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Abstract

I consider complicated patterns of structural breaks in postwar quarterly U.S. in-
flation rates based on the CPI and the GDP deflator over the period from 1953:Q1 to
2013:Q4. Bayesian model selection procedures suggest that the two inflation measures
had distinct structural changes in different parameters as well as at different dates. CPI
inflation experienced a dramatic drop in persistence around the early 1980s, but GDP
deflator inflation remains persistent throughout the postwar sample period. The resid-
ual variance for both inflation measures switched from a low volatility regime to a high
volatility regime in the early 1970s, but returned to another low volatility regime at
different dates: the early 1980s for GDP deflator inflation and the early 1990s for CPI
inflation. The residual variance for CPI inflation has increased again since the early
2000s, while GDP deflator inflation has remained less volatile. I do not find evidence
of a structural shift in the unconditional mean of either measure of inflation. When re-
viewing the recent literature, considerable controversy exists over the structural break
in inflation persistence around the early 1980s but this appears to be dependent on the
measures of inflation, as highlighted by the empirical findings in this paper.
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1 Introduction

In this paper, I make inferences about complicated patterns of structural breaks in inflation

dynamics. An autoregressive (AR) model is used for studying structural shifts in three

parameter groups: the unconditional mean, a group of autoregressive coefficients, and the

residual variance. The choice of parameter groups are potentially related to structural

interpretations of changes in inflation dynamics. Some parameters could have a different

number of structural breaks and/or at different dates from others. Also, structural breaks

are modeled as abrupt changes to identify potential regime shifts in economic structure such

as a long-run inflation target, monetary policy, and price-setting behavior.1

Changes in the group of AR coefficients, related to inflation persistence, can be under-

stood through shifts in structural parameters in the New Keynesian Phillips curve. Shifts

in inflation persistence can be caused by changes in firms’ price setting behavior, marginal

cost dynamics, or monetary policy.2 Shifts in inflation persistence have crucial implica-

tions for policymakers. For example, Solow (1968) and Tobin (1968) consider a test for

the natural rate hypothesis using a simple Phillips curve with unemployment rate. When

inflation is considered to be less persistent, the natural rate hypothesis is likely to be re-

jected. In such a case, policymakers may feel a strong temptation to exploit an illusory

inflation-unemployment trade-off, resulting in high inflation as in the 1970s.3

The unconditional mean in AR models is associated with trend inflation, which is po-

tentially set by the cental bank. Thus, one can make inferences about shifts in the central

bank’s long-run inflation target when studying structural breaks in the unconditional mean.

However, the changes in trend inflation would not be identified if we consider breaks in the

intercept because the shifts in the intercept may provide mixed information on breaks in

1 Fuhrer (2010) examines whether various measures of U.S. inflation have a unit root for several sets of
sample periods using the ADF test and the Phillips-Perron test. He finds that the results are ambiguous
but one may safely assume that inflation does not contain an important unit root for the period since the
mid-1980s. Fuhrer (2010) claims that if the central bank has a stable inflation goal, inflation would not have
a unit root and this can be the case of the U.S. economy. When taking his argument into account, I focus
on the possibility of abrupt changes in trend inflation as in Levin and Piger (2006) rather than stochastic
trend which evolves as a driftless random walk as in Cogley, Primiceri and Sargent (2010).

2 For the effect of monetary policy regime on persistence in inflation, see the discussion in Davig and
Doh (2014) and references therein.

3 For a more detailed discussion, see Cogley and Sargent (2002), Pivetta and Reis (2007), and references
therein.
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the unconditional mean and persistence.

In addition, Stock and Watson (2003) and Kim, Nelson and Piger (2004) suggest the

possibility of structural changes in the volatility of inflation as potentially related to real

activity and supply shocks. This shift can be captured when taking into account the change

in the residual variance.

In short, these complex patterns of structural breaks in different parameters reflect the

possibility that the parameter changes are due to the shifts in structural parameters of

macroeconomic models.4 To understand the structural dynamics of inflation clearly, it is

essential above all to investigate whether there have been breaks. If so, which parameters

are subject to these shifts? Do they undergo these changes at the same time? To answer

these questions, it is important to identify the parameters subject to changes at a particular

time and distinguish them from unchanged parameters.

I take a Bayesian approach to estimate and compare the complex structural break mod-

els, which are potentially non-nested. However, in the literature all the parameters subject

to the changes are assumed to have the structural shifts at the same date either in pure or

partial structural change models.5 For example, Chib (1998) considers single-group change-

point models by interpreting structural changes for all the parameters as regime transitions

that follow a first-order Markov processes. Wang and Zivot (2000) treat structural break

dates as additional parameters and sample break dates from conditional distributions of

break dates with flat priors.

Thus, these approaches in the literature are not suitable for making inferences about

4 For example, consider a simple New Keynesian Phillips curve (NKPC) which has the form

π̂t =
β

1 + βγ
Et[π̂t+1] +

γ

1 + βγ
π̂t−1 +

κ

1 + βγ
m̂ct + et

where π̂t = πt − π̄ is the inflation gap defined by the difference between the inflation rate and steady sate
inflation π̄ (potentially the inflation target set by the central bank) and mct is marginal cost. This hybrid
NKPC can be derived with a full price indexation to trend inflation and is widely used in the literature
(e.g. Smets and Wouters (2007)). When considering a reduced form regression from this model, a change in
the trend inflation can be associated with a structural break in the unconditional mean of inflation and a
change in the degree of price stickiness produces a shift in persistence of inflation dynamics. Also, a change
in the residual variance can be interpreted as different sizes of economic shocks.

5 Giordani and Kohn (2008) consider an alternative model which allows structural breaks to come through
mixture distributions in state innovations and shifts in variance occur independently of shifts in other
parameters. However, this specification still cannot distinguish breaks in the unconditional mean from shifts
in persistence.
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the complicated patterns of structural changes considered in this paper. To overcome the

limitation I modify Chib’s (1998) approach, augmenting each parameter (group) with its

corresponding independent regime indicator variable. Note that it is possible to sort several

parameters into a group and make the group of parameters undergo structural changes at

the same dates, as in the approach for persistence parameters adopted in this paper. The

modified approach allows multiple parameters (groups) to undergo mutually independent

structural breaks at different dates with the different number of breaks. This multiple-group

changepoint model can explore all the possible patterns of structural breaks efficiently. The

number of structural breaks and the form of structural change are determined by a Bayesian

model selection procedure using Bayes factors. For robustness, I also calculate marginal

probabilities for the number of structural breaks in each individual parameter group because

the model selection procedure using the Bayes factors chooses only one model.

I employ the modified approach to an autoregressive model for postwar U.S. GDP defla-

tor inflation and CPI inflation by allowing for shifts in the unconditional mean, a group of

persistence parameters, and/or the residual variance. The Bayesian model selection proce-

dure shows distinct patterns of structural changes from two different measures of inflation.

CPI inflation experienced a dramatic drop in persistence around the early 1980s, but GDP

deflator inflation is still persistent. Also, the residual variance for both inflation measures

switched from a low volatility regime to a high volatility regime in the early 1970s, but it

returned to another low volatility regime at different dates: the early 1980s for GDP defla-

tor inflation and the early 1990s for CPI inflation. The residual variance for CPI inflation

has increased again since the early 2000s, while GDP deflator inflation has remained less

volatile. This different pattern of changes in the variance is also confirmed using unobserved

components model with stochastic volatility in Stock and Watson (2007). However, I do

not find evidence of a structural shift in the unconditional mean. The marginal probabil-

ity calculations for the number of breaks in each individual parameter group also strongly

support the model selection results based on the Bayes factors. The structural breaks at

different dates reflect the possibility that parameter shifts might be caused by a variety of

factors.

The remainder of this paper describes the methods and then discusses the empirical
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results and how they compare to existing results in the literature.

2 Model Specification and Bayesian Inference

2.1 Model Specification

I consider a pth-order autoregressive model for an analysis of inflation dynamics and the

AR(p) model allows for structural breaks in three parameter groups such as (i) the un-

conditional mean µ, (ii) persistence (φ1, ..., φp) and (iii) the residual variance σ2. I focus

on changes in the unconditional mean rather than the intercept because changes in the

intercept may contain mixed information on changes in level and persistence. Sims (2001)

and Stock (2001) note that allowing for changes in the residual variance helps avoid any

potential distortions of identifying structural breaks in coefficients.6 The AR(p) model with

structural breaks is given by

πt = µS1,t + φ1,S2,t(πt−1− µS1,t−1) + · · ·+ φp,S2,t(πt−p− µS1,t−p) + et, et ∼ N(0, σ2S3,t
) (1)

where S1,t ∈ {1, ..,M1 + 1}, S2,t ∈ {1, ..,M2 + 1}, and S3,t ∈ {1, ..,M3 + 1} represent the

regimes for the unconditional mean parameter with M1 breaks, the persistence parameter

group with M2 breaks and the residual variance with M3 breaks, respectively. The nature

of the structural breaks in each parameter group is independent of one another in terms of

the number and timing of structural changes.

To make inferences about multiple-group changepoint models, I modify Chib’s (1998)

approach in which the structural breaks are interpreted as regime transitions. Chib (1998)

assumes that all the parameters which undergo the structural changes have the structural

shifts at the same dates.7 Thus, I propose an efficient Bayesian MCMC method that allows

for a number of possibilities for the nature of structural breaks. This modified approach is

developed to have the following attractive features: (i) model specification of considering

multiple structural changes in multiple parameters; (ii) model flexibility in allowing the

6In a similar spirit, Sims and Zha (2006) find that the best fitting vector autoregressive model does not
require changes in coefficients when regime switches in disturbance variances are allowed.

7 This type of model can be called a single-group changepoint model (e.g. both pure and partial structural
change models in Bai and Perron, 2003).
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multiple structural breaks to occur mutually independently at different dates; and (iii)

model selection procedure by comparing various potentially non-nested structural break

models.

Suppose a multiple-group changepoint model which allows parameters to change at dif-

ferent dates with the different number of breaks.8 For example, in (1) the model for inflation

dynamics may have one break in the unconditional mean, two breaks in persistence, and

three breaks in the residual variance. In this case, the modified approach would require only

augmentations with three independent latent regime indicator variables (S̃1,T , S̃2,T , S̃3,T ),

where S̃i,T = [Si,1 Si,2 . . . Si,T−1 Si,T ]′ for each parameter group i = 1, 2, 3, and three

transition probability matrices (P1, P2, P3) corresponding to three parameter groups while

the single-group changepoint model is augmented with only one regime indicator variable

and one transition probability matrix. Since all the regime indicator variables are mutually

independent in the multiple-group changepoint model, the date of regime transition in a

parameter is allowed to occur close to that of regime transition in other parameters without

any necessary minimum distance unlike the restriction in Levin and Piger (2007).

For a parameter group i, the latent state variable Si,t follows a first-order Markov process

with the transition probabilities constrained: for k = 1, . . . ,Mi

Pr[Si,t = k|Si,t−1 = k] = pik,k and Pr[Si,t = k + 1|Si,t−1 = k] = pik,k+1 = 1− pik,k (2)

and

Pr[Si,t = Mi + 1|Si,t−1 = Mi + 1] = 1 for the last regime Mi + 1 (3)

where pik,k indicates the probability that a regime Si,t for the parameter group i stays in the

current regime k. A transition probability matrix Pi for the parameter group i can then be

formed as a (Mi + 1)-by-(Mi + 1) matrix with elements containing information about the

8 Pesaran, Pettenuzzo and Timmermann (2006) and Koop and Potter (2007) extend Chib’s (1998) ap-
proach to improve forecasting ability and Giordani and Kohn (2008) take a different approach of mixture
models for making inference about structural breaks. The multiple-group changepoint approach may be also
evaluated in terms of forecasting performance. However, Bauwens et al. (2014) recently examine the fore-
casting performance of various structural break models including approaches based on Pesaran, Pettenuzzo
and Timmermann (2006), Koop and Potter (2007), and Giordani and Kohn (2008) and they find that there
is no one single method which can be recommended universally.
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first-order Markov process in (2) and (3).9

A joint posterior density can be obtained as being proportional to a product of a prior

density and a likelihood function of YT = [y1 . . . yT ]′ such as

π(θ,P |YT ) ∝ π(θ,P )f(YT |θ,P )

where π(·) denotes a density function; θ = (µ̃, φ̃, σ̃2) is a collection of model parameters; µ̃ =

(µ1, . . . , µM1+1), φ̃ = (φ1,1, . . . , φp,1, . . . , φ1,M2+1, . . . , φp,M2+1), and σ̃2 = (σ21, . . . , σ
2
M3+1);

and P = (P1, P2, P3) is a collection of transition probability matrices. The model pa-

rameters, θ = (µ̃, φ̃, σ̃2), are then augmented with the transition probability matrices,

P = (P1, P2, P3), and the latent regime indicators (S̃1,T , S̃2,T , S̃3,T ). The MCMC sampler is

developed through a hierarchical specification in which one draws the model parameters con-

ditional on the regime indicators and the observed data; the regime indicators conditional

on the model parameters and the observed data; and finally the transition probabilities con-

ditional on the regime indicators via Gibbs sampling. More details for the MCMC sampling

algorithm are explained in the appendix.

2.2 Model Selection Procedures

I consider two different model selection procedures: (i) the Bayes factor comparison using

the marginal likelihoods and (ii) the posterior probability for the number of structural

breaks in each individual parameter group by integration. Thus, I find not only the most

preferred model based on the Bayes factor but also the marginal probability for the number

of breaks in each parameter group for robustness to the model selection results. In this

analysis, the maximum number of structural breaks is specified to four for each parameter

group and in total, 125 different models for each inflation measure are considered including

9 This restriction can be expressed in matrix form where pj,k is placed in the (j,k)th entry of the transition
matrix

P =



p1,1 p1,2 0 · · · 0
0 p2,2 p2,3 · · · 0
...

...
...

...
...

· · ·
... 0 pM,M pM,M+1

0 0 · · · 0 1

 . (4)

I drop the superscript i for notational simplicity.
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a model with no break (125 = 53).

The Bayes factor is presented in favor of the alternative model, M = (M1,M2,M3)

versus the most preferred model, M∗ = (M∗1 ,M
∗
2 ,M

∗
3 ) by

BF =
m (YT |M = (M1,M2,M3))

m (YT |M∗ = (M∗1 ,M
∗
2 ,M

∗
3 ))

where m (YT |M = (M1,M2,M3)) is the marginal likelihood for the model with structural

breaks of (M1,M2,M3). I calculate the marginal likelihood at the posterior mean. The

algorithm to compute the marginal likelihood is described in the appendix.

I also calculate the posterior probability for the number of structural breaks in each

individual parameter group by integrating out the number of breaks in other parameters.

For example, the posterior probability for l structural breaks in the parameter µ̃, denoted

by M1 = l, is given by

Pr(M1 = l|YT ) =
m(YT |M1 = l)π(M1 = l)
4∑
i=0

m(YT |M1 = i)π(M1 = i)

(5)

where

m(YT |M1 = l) =

4∑
j=0

4∑
k=0

m(YT |M1 = l,M2 = j,M3 = k)π(M2 = j,M3 = k|M1 = l)

is the integrated likelihood when M1 = l; π(M1 = l) is the prior probability for M1 = l;

and π(M2 = j,M3 = k|M1 = l) is the joint prior probability for M2 = j and M3 = k

conditional on M1 = l. Because all the models are considered a priori equally likely as well

as independent, π(M1 = l) is equal to 1/5 and π(M2 = j,M3 = k|M1 = l) is equal to 1/25

when the maximum number of structural breaks is specified to four as in this analysis. In

fact, the posterior probability of l structural breaks in the parameter µ̃ is simply the sum

of posterior probabilities for all the models such that M1 = l. For other parameters, φ̃ and

σ̃2, Pr(M2 = j|YT ) and Pr(M3 = k|YT ) can be easily obtained by using the same approach

in (5). Note that all the terms in (5) are readily available when the marginal likelihood

calculations are completed.
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3 Structural Breaks in Inflation Dynamics

3.1 Data and Prior

I consider two different quarterly U.S. inflation measures based on the consumer price index

(CPI) and the GDP deflator.10 Each inflation is defined as 100 times the log change in the

corresponding price index for the period of 1953:Q1 to 2013:Q4.

Figure 1 depicts the two inflation series. Both inflation measures appear to be less

volatile for the “Great Moderation” period since the early 1980s but CPI inflation has

been recently more volatile. Moreover, CPI inflation appears to be less persistent than

GDP deflator inflation. Table 1 presents summary statistics over the sample period. CPI

inflation has a slightly higher mean, is less persistent, and more volatile than for GDP

deflator inflation. In addition, the correlation between the two inflation measures is 0.78.

Thus, the timing and the number of structural changes might be different across model

parameters such as the unconditional mean, persistence, and the residual variance as well

as across the different measures of inflation. In this case, the multiple-group changepoint

model can effectively detect the structural changes in individual parameter groups.

In this analysis, the lag order p is set to two for both series by the Bayesian information

criterion. The diffuse and same prior distributions across different regimes are chosen in

order to avoid any distortions from the choice of specific prior distributions when estimating

different structural break models. The priors for regression coefficients are distributed with

mean zero and variance one (i.e., µ, φi ∼ N (0, 1)) and the priors of variance parameters

follow an Inverse Gamma distribution such as σ2 ∼ IG(5.02 ,
1.5
2 ) for CPI inflation and

σ2 ∼ IG(4.22 ,
0.5
2 ) for GDP deflator inflation. The priors for the variance parameters are

set differently reflecting the fact that GDP deflator inflation is more persistent and less

volatile than CPI inflation so that the residual variance for the GDP inflation regression is

much smaller than for the CPI inflation regression. See the summary statistics in Table 1.

The prior of the transition probability that the current regime k stays in the same regime

k in the next period is distributed as pkk ∼ Beta(10, 0.1). The prior expected duration

of a given regime is about 101 quarters and the prior expected number of breaks is 2.4

10 I use the CPI series for all urban consumers (CPIAUCSL) and the GDP implicit price deflator
(GDPDEF) from the Federal Reserve Economic Database (FRED). They are all seasonally adjusted.
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Figure 1: U.S. Inflation Rates: CPI and GDP Deflator (Quarterly percentage change):
1953:Q1-2013:Q4
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Table 1: Summary Statistics for Inflation Series: 1953:Q1-2013:Q4

Series Mean SD
First Order
Autocorr

CPI 0.89 0.81 0.61
GDP 0.80 0.57 0.86

Corr 0.78

Note: CPI refers to CPI inflation and GDP refers to GDP deflator inflation.

given the sample size of 241. All the estimations are based on 3,000 Gibbs simulations after

discarding 3,000 burn-ins.11

11Estimating multiple-group changepoint models does not require considerable computational time. For
example, the most preferred model for CPI inflation with M∗ = (M∗1 = 0,M∗2 = 1,M∗3 = 3) runs about 3
mins 2.78 seconds using Intel Core i7-4770 CPU. The code is written and run in GAUSS 10.
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Table 2: U.S. CPI Inflation: Model Selection
Model (# of breaks)

Log marginal likelihood Bayes FactorM = (M1,M2,M3)

(0,1,3) -203.55 1.0000
(1,1,3) -205.66 0.1206
(0,1,4) -206.17 0.0728
(0,2,3) -207.36 0.0221
(0,1,2) -207.46 0.0200
(0,0,3) -207.85 0.0135
(0,1,1) -208.16 0.0099
(1,1,4) -208.35 0.0082
(2,1,3) -208.77 0.0054
(1,1,2) -209.04 0.0041

Note: M1, M2, and M3 denote the number of breaks in the unconditional mean (µ), the
persistence (φ1, φ2), and the residual variance (σ2), respectively. Bayes factors are calculated

in favor of the alternative model: BF = m(YT |MA)
m(YT |M∗=(0,1,3)) .

Table 3: U.S. CPI Inflation: Posterior Probability of the Number of Structural Breaks in
Individual Parameter Group

Parameter # of breaks Posterior Probability

Uncond. Mean 0 0.89
1 0.11
2 0.00
3 0.00
4 0.00

Persistence 0 0.01
1 0.97
2 0.02
3 0.00
4 0.00

Residual Variance 0 0.00
1 0.01
2 0.02
3 0.91
4 0.06

3.2 Empirical Findings for CPI Inflation

I first discuss model selection results for CPI inflation. Table 2 presents the ten best

models based on marginal likelihood calculations among 125 models. The comparison of
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Table 4: U.S. CPI Inflation: Posterior Distributions for the Most Preferred Model [# of
Breaks (M∗1 ,M

∗
2 ,M

∗
3 ) = (0, 1, 3)]

Parameter Prior
Posterior

Regime 1 Regime 2 Regime 3 Regime 4

µ 0.000 0.686
(1.000) (0.070)

φ1 0.000 0.436 0.086
(1.000) (0.085) (0.126)

φ2 0.000 0.458 0.013
(1.000) (0.085) (0.116)

p2,ii 0.990 0.992
(0.030) (0.008)

σ2 0.500 0.143 0.427 0.112 0.678
(0.707) (0.025) (0.103) (0.036) (0.149)

p3,ii 0.990 0.987 0.986 0.981
(0.030) (0.012) (0.014) (0.018)

Note: Standard deviations are reported in parentheses.

the marginal likelihoods shows that the most preferred model has one structural break in

persistence, three structural breaks in the residual variance, and no structural break in the

unconditional mean. The most preferred model clearly dominates the other models in the

sense that the Bayes factor is lower than 1/8 in favor of any alternative model.

Table 3 lists the marginal posterior probability of the number of structural breaks in

individual parameter groups using (5). The highest probability of the number of breaks

for each parameter is calculated as follows: 0.89 for no break in the unconditional mean,

0.97 for one break in persistence, and 0.91 for three breaks in the residual variance. This

finding from the marginal probability calculations is completely consistent with the model

selection of M∗ = (M∗1 = 0,M∗2 = 1,M∗3 = 3) based on the Bayes factors.

Tables 4 summarizes the posterior distributions with mean and standard deviation and

Figure 2 plots the posterior mean and 90% credible band for each parameter group over the

sample period. The sum of autoregressive coefficients is used for the measure of persistence.

The posterior distributions clearly show that persistence sharply decreased from 0.89 to 0.10

(posterior mean) in the early 1980s while the residual variance switched from a low volatility

regime to a high volatility regime around the early 1970s, returned to another low volatility
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regime around the early 1990s, and then has increased again since the early 2000s.12 The

changes in the residual variance also appear to be abrupt. It is evident that the break point

for persistence is different from the break points for the residual variance. Thus, these

structural changes could be caused by different sources.

Figure 2: U.S. CPI Inflation: Posterior Distribution of Parameters over Time

(a) Unconditional Mean (b) Persistence (Sum of AR parameters)

(c) Residual Variance

Note: Posterior mean and 90% band are plotted over time. The estimated break dates
(posterior mode) are 1981:Q3 for persistence and 1972:Q4, 1991:Q1, and 2001:Q2 for the
residual variance.

12Giordani and Kohn (2008) consider an AR(1) model of CPI inflation for the sample period of 1951 to
2004 and also find a structural break in the early 1990s rather than the mid 1980s, the so-called ”Great
Moderation” breakpoint.
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3.3 Empirical Findings for GDP Deflator Inflation

Now, I apply the modified approach to an AR(2) model for GDP deflator inflation. Table 5

presents calculations for the marginal likelihood and Bayes factor. The marginal likelihood

calculations select the model with two breaks in the residual variance only. The Bayes

factor between M∗ = (0, 0, 2) and M = (0, 0, 1), the second preferred model, is 0.61.

Table 6 shows the marginal probability for the number of breaks in each parameter group.

The posterior probability for two breaks in the residual variance (σ2) is 0.60 and for one

break is 0.37 while the posterior probabilities for no break in the unconditional mean (µ)

and in persistence (φ) are 0.99 and 0.95, respectively. Thus, not only the marginal likelihood

comparisons but also the posterior probability calculations produce very strong evidence

that the autoregressive model for GDP deflator inflation has no break in the unconditional

mean and persistence but the specification for two breaks in the residual variance is slightly

more preferred than for one break.13 This result is also consistent with the finding that

evidence for shifts in persistence for GDP deflator inflation is not statistically significant,

particularly once allowing for shifts in the residual variance as in Pivetta and Reis (2007)

and Stock (2002).

Table 7 summarizes posterior distributions for the parameters in the most preferred

model and Figure 3 plots posterior mean and 90% credible band for each parameter group.

The residual variance switched from a low volatility regime to a high volatility regime around

the early 1970s and then returned to another low volatility regime around the early 1980s.

In addition, the residual variance for the first regime appears to be bigger than that for the

third regime. The changes in the residual variance are also abrupt and this implies that

the multiple-group changepoint model provides precise information about the timing of the

structural breaks in the residual variance. Note also that GDP deflator inflation is highly

persistent in the sense that the sum of the autoregressive coefficients (posterior mean) is

0.88. This finding on high inflation persistence is consistent with that in the literature

(e.g. Fuhrer and Moore (1995)). However, the 90% credible band does not cover the unit

13The break date for the autoregressive model with one break in the residual variance is consistent with
the second break date around the early 1980s for the model with two breaks. As shown in Table 7, the
difference in the residual variances is more pronounced in the second break.
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Table 5: U.S. GDP Deflator Inflation: Model Selection
Model (# of breaks)

Log marginal likelihood Bayes FactorM = (M1,M2,M3)

(0,0,2) -23.30 1.0000
(0,0,1) -23.80 0.6105
(0,1,2) -26.18 0.0561
(0,0,3) -26.42 0.0441
(0,1,1) -26.77 0.0311
(1,0,1) -27.88 0.0103
(1,0,2) -27.98 0.0093
(0,1,3) -29.14 0.0029
(0,0,4) -29.73 0.0016
(0,2,2) -30.02 0.0012

Note: For the proposed approach, M1, M2, and M3 denote the number of breaks in the
unconditional mean (µ), the persistence (φ1, φ2), and the residual variance (σ2), respectively.

Bayes factors are calculated in favor of the alternative model: BF = m(YT |MA)
m(YT |M∗=(0,0,2)) .

Table 6: U.S. GDP Deflator Inflation: Posterior Probability of the Number of Structural
Breaks in Individual Parameters

Parameter # of breaks Posterior Probability

Uncond. Mean 0 0.99
1 0.01
2 0.00
3 0.00
4 0.00

Persistence 0 0.95
1 0.05
2 0.00
3 0.00
4 0.00

Residual Variance 0 0.00
1 0.37
2 0.60
3 0.03
4 0.00

root.14

14I have conducted robustness checks by doubling the standard deviations of priors as well as considering
an AR(4) model. I found that the posterior distributions and the timing of the structural breaks are broadly
identical and they are robust to the alternative specifications. Also, additional coefficients for higher-order
lags in the AR(4) models appear to be insignificant.
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Table 7: U.S. GDP Deflator Inflation: Posterior Distributions for the Most Preferred Model
[# of Breaks (M∗1 ,M

∗
2 ,M

∗
3 ) = (0, 0, 2)]

Parameter
Prior Posterior

Regime 1 Regime 2 Regime 3

µ 0.000 0.611
(1.000) (0.205)

φ1 0.000 0.494
(1.000) (0.064)

φ2 0.000 0.387
(1.000) (0.062)

σ2 0.227 0.078 0.174 0.038
(0.719) (0.014) (0.041) (0.005)

p3,ii 0.990 0.985 0.980
(0.030) (0.013) (0.017)

Note: Standard deviations are reported in parentheses.

4 Robustness

4.1 Comparison with Chib’s (1998) approach

For robustness, I consider Chib’s approach, a single-group changepoint model, in which

all the parameters including the residual variance undergo breaks at the same time. The

models are estimated using the same priors as in the multiple-group changepoint models.

The results for the Bayes factor calculations are summarized for both measures of inflation

in Table 8. Based on Chib’s approach, the values of the highest (log) marginal likelihood are

equal to -208.54 (three breaks) for CPI inflation and -31.43 (one break) for GDP deflator

inflation, respectively. However, these marginal likelihood values are significantly lower than

those based on the multiple-group changepoint approach.

I also consider another modified approach in which the unconditional mean and persis-

tence parameters (i.e. conditional mean) undergo co-breaks at the same time, which are

independent of the breaks in the residual variance. I estimate the model with one break in

the conditional mean and three breaks in the residual variance in accordance with the em-

pirical finding in the previous section. The log marginal likelihood for this modified model

is calculated to be -204.81, which is lower than that for the most preferred model (-203.55)

based on the multiple-group changepoint approach. The Bayes factor is then equal to 0.28
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Figure 3: GDP Deflator Inflation: Posterior Distribution of Parameters over Time

(a) Unconditional Mean (b) Persistence (Sum of AR parameters)

(c) Residual Variance

Note: Posterior mean and 90% band are plotted over time. The estimated break dates
(posterior mode) are 1970:Q2 and 1981:Q2 for the residual variance.

(alternatively 3.53 in favor of the most preferred model, M∗ = (0, 1, 3)), which shows sub-

stantial evidence for one break in persistence and three breaks in the residual variance when

adopting Jeffreys’s (1961) interpretation.15 Note that the most preferred model for GDP

deflator inflation has no break in the unconditional mean and persistence. Therefore it is

not required to estimate the modified model additionally.

15 I thank an anonymous referee for suggesting this robustness analysis.
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Table 8: Comparison to Chib’s (1998) Approach: Model Selection

(a) CPI Inflation

Model (# of breaks) Log marginal likelihood Bayes Factor

0 -233.43 0.0000
1 -212.13 0.0002
2 -211.67 0.0003
3 -208.54 0.0068
4 -215.94 0.0000

(b) GDP Deflator Inflation

Model (# of breaks) Log marginal likelihood Bayes Factor

0 -34.61 0.0000
1 -31.43 0.0003
2 -32.55 0.0001
3 -39.22 0.0000
4 -49.25 0.0000

Note: Bayes factors are calculated in favor of the alternative model: BF = m(YT |MA)
m(YT |M∗) for

each measure of inflation. m (YT |M∗) is the most preferred model based on the multiple-
group changepoint approach for each measure of inflation.

4.2 Unobserved Components Models with Stochastic Volatility

The empirical results reported in Section 3 show that there have been large changes in

the variance, but two measures of inflation exhibit the different evolution of the residual

variance in terms of the number and timing of the breaks. Following Stock and Watson

(2007), I consider an unobserved components model with stochastic volatility (UC-SV) and

further examine whether these empirical findings on the shifts in the residual variance are

robust.16

Stock and Watson (2007) estimate an UC-SV model for GDP deflator inflation from

1953:Q1 to 2004:Q4. They find that there have been substantial movements over time

in the standard deviation of the permanent component while there is little change in the

standard deviation of the transitory innovation. I examine CPI inflation in addition to GDP

deflator inflation using the longer sample period of 1953:Q1 to 2013:Q4, which is used in

Section 3, in comparison to Stock and Watson (2007). The UC-SV model specification is

16I thank an anonymous referee for suggesting this robustness check.
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exactly the same as in Stock and Watson (2007):

πt = τt + ηt, where ηt = ση,tξη,t

τt = τt−1 + εt, where εt = σε,tξε,t

lnσ2η,t = lnσ2η,t−1 + vη,t

lnσ2ε,t = lnσ2ε,t−1 + vε,t

where ξt = (ξη,t, ξε,t)
′ is i.i.d.N(0, I2); vt = (vη,t, vε,t)

′ is i.i.d.N(0, γI2); ξt and vt are inde-

pendently distributed; and γ determines the smoothness of the stochastic volatility process.

The scalar parameter γ is set to 0.2 as in Stock and Watson (2007) and the posterior distri-

butions of stochastic volatility are estimated by MCMC. Figures 4 and 5 plot the smoothed

estimates (posterior mean and 67% band) of σ2ε,t and σ2η,t from the UC-SV models for GDP

deflator inflation and CPI inflation, respectively. The empirical results for GDP deflator

inflation are similar to Stock and Watson’s (2007) results. The standard deviation of the

permanent disturbance was moderate from the mid 1950s through the early 1970s, it was

large during the 1970s through the mid 1980s, and it declined sharply in the mid-1980s,

whereas the volatility of the transitory disturbance appears to have remained stable. This

low-high-low volatility pattern on the permanent innovations is consistent with the regime

changes in the residual variance based on the multiple-group changepoint model in Section

3. Note also that the changepoint model analysis finds that GDP inflation has been highly

persistent for the whole sample period and this high persistence for GDP deflator inflation

implies that the evolution of inflation volatility would be mostly attributed to the perma-

nent innovations. This conjecture is confirmed by the substantial changes in the standard

deviations of the permanent innovations and the relatively stable volatility of the transitory

innovations. In contrast to GDP deflator inflation, the volatility of the transitory innova-

tions for CPI inflation shows substantial movements while the permanent innovations for

CPI inflation exhibit a similar pattern of the low-high-low volatility shifts for GDP deflator

inflation. The high volatility of the transitory innovations appears to contribute to the

large fluctuations since the early 2000s because the volatility of the permanent innovations

is moderate during this period. This empirical finding is consistent with the result based on
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the multi-group changepoint model in the sense that CPI inflation experienced a dramatic

drop in persistence around the early 1980s and the permanent innovations would not play

an important role in generating high levels of CPI inflation volatility since the early 2000s.

Figure 4: CPI Inflation: Stochastic Volatility in UC-SV Model
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Note: Posterior mean and 67% band are plotted over time.

Figure 5: GDP Deflator Inflation: Stochastic Volatility in UC-SV Model
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Note: Posterior mean and 67% band are plotted over time.
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5 Summary and Comparison with the Literature

To summarize, two different measures of inflation undergo distinct structural changes in

different parameters as well as at different dates. Both measures of inflation switched from

a low volatility regime to a high volatility regime in the early 1970s but switched to another

low volatility regime at different dates: the early 1980s for GDP deflator inflation and

the early 1990s for CPI inflation. Moreover, the residual variance for CPI inflation has

increased again since the early 2000s but GDP deflator inflation has remained less volatile.

The empirical results on the changes in volatility for two measures of inflation are robust to

the alternative specification of stochastic volatility. CPI inflation experienced a dramatic

drop in persistence around the early 1980s but GDP deflator inflation is still persistent. The

correlations between CPI inflation and GDP deflator inflation are calculated for the periods

before and after 1981:Q3, which is the break date (posterior mode) for persistence of CPI

inflation. The correlation has dropped substantially from 0.88 to 0.44 and this decrease also

supports the different dynamics of the two inflation measures since the early 1980s. These

findings about the complex patterns of structural changes reflect the possibility that the

parameter shifts are caused by a variety of sources.

When reviewing recent findings in the literature,17 there appears to be controversy

surrounding changes in inflation persistence. The mixed statistical evidence on inflation

persistence in this paper seems to be along the lines of the disagreement in the literature.

However, there seems to be an interesting pattern of results in reading recent studies in

the literature regardless of persistence measures and econometric models. That is, whether

there was a change in persistence around the early 1980s depends on the measure of inflation

used in the analysis.

For example, Pivetta and Reis (2007) use GDP deflator inflation and conclude that in-

flation persistence has been roughly constant and high over the past 40 years, which is the

same as the empirical finding in this paper.18 Pivetta and Reis (2007) conduct extensive

17 Recently, Cogley, Primiceri and Sargent (2010) and Kang, Kim and Morley (2009) study the persistence
of inflation gap defined by the difference between inflation and its stochastic trend which evolves as a driftless
random walk and find that there are changes in inflation gap persistence. Note that this model specification
implies that inflation is assumed to have a unit root. Thus, their focus is different from that in this paper
and other studies in the literature discussed here. Also, see the discussion in Benati (2008).

18 One exception in the recent literature is Taylor’s (2000) study which calculates the median-unbiased
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research and robustness checks to support their findings. They first consider a Bayesian

time-varying parameter model which allows for time-varying intercept and persistence pa-

rameters. They then calculate median unbiased estimates using local-to-unity asymptotics

for different measures of persistence. Based on the various empirical models and estimates,

they conclude that there has been no evidence of a change in persistence since 1965. For CPI

inflation, Kim, Nelson and Piger (2004) find a persistence fall in 1979:Q2 and Leybourne

et al. (2003) detected a change in inflation dynamics from I(1) to I(0) in 1982:Q2.

While most studies focus on only a particular measure of inflation, some papers examine

multiple measures of inflation.19 Stock (2002) finds no evidence of a structural break for

GDP deflator inflation but detects a single structural break in the regression coefficients for

CPI inflation around 1981 using the Quandt likelihood ratio test at a 10% level. This break

date is consistent with the estimated (posterior mode) break date based on the multiple-

group changepoint approach. Benati (2008) and Fuhrer (2010) consider a broad range of

inflation measures for various subsamples, which are determined by monetary regimes and

the so-called ”Great Moderation” break, respectively. Benati (2008) documents that there

was a fall in persistence for CPI inflation during the post-Volcker stabilization period since

1982:Q4, while other measures of inflation including GDP deflator inflation continued to

be persistent. Finally, Fuhrer (2010) finds that since the early 1980s CPI inflation has

very different dynamics from other inflation measures such as the GNP deflator, the GDP

deflator, the PCE deflator, the core CPI, and the core PCE deflator. He confirms this

difference by considering “grid-bootstrap” median-unbiased estimates of persistence, results

for structural break test in persistence, first-order autocorrelation, and LAR estimates.

estimate for the largest autoregressive root (LAR). He finds that the LAR estimate for the period of 1960:Q2-
1979:Q4 (0.94) was much higher than for the period of 1982:Q1 to 1999:Q4 (0.74). However, Pivetta and
Reis (2007) argue that Taylor’s (2000) finding could be driven by the anomaly of having the sample period
of 1982-1983, in which there was the minor exception of a possible short-lived change, because their 14-year
window LAR estimate in 1999:Q4 is very close to the estimate for the period of 1960:Q2-1979:Q4.

19Levin and Piger (2006) estimate autoregressive models with structural breaks for various measures of
inflation: GDP deflator, CPI, CPI core, and PCE using the sample period of 1984:Q3-2005:Q2. Note that
their sample period starts after the persistence break date (1981:Q3) for CPI inflation found in this paper.
They cannot reject the null of structural break in the intercept for individual measures, but they are able to
reject the null of no shift in the intercept for a multivariate model considering all the measures of inflation
with the estimated break date in 1991:Q1 by using a seemingly unrelated regression model.
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6 Conclusion

In this paper, I employ a Bayesian approach to making inferences about complicated pat-

terns of structural breaks in inflation dynamics. I modify Chib’s (1998) approach by allowing

multiple parameters to undergo mutually independent structural breaks at different dates

with the different number of breaks. Structural breaks are modeled as abrupt changes to

identify potential regime shifts in economic structure such as a long-run inflation target,

monetary policy, and price-setting behavior. I examine postwar quarterly U.S. inflation

rates based on the CPI and the GDP deflator. Both inflation measures show multiple

structural breaks in the residual variance but they show quite distinctive patterns in terms

of timing and the number of breaks, which are confirmed by the empirical results based on

the UC-SV model.

Another interesting finding is that CPI inflation experienced a dramatic drop in per-

sistence around the early 1980s, but GDP deflator inflation is still persistent. However, I

do not find evidence of a structural shift in the unconditional mean for both measures of

inflation. The marginal probability calculations for the number of breaks in each individ-

ual parameter group also strongly support the model selection results based on the Bayes

factors.

When reviewing the recent literature, considerable controversy exists over the structural

break in inflation persistence around the early 1980s but the existence of the structural

break appears to be dependent on the measures of inflation, as highlighted by the empirical

findings in this paper. The structural breaks at different dates reflect the possibility that

the parameter shifts are caused by a variety of factors.

23



References

Albert, James H., and Siddhartha Chib. 1993. “Bayes inference iva Gibbs Sampling of au-

toregressive time series subject to Markov mean and variance shifts.” Journal of Business

and Economic Statistics, 11: 1–15.

Bai, Jushan, and Pierre Perron. 2003. “Computation and Analysis of Multiple Structural

Change Models.” Journal of Applied Econometrics, 18(1): 1–22.

Bauwens, Luc, Gary Koop, Dimitris Korobilis, and Jeroen VK Rombouts. 2014. “The

contribution of structural break models to forecasting macroeconomic series.” Journal of

Applied Econometrics.

Benati, Luca. 2008. “Investigating Inflation Persistence across Monetary Regimes.” The

Quarterly Journal of Economics, 1005–1060.

Chib, Siddhartha. 1996. “Calculating posterior distributions and modal estimates in Markov

mixture models.” Journal of Econometrics, 75(1): 79–97.

Chib, Siddhartha. 1998. “Estimation and comparison of multiple change-point models.”

Journal of Econometrics, 86(2): 221–241.

Cogley, Timothy, and Thomas J Sargent. 2002. “Evolving post-world war II US inflation

dynamics.” In NBER Macroeconomics Annual 2001, Volume 16. 331–388. MIT Press.

Cogley, Timothy, Giorgio E Primiceri, and Thomas J Sargent. 2010. “Inflation-Gap Persis-

tence in the US.” American Economic Journal: Macroeconomics, 2(1): 43–69.

Davig, Troy, and Taeyoung Doh. 2014. “Monetary policy regime shifts and inflation persis-

tence.” Review of Economics and Statistics, 96(5): 862–875.

Fuhrer, Jeff, and George Moore. 1995. “Inflation Persistence.” The Quarterly Journal of

Economics, 110(1): 127–159.

Fuhrer, Jeffrey C. 2010. “Inflation Persistence.” Handbook of Monetary Economics, 3: 423–

486.

Giordani, Paolo, and Robert Kohn. 2008. “Efficient Bayesian inference for multiple change-

point and mixture innovation models.” Journal of Business & Economic Statistics, 26(1).

Jeffreys, Harold. 1961. The theory of probability. Oxford University Press.

24



Kang, Kyu Ho, Chang-Jin Kim, and James Morley. 2009. “Changes in US inflation persis-

tence.” Studies in Nonlinear Dynamics & Econometrics, 13(4).

Kim, Chang-Jin, and Charles R. Nelson. 1999. State-Space Models with Regime Switching:

Classical and Gibbs-Sampling Approaches with Applications. The MIT Press.

Kim, Chang-Jin, Charles R Nelson, and Jeremy Piger. 2004. “The less-volatile US econ-

omy: a Bayesian investigation of timing, breadth, and potential explanations.” Journal

of Business & Economic Statistics, 22(1): 80–93.

Koop, Gary, and Simon M Potter. 2007. “Estimation and forecasting in models with multiple

breaks.” The Review of Economic Studies, 74(3): 763–789.

Levin, Andrew, and Jeremy Piger. 2006. “Is inflation persistence intrinsic in industrial

economies?”

Levin, Andrew, and Jeremy Piger. 2007. “Bayesian Model Selection for Structural Break

Models.” Manuscript.

Leybourne, Stephen, Tae-Hwan Kim, Vanessa Smith, and Paul Newbold. 2003. “Tests for

a change in persistence against the null of difference-stationarity.” The Econometrics

Journal, 6(2): 291–311.

Pesaran, M Hashem, Davide Pettenuzzo, and Allan Timmermann. 2006. “Forecasting

time series subject to multiple structural breaks.” The Review of Economic Studies,

73(4): 1057–1084.

Pivetta, Frederic, and Ricardo Reis. 2007. “The Persistence of Inflation in the United

States.” Journal of Economic Dynamics and Control, 31: 1326–1358.

Sims, Christopher A. 2001. “Comment on Sargent and Cogley’s ’Evolving post World War

II US inflation dynamics’.” NBER Macroeconomics Annual.

Sims, Christopher A, and Tao Zha. 2006. “Were there regime switches in US monetary

policy?” The American Economic Review, 54–81.

Smets, Frank, and Raf Wouters. 2007. “Shocks and frictions in US business cycles: A

Bayesian DSGE approach.” American Economic Review, 97(3): 586–606.

Solow, Robert M. 1968. “Recent controversy on the theory of inflation: An eclectic view.”

Inflation: Its Causes, Consequences, and Control, edited by Stephen W. Rousseas. New

York: New York University.

25



Stock, James. 2001. “Discussion of Cogley and Sargent Evolving post World War II US

inflation dynamics.” NBER Macroeconomics Annual.

Stock, James. 2002. “Comment on Evolving Post-World War II U.S. Inflation Dynamics.”

NBER Macroeconomics Annual 2001, 379–387.

Stock, James H, and Mark W. Watson. 2003. “Has the Business Cycle Changed, and Why?”

NBER Macroeconomics Annual 2002, 17: 159–218.

Stock, James H, and Mark W Watson. 2007. “Why has US inflation become harder to

forecast?” Journal of Money, Credit and banking, 39(s1): 3–33.

Taylor, John B. 2000. “Low inflation, pass-through, and the pricing power of firms.” Euro-

pean economic review, 44(7): 1389–1408.

Tobin, James. 1968. “Discussion.” In Proceedings of a Symposium on Inflation: Its Causes,

Consequences, and Control. , ed. S. Rousseaus. New York University, New York.

Wang, Jiahui, and Eric Zivot. 2000. “A Time Series Model of Multiple Structural Changes in

Level, Trend and Variance.” Journal of Business and Economic Statistics, 18(3): 374–386.

26



A Appendix

A.1 Sampling Posteriors

I describe how to sample the latent regime indicators, (S̃1,T , S̃2,T , S̃3,T ) and the posterior

of model parameters conditional on the regime transition probabilities, P = (P1, P2, P3) in

the case of three parameter groups based on MCMC sampling algorithm in Section 2.

A.1.1 Simulation of latent regime indicator S̃g,T for g = 1, 2, 3

The discrete latent regime indicators {Sg,t} for t = 1, . . . , T and g = 1, 2, 3 are sim-

ulated in each step. The objective is to sample the indicators from the mass discrete

function p(S̃g,T |θ, S̃−g,T ,P , YT ) where p(·) denotes a discrete mass function and S̃−g,T =

(S̃1,T , . . . , S̃g−1,T , S̃g+1,T , . . . , S̃G,T ). The mass function can be expressed as a joint density

in reverse time order as follows.

p(S̃g,T |θ, S̃−g,T ,P , YT ) = p(Sg,T |θ, S̃−g,T ,P , YT )× p(Sg,T−1|Sg,T ,θ, S̃−g,T ,P , YT )× · · ·

×p(Sg,t|St+1
g ,θ, S̃−g,T ,P , YT )× · · · × p(Sg,1|S2

g ,θ, S̃−g,T ,P , YT ) (A.1)

where St+1
g = [Sg,t+1 . . . Sg,T ]′. Notice that the first regime and the last regime are always

one and Mg + 1, respectively. These imply that for g = 1, 2, 3

p(Sg,T = Mg + 1|θ, S̃−g,T ,P , YT ) = 1 and p(Sg,1 = 1|θ, S̃−g,T ,P , YT ) = 1.

Thus, the regimes Sg,t for t = 2, . . . , t− 1 are recursively simulated from t = T − 1 to t = 2

in reverse time order.

As discussed in Section 2, the regime transition follows a first order Markov process. It

is also independent of its own parameter as well as both other parameters and their latent

regime indicators, as shown in Chib (1996). Thus, a term in (A.1) can be written that for

g = 1, 2, 3

p(Sg,t|YT , St+1
g , S̃−g,T ,θ,P ) ∝ p(Sg,t|Yt, S̃−g,T ,θ,P )× p(Sg,t+1|Sg,t, Pg).

The first term in the proportion of the regime distribution is calculated recursively. Suppose

p(Sg,t−1|Yt−1, S̃−g,T ,θ,P ) is known. Then, Bayes’ rule can be applied for k = 1, . . . ,Mg + 1

regimes,

p(Sg,t = k|Yt, S̃−g,T ,θ,P ) =
p(Sg,t = k|Yt−1, S̃−g,T ,θ,P )× f(yt|Yt−1, θg,k,θ−g)∑Mg+1
l=1 p(Sg,t = l|Yt−1, S̃−g,T ,θ,P )× f(yt|Yt−1, θg,l,θ−g)

where

p(Sg,t = k|Yt−1, S̃−g,T ,θ,P ) =
k∑

l=k−1
p(Sg,t = k|Sg,t−1 = l, Pg)×p(Sg,t−1 = l|Yt−1, S̃−g,T ,θ,P )
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and p(Sg,t = k|Sg,t−1 = l, Pg) is the (l,k)th entry of the transition matrix Pg.

In sum, the probabilities of the regimes over dates are sampled through MCMC simu-

lations:

Pr(Sg,t = k|YT ) =

∫
p(Sg,t = k|YT ,θ,P )π(θ,P |YT )d(θ,P )

and in practice with J simulations

Pr(Sg,t = k|YT ) =
1

J

J∑
j=1

p(S
(j)
g,t = k|YT ,θ(j),P (j)).

A.1.2 Simulation of transition probability matrix Pg

The transition probability matrices (P1, P2, P3) are sampled only conditional on their regime

indicators (S̃1,T , S̃2,T , S̃3,T ), respectively. The reason is that the full conditional distribution

Pg|θ, S̃g,T , S̃−g,T , P−g, YT is independent of (θ, S̃−g,T , P−g, YT ) where P−g = (P1, . . . , Pg−1, Pg+1, . . . , PG)

for g = 1, 2, 3. Thus, it can be shown that

π
(
Pg|θ, S̃g,T , S̃−g,T , P−g, YT

)
= π

(
Pg|S̃g,T

)
.

If Beta priors for pi,i, i = 1, . . . ,Mg, are employed as

pi,i ∼ Beta(ui,i, ui,i+1)

where ui,i and ui,i+1 are the hyper-parameters, the posterior distribution can be derived as

pi,i|S̃g,T ∼ Beta (ui,i + ni,i, ui,i+1 + ni,i+1)

where ni,j refers to the total number of transitions from regime i to regime j. Note that

ni,i+1, for i = 1, . . . ,Mg, is always equal to one since every regime never comes back to the

previous regimes and moves to the next regime only once. For details, see Albert and Chib

(1993).

A.1.3 Sampling of the unconditional mean µ

Consider an AR(2) model with structural breaks in the unconditional mean, persistence

coefficients, and the residual variance independently as follows:

πt − µS1,t = φ1,S2,t(πt−1 − µS1,t−1) + φ2,S2,t−2(πt−2 − µS1,t−2) + et, et ∼ N(0, σ2s3,t).

Conditional on (S̃1,T , S̃2,T , S̃3,T ), φ̃ = (φ1,1, φ2,1, . . . , φ1,M2+1, φ2,M2+1), and σ̃2 = (σ21, . . . , σ
2
M3+1),

the unconditional mean for the regime j, µj , for j = 1, . . . , (M1 + 1) can be sampled as

follows.
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(a) Prior

µj ∼ N
(
µ
j
, Dµj

)
(b) Posterior

µj |µ̃−j , φ̃, σ̃2, S̃1,T , S̃2,T , S̃3,T ∼ N
(
µj , Dµj

)
where µ̃−j = (µ1, .., µj−1, µj+1, ..., µM1+1),

µj =

D−1µj +
∑

{S1,t=j,S1,t−1=j,S1,t−2=j}

x1,tx
′
1,t/σ

2
S3,t

−1D−1µj µj +
∑

{S1,t=j,S1,t−1=j,S1,t−2=j}

x1,ty1,t/σ
2
S3,t

 ,

Dµj =

D−1µj +
∑

{S1,t=j,S1,t−1=j,S1,t−2=j}

x1,tx
′
1,t/σ

2
S3,t

−1 ,
y1,t = πt−φ1,S2,tπt−1−φ2,S2,tπt−2−µS1,t1(S1,t 6= j)+φ1,S2,tµS1,t−11(S1,t−1 6= j)+φ2,S2,tµS1,t−21(S1,t−2 6= j),

and

x1,t = 1(S1,t = j)− φ1,S2,t1(S1,t−1 = j)− φ2,S2,t1(S1,t−2 = j).

A.1.4 Sampling of persistence coefficients φ

Conditional on (S̃1,T , S̃2,T , S̃3,T ), µ̃, and σ̃2, persistence parameters for regime j, φj =

(φ1,j , φ2,j)
′, for j = 1, . . . , (M2 + 1) can be sampled as follows.

(a) Prior

φj ∼ N
(
φ
j
, Dφj

)
(b) Posterior

φj |µ̃, σ̃2, S̃1,T , S̃2,T , S̃3,T ∼ N
(
φj , Dφj

)
where

φj =

D−1φj +
∑

{S2,t=j}

x2,tx
′
2,t/σ

2
S3,t

−1D−1φj φj +
∑

{S2,t=j}

x2,ty2,t/σ
2
S3,t

 ,

Dφj =

D−1φj +
∑

{S2,t=j}

x2,tx
′
2,t/σ

2
S3,t

−1 ,
y2,t = πt − µS1,t ,

and

x2,t = [(πt−1 − µS1,t−1) (πt−2 − µS1,t−2)]′.
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A.1.5 Sampling of the residual variance σ2

Conditional on (S̃1,T , S̃2,T , S̃3,T ), µ̃, and φ̃, residual variance for regime j, σ2j , for j =

1, . . . , (M3 + 1) can be sampled as follows.

(a) Prior

σ2j ∼ IG
(
νj
2
,
δj
2

)
(b) Posterior

σ2j |µ̃, φ̃, S̃1,T , S̃2,T , S̃3,T ∼ IG

(
νj + nj

2
,
δj +

∑
{S3,t=j} e

2
t

2

)
where nj =

∑T
t=1 1(S3,t = j).

A.2 Marginal Likelihood Calculation

Let m(YT |M) is the marginal likelihood or the marginal density of the data YT under model

M. The marginal likelihood of model M can be easily calculated through the method of

Chib (1995) for Gibbs sampling based on the Bayes rule identity:

m(YT |M) =
f(YT |ψ,M)π(ψ|M)

π(ψ|YT ,M)
(A.2)

where ψ = (θ,P ). The above identity holds for any point ψ in the parameter space

since the left hand side is free of ψ. Taking the logarithm of the marginal likelihood for

computational convenience, the estimate of the marginal density at any particular point ψ∗

is given by

lnm̂(YT |M)

= lnf(YT |θ∗,P ∗,M) + lnπ(θ∗,P ∗|M)− lnπ(θ∗,P ∗|YT ,M). (A.3)

I explain all the terms in equation (A.3) in the following subsections. For simplicity, I drop

the model indicator M from now on.

A.2.1 Likelihood function

The logarithm of likelihood function is given by

ln f(YT |ψ∗) =
T∑
t=1

lnf(yt|Yt−1,ψ∗)
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where

f(yt|Yt−1,ψ∗) =

M1+1∑
S1,t=1

M2+1∑
S2,t=1

M3+1∑
S3,t=1

f(yt|Yt−1, S1,t, S2,t, S3,t,ψ∗)× p(S1,t, S2,t, S3,t|Yt−1,ψ∗)

is the one-step ahead prediction density and f(yt|Yt−1, S1,t, S2,t, S3,t,ψ∗) is the conditional

density of yt given the composite of regimes (S1,t, S2,t, S3,t) as well as the posterior mean

ψ∗. Define a composite of regimes for all the parameters by St = (S1,t, S2,t, S3,t). Then,

p(S1,t, S2,t, S3,t|Yt−1,ψ∗) is the joint discrete mass function of the composite St = (S1,t, S2,t, S3,t)

and the transition probability matrix for the composite of regimes St is given by P1⊗P2⊗P3

where ⊗ indicates the Kronecker product, P is a m-by-m square matrix, and the number

of the composite of regimes St is given by m = (M1 + 1)× (M2 + 1)× (M3 + 1). For more

details, see Kim and Nelson (1999).

A.2.2 Prior density

All the parameters are a priori assumed to be independent of one another and the logarithm

of prior density is given by

ln π(ψ∗|M) = ln π(µ̃∗) + ln π(φ̃∗) + ln π(σ̃2∗) + ln π(P ∗1 ) + ln π(P ∗2 ) + ln π(P ∗3 ).

A.2.3 Posterior density

In order to estimate the posterior ordinate π(θ∗,P ∗|YT ), I consider the conditional de-

composition of the posterior density as in Chib (1998). Note that the latent variables

(S̃1,T , S̃2,T , S̃3,T ) are integrated out in the calculation of the posterior density in each step

and throughout this reduced Gibbs run, µ̃∗, φ̃∗, σ̃2∗, P ∗1 , and P ∗2 are set equal to their

posterior mean.

π(θ∗,P ∗|YT ) = π(µ̃∗|YT )× π(P ∗1 |µ̃∗, YT )× π(φ̃∗|µ̃∗, P ∗1 , YT )

×π(P ∗2 |µ̃∗, φ̃∗, P ∗1 , YT )× π(σ̃2∗|µ̃∗, φ̃∗, P ∗1 , P ∗2 , YT )π(P ∗3 |µ̃∗, φ̃∗, σ̃2∗, P ∗1 , P ∗2 , YT )

where

π(µ̃∗|YT ) =
∫
π(µ̃∗|φ̃, σ̃2, P1, P2, P3, S̃1,T , S̃2,T , S̃3,T , YT )

×π(φ̃, σ̃2, P1, P2, P3, S̃1,T , S̃2,T , S̃3,T |YT )dφ̃dσ̃2dP1dP2dP3dS̃1,TdS̃2,TdS̃3,T ,

π(P ∗1 |µ̃∗, YT ) =
∫
π(P ∗1 |µ̃∗, φ̃, σ̃2, P2, P3, S̃1,T , S̃2,T , S̃3,T , YT )

×π(φ̃, σ̃2, P2, P3, S̃1,T , S̃2,T , S̃3,T |µ̃∗, YT )dφ̃dσ̃2dP2dP3dS̃1,TdS̃2,TdS̃3,T ,
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π(φ̃∗|µ̃∗, P ∗1 , YT ) =
∫
π(φ̃∗|µ̃∗, P ∗1 , φ̃, σ̃2, P2, P3, S̃1,T , S̃2,T , S̃3,T , YT )

×π(σ̃2, P2, P3, S̃1,T , S̃2,T , S̃3,T |µ̃∗, P ∗1 , YT )dσ̃2dP2dP3dS̃1,TdS̃2,TdS̃3,T ,

π(P ∗2 |µ̃∗, φ̃∗, P ∗1 , YT ) =
∫
π(P ∗2 |µ̃∗, φ̃∗, P ∗1 , σ̃2, P3, S̃1,T , S̃2,T , S̃3,T , YT )

×π(σ̃2, P3, S̃1,T , S̃2,T , S̃3,T |µ̃∗, φ̃∗, P ∗1 , YT )dσ̃2dP3dS̃1,TdS̃2,TdS̃3,T ,

π(σ̃2∗|µ̃∗, φ̃∗, P ∗1 , P ∗2 , YT ) =
∫
π(σ̃2∗|µ̃∗, φ̃∗, P ∗1 , P ∗2 , P3, S̃1,T , S̃2,T , S̃3,T , YT )

×π(P3, S̃1,T , S̃2,T , S̃3,T |µ̃∗, φ̃∗, P ∗1 , P ∗2 , YT )dP3dS̃1,TdS̃2,TdS̃3,T ,

and

π(P ∗3 |µ̃∗, φ̃∗, σ̃2∗, P ∗1 , P ∗2 , YT ) =
∫
π(P ∗3 |µ̃∗, φ̃∗, σ̃2∗, P ∗1 , P ∗2 , S̃1,T , S̃2,T , S̃3,T , YT )

×π(S̃1,T , S̃2,T , S̃3,T |µ̃∗, φ̃∗, σ̃2∗, P ∗1 , P ∗2 , YT )dS̃1,TdS̃2,TdS̃3,T .

The decomposition of the posterior density shows that the first ordinate π(µ̃∗|YT ) can be

calculated based on draws from the full Gibbs run, and π(P ∗1 |µ̃∗, YT ), π(φ̃∗|µ̃∗, P ∗1 , YT ),

π(P ∗2 |µ̃∗, φ̃∗, P ∗1 , YT ), π(σ̃2∗|µ̃∗, φ̃∗, P ∗1 , P ∗2 , YT ), and π(P ∗3 |µ̃∗, φ̃∗, σ̃2∗, P ∗1 , P ∗2 , YT ) can be cal-

culated from appropriate reduced Gibbs runs. The Monte Carlo estimate of each decompo-

sition component based on draws from each Gibbs run is calculated as follows.

π(µ̃∗|YT ) =
1

J

J∑
j=1

π(µ̃∗|φ̃(j), σ̃2(j), P (j)
1 , P

(j)
2 , P

(j)
3 , S̃

(j)
1,T , S̃

(j)
2,T , S̃

(j)
3,T , YT ),

π(P ∗1 |µ̃∗, YT ) =
1

J

J∑
j1=1

π(P ∗1 |µ̃∗, φ̃(j1), σ̃2(j1), P
(j1)
2 , P

(j1)
3 , YT ),

π(φ̃∗|µ̃∗, P ∗1 , YT ) =
1

J

J∑
j2=1

π(φ̃∗|µ̃∗, P ∗1 , φ̃(j2), σ̃2(j2), S̃
(j2)
1,T , S̃

(j2)
2,T , S̃

(j2)
3,T , YT ),

π(P ∗2 |µ̃∗, φ̃∗, P ∗1 , YT ) =
1

J

J∑
j3=1

π(P ∗2 |µ̃∗, φ̃∗, P ∗1 , σ̃2(j3), P
(j3)
3 , S̃

(j3)
1,T , S̃

(j3)
2,T , S̃

(j3)
3,T , YT ),

π(σ̃2∗|µ̃∗, φ̃∗, P ∗1 , P ∗2 , YT ) =
1

J

J∑
j4=1

π(σ̃2∗|µ̃∗, φ̃∗, P ∗1 , P ∗2 , P
(j4)
3 , S̃

(j4)
1,T , S̃

(j4)
2,T , S̃

(j4)
3,T , YT ),

and

π(P ∗3 |µ̃∗, φ̃∗, σ̃2∗, P ∗1 , P ∗2 , YT ) =
1

J

J∑
j5=1

π(P ∗3 |µ̃∗, φ̃∗, σ̃2∗, P ∗1 , P ∗2 , S̃
(j5)
1,T , S̃

(j5)
2,T , S̃

(j5)
3,T , YT )

where the superscript (j) refers to the jth draw of the full Gibbs run and the superscript

(ji), i = 1, . . . , 5, refers to the jith draw from the appropriate reduced Gibbs run. Thus,
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in addition to the full Gibbs run for the usual estimation of parameters, it is required to

have five additional Gibbs runs (5× J iterations). For example, π(σ̃2∗|µ̃∗, φ̃∗, P ∗1 , P ∗2 , YT ) is

calculated by additional J iterations from the following reduced j4th Gibbs run.

Algorithm for π(σ̃2∗|µ̃∗, φ̃∗, P ∗1 , P ∗2 , YT )

(i) Generate σ̃2(j4) from π(σ̃2|µ̃∗, φ̃∗, P ∗1 , P ∗2 , P
(j4−1)
3 , S

(j4−1)
1,T , S

(j4−1)
2,T , S

(j4−1)
3,T , YT )

(ii) Generate P
(j4)
3 from π(P3|µ̃∗, φ̃∗, P ∗1 , P ∗2 , σ̃2(j4), S

(j4−1)
1,T , S

(j4−1)
2,T , S

(j4−1)
3,T , YT )

(iii) Generate S̃
(j4)
1,T from π(S1,T |µ̃∗, φ̃∗, P ∗1 , P ∗2 , σ̃2(j4), P

(j4)
3 , S

(j4−1)
2,T , S

(j4−1)
3,T , YT )

(iv) Generate S̃
(j4)
2,T from π(S2,T |µ̃∗, φ̃∗, P ∗1 , P ∗2 , σ̃2(j4), P

(j4)
3 , S

(j4)
1,T , S

(j4−1)
3,T , YT )

(v) Generate S̃
(j4)
3,T from π(S3,T |µ̃∗, φ̃∗, P ∗1 , P ∗2 , σ̃2(j4), P

(j4)
3 , S

(j4)
1,T , S

(j4)
2,T , YT )

(vi) Evaluate π(σ̃2∗|µ̃∗, φ̃∗, P ∗1 , P ∗2 , P
(j4)
3 , S

(j4)
1,T , S

(j4)
2,T , S̃

(j4)
3,T , YT )
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