setting to illustrate the proposed methodology.

From Proposition 1 we know that testing for equality between a health concentration

curve and the 45-degree line is equivalent to testing whether the regression function of

health on income is a constant function that is equal to the average value of the health

variable. To do so, we first compute Nadaraya-Watson nonparametric regressions of (three)

health related behaviours on income. Figure 2 displays these regressions where, on each

8Note that we use 25 as a benchmark as it is the upper threshold for normal weight.
9We compute equivalent income by dividing family income by the square root of household size.
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Table 1: Härdle and Mammen tests

p-value
H0 : E [Sleep | Y = y] = E [Sleep] 8y 2 Y
H1 : E [Sleep | Y = y] 6= E [Sleep] for some y 2 Y 0.2910

H0 : E [Ow | Y = y] = E [Ow] 8y 2 Y
H1 : E [Ow | Y = y] 6= E [Ow] for some y 2 Y 0.0000

H0 : E [Cig | Y = y] = E [Cig] 8y 2 Y
H1 : E [Cig | Y = y] 6= E [Cig] for some y 2 Y 0.0000

graph, the horizontal doted line represents the average value for the health related behavior

variable. We then perform a 999 replications wild bootstrap test to get the p-values. Table

1 displays the p-values of the Härdle and Mammen test. Given these tests, we cannot reject

this equality for hours of sleep (p-value = 0.2910), in other words, we cannot reject the null

hypothesis that sleep hours are equally distributed across socioeconomic statuses. However,

this equality can be rejected for overweightness and cigarettes consumption.

5 Conclusion

This paper shows that testing for the equality between the health concentration curve

and the 45-degree line is equivalent to testing for constant parametric specification of the

regression function of health on income, where the constant is the population mean health

status. This equivalency ameliorates the testing problem of interest because now standard

tests for parametric specification of a regression function can be utilized. These tests

are ubiquitous in econometrics. Building on this equivalency, we describe in detail the

implementation of the Härdle and Mammen (1993) testing procedure within the paper’s

setup. Finally, we present an empirical illustration using the 2014 public-use data from the

National Health Interview Survey.
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A Proof of Proposition 1

We first prove C(p) = p 8p 2 (0, 1) =) E [H | Y = y] = E [H] 8y 2 Y. The proof

proceeds by the direct method. First, noting that

Z 1

0
E
⇥
H | Y = F�1

Y (u)
⇤
du = E [H] (6)

is a result of applying the change of variables

u = FY (y), du = fY (y)dy and y 2 Y, (7)

it follows that

C(p) = p 8p 2 (0, 1) ()
R p
0 E

⇥
H | Y = F�1

Y (u)
⇤
du

E [H]
= p 8p 2 (0, 1) (8)

()
Z p

0
E
⇥
H | Y = F�1

Y (u)
⇤
du = pE [H] 8p 2 (0, 1) (9)

=) E
⇥
H | Y = F�1

Y (p)
⇤
= E [H] 8p 2 (0, 1), (10)

where the implication (10) is a result of di↵erentiating both sides of the equality in (9)

with respect to p. We can di↵erentiate the left side of the equality in (9) with respect to
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p because the continuity of fH,Y implies that E
⇥
H | Y = F�1

Y (p)
⇤
is a continuous function

of p 2 (0, 1). Finally, because fH,Y is bounded away from zero on H ⇥ Y, the marginal

CDF FY (·) is strictly increasing on Y; therefore, for each p 2 (0, 1) 9!y 2 Y such that

E
⇥
H | Y = F�1

Y (p)
⇤
= E [H | Y = y] , which concludes this part of the proof.

Next, we prove E [H | Y = y] = E [H] 8y 2 Y =) C(p) = p 8p 2 (0, 1) using the

direct method. By the strict monotonicity of the marginal CDF FY (·), for each y 2 Y

9!p 2 [0, 1] such that E [H | Y = y] = E
⇥
H | Y = F�1

Y (p)
⇤
. Hence, for each p 2 (0, 1)

C(p) =

R p
0 E

⇥
H | Y = F�1

Y (u)
⇤
du

E [H]
=

R p
0 E [H] du

E [H]
=

pE [H]

E [H]
= p. (11)

This concludes the proof.

B Regularity Conditions

This section introduces the regularity conditions for testing E [H | Y = y] = E [H] 8y 2 Y.

These conditions are the same as those in Härdle and Mammen (1993), but specialized to

our testing problem. Assumptions (A1) and (A2) in Härdle and Mammen (1993) when

specialized to our framework are given by Conditions 1 and 2 respectively:

Condition 1 The support of Yi, which is Y, is a compact subset of R. The marginal density

fY (·) of Yi is bounded away from zero on Y.

Condition 2 m(·) and fY (·) are twice continuously di↵erentiable.  (·) is continuously

di↵erentiable.

Popular choices for the weight function are  (y) = fY (y) or  (y) = f2
Y (y) in which case

one uses the kernel density estimator of fY (·).

The setup in Härdle and Mammen (1993) allows for conditional heteroskesticity; see

Assumption (A4) in their paper. In our framework, this assumption is given by

Condition 3 �2(y) = VAR (Hi | Yi = y) is bounded away from 0 and from 1 on Y.
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Assumption (A5) in Härdle and Mammen (1993) is that the moment generating function

is uniformly bounded in a small enough neighborhood of zero. In our framework, this

assumption is given by

Condition 4 E [exp(t"i)] is bounded in i and n for |t| small enough, where "i = Hi�m(Yi)

for each i = 1, . . . , n.

For the kernel K and bandwidth h we require that they satisfy Assumptions (K1) and

(K2) in Härdle and Mammen (1993). These assumptions in our framework are respectively

given the following conditions.

Condition 5 The kernel K is a symmetric, twice continuously di↵erentiable function with

compact support, furthermore
R
K(u) du = 1.

Condition 6 The bandwidth h satisfies h = hn ⇠ n�1/5.

An example of a kernel function that satisfies Condition 5 is the quartic kernel:

K(u) =
15

16

�
1� u2

�2
1 [|u|  1] .
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