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Abstract

Bootstrap Testing for restricted stochastic dominance of apre-specified order between two
distributions is of interest in many areas of economics. This paper develops a new method for
improving the performance of such tests that employ a momentselection procedure: tilting
the empirical distribution in the moment selection procedure. We propose that the amount
of tilting be chosen to maximize the empirical likelihood subject to the restrictions of the null
hypothesis, which are a continuum of unconditional moment inequality conditions. We charac-
terize sets of population distributions on which a modified test is (i) asymptotically equivalent
to its non-modified version to first-order, and (ii) superiorto its non-modified version accord-
ing to large-sample efficiency and deficiency, and normalized deficiency. We report simulation
results that show the modified versions of leading tests are noticeably less conservative than
their non-modified counterparts and have improved power. Finally, an empirical example is
discussed to illustrate the proposed method.
JEL Classification: C12;C13;C14
Keywords: Bootstrap Test; Contact Set; Empirical Likelihood; Semi-Infinite Program; Re-
stricted Stochastic Dominance; Efficiency; Deficiency; Normalized Deficiency.

1 Introduction

Testing for stochastic dominance of one distribution function by another is a frequently encoun-
tered statistical inference topic in many areas of economics. For example, these tests are used to
compare income distributions (Abadie, 2002, and Barrett and Donald, 2003), investment strategies
(Linton et al., 2005), mental stress levels in health economics (Madden, 2009), water-conserving
irrigation strategies (Harris and Mapp, 1986), and to determine whether collusion occurs in asym-
metric first-price auctions (Aryal and Gabrielli, 2013). While stochastic ordering is ideal for rep-
resenting simple and important information, for example, the income distribution in a country
‘changed’ from timet1 to time t2, the methodological issues that arise in statistical inference are
complex. As a consequence, methodological research to improve statistical inference has been, and
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Figure 1: The left panel reports the empirical CDFs of weeklynet incomes from households ‘at
risk’ of retirement for the years 2001 and 2006 over the interval [0, 2500]. The right panel reports
the difference between these CDFs over the range of plausible poverty lines.

continues to be, important. In this paper, we develop a new method that improves the performance
of the leading existing methods of statistical inference involving stochastic dominance.

To motivate the topic, we consider a data example based on theHousehold, Income and Labour
Dynamics in Australia (HILDA) panel survey for the periods 2001 and 2006. The left panel in
Figure 1 shows that the empirical cumulative distribution functions (CDFs) of weekly net incomes
in 2001 and 2006 for households ‘at risk’ of retirement (Barrett and Brzozowski, 2012). A question
of fundamental importance for its policy implications is the following: Does poverty increase at
retirement? Since there is uncertainty regarding the poverty line for income, in practice, one
chooses an interval, say[a, b], and the poverty line is assumed to lie in that interval; all statistical
inferences must be carried out assuming that the poverty line is unknown and that it is somewhere
in [a, b]. The foregoing substantive question on comparing the two income distributions, is usually
formulated as a test ofH0 : F2001(x) ≤ F2006(x), ∀x ∈ [a, b] againstH1 : NotH0. If F2001(x) ≤
F2006(x), ∀x ∈ [a, b], we say thatF2001(·) stochastically dominatesF2006(·), at first-order, over
[a, b] (Foster and Shorrocks, 1988). For illustrative purposes, let us choose[a, b] = [250, 500]
as the range of incomes of interest. The right panel in Figure1 shows that the empirical CDFs
corresponding toF2001(·) andF2006(·) cross one another; thus, there is some evidence againstH0.
What we need is a sound statistical method to quantify the evidence ofH0 properly.

Testing the aforementioned composite null hypothesis is challenging; the source of the chal-
lenge is that it is characterized by a continuum of inequality constraints, which complicates the
evaluation of the asymptotic null distribution of conventional test statistics (e.g., the one-sided
Kolmogorov-Smirnov). It turns out that bootstrapping can be used as an alternative. However,
the simplest bootstrap procedure, namely, the canonical nonparametric bootstrap, is not valid in
this test problem. It is invalid because the asymptotic nulldistributions depend discontinuously on
F2001(·) andF2006(·) through thecontact set{x ∈ [250, 500] : F2001(x) = F2006(x)}, the set of
points in the domain of the CDFs where they coincide. This type of bootstrap failure was pointed
out by Bickel and Freedman (1981) in a general context, and Andrews (2000) has demonstrated
that it arises in testing problems when a parameter is on or near the boundary of its parameter
space. An approach that restores the validity of the canonical nonparametric bootstrap for testing
H0 uses an estimate of the contact set in the computation of the bootstrap test statistics (e.g., Linton
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et al., 2010). Existing tests that follow this approach estimate the contact set using the empirical
CDFs. As there is a continuum of inequality restrictions that defineH0, the discontinuous behav-
ior of the asymptotic null distributions is quite elaborate. For this reason, an accurate estimator of
the contact set is necessary to ensure good finite-sample properties for the tests. In this paper, we
improve the accuracy of the contact set estimators in those tests by replacing the empirical CDFs
with estimators that satisfy the restrictions ofH0, and show that this modification of those tests
improves their performance.

Next, we introduce some notation to formulate the problem. LetPA andPB denote the marginal
probability distributions from the bivariate distribution P. Let supp(PK) denote the support of
PK , for K = A,B, and let [t, t] be a subset of Interior(supp(PA) ∪ supp(PB)) . We say that
distributionPB stochastically dominatesdistributionPA at orders ∈ Z+, over the interval[t, t] if

EP

[

(

t−XB
)s−1

(s− 1)!
1
[

XB ≤ t
]

−
(

t−XA
)s−1

(s− 1)!
1
[

XA ≤ t
]

]

≤ 0, ∀t ∈ [t, t]. (1.1)

A more general version of the testing problem considered in the foregoing example for the HILDA
survey data is to test the null hypothesis that the continuumof inequalities in (1.1) holds.

Since the null hypothesis is composite, bootstrap approximations based on the least favorable
case of the null hypothesis have been studied (e.g., Abadie,2002, Barrett and Donald, 2003,
and Horváth et al., 2006). Their approaches develop bootstrap critical values from the submodel
of the null where the contact set is the interval[t, t]. While this approach yields valid testing proce-
dures, it is quite conservative. Addressing this issue, several recent papers have proposed bootstrap
tests whose limiting behavior mimics the discontinuity of the original test’s limiting distribution
(e.g., Linton et al., 2010 and Donald and Hsu, 2016). The approach of these papers is to use an
estimator of the contact set in the bootstrap procedure, which yields tests that are less conservative
and have higher limiting local power than their least favorable counterparts.

The usefulness of stochastic dominance tests that employ a contact set estimator rests upon
accurate estimation of that set under the null hypothesis. The contact set estimators they use, are
obtained without imposing the restrictions of the null hypothesis. The motivation for the method in
our paper is based on our conjecture that the bootstrap testsof this null hypothesis would improve
if the contact set used in computing the bootstrap test statistics was estimated after imposing the
restrictions in the null hypothesis. In a way, we are claiming that the restrictions of the null hy-
pothesis are additional information available to us, and wewould expect to do better by using the
additional information. This type of adjustment is a biasedbootstrap technique, suggested by Hall
and Presnell (1999); the stochastic dominance testing literature has not considered this procedure.
In this paper, we show that our conjecture is in the right direction and our modification leads to a
significant improvement for tests of stochastic dominance.

The contributions of our paper are summarized as follows:

(a) It develops the constrained empirical likelihood estimator (Owen, 2001) of moments, where
the constraints represent the restrictions of the null hypothesis (i.e., (1.1)), and proposes
the following modification of stochastic dominance tests that use the contact set approach:
replace the unconstrained estimator of the moments with this empirical likelihood estimator
obtained under the null hypothesis;
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(b) it proves the validity of the proposed modification for the Linton et al. (2010) and Andrews
and Shi (2017) tests, and that they are less conservative than their non-modified versions in
large-samples; and

(c) for a general class ofn−1/2-local alternatives and large enough sample sizes, it establishes the
superiority of the modified tests over their non-modified versions in terms of local power, and
the following criteria: efficiency(Pitman, 1948),deficiency(Hodges and Lehmann, 1970)
and,normalized deficiency(Akahira, 1999).

The intuition behind these results is as follows. The proposed modification in (a) reformulates
the bootstrap test statistics of the Linton et al. (2010) andAndrews and Shi (2017) tests in a data-
dependent way that incorporates the statistical information contained in the constraints that char-
acterize the null hypothesis, through a reduction of the parameter space. Consequently, under the
null, the modified bootstrap distribution of the test statistic in either of these tests is more accurate
than its non-modified counterpart as an estimator of the original test statistic’s sampling distribu-
tion, because the constraints imposed in the estimation of the contact set are correct. Under local
alternative sequences, the constraints our method imposesare false for eachn; however, they are
correct in the limit, which enables the modified tests to better detectn−1/2-local deviations from
the null.

Computing the solution of the constrained empirical likelihood optimization problem is one
of the main technical contributions of this paper. This optimization problem is a semi-infinite
programming problem: for each sample sizen, there is a continuum of inequality restrictions on
random variables—one for eacht ∈ [t, t]—and a finite-dimensional choice variable. A common
approach for solving semi-infinite programs isdiscretization(see, e.g., Shapiro, 2009). In such a
method one selects a finite gridTn, Tn ⊂ [t, t], and solves the constrained empirical likelihood opti-
mization problem that imposes the constraints at eacht in Tn. We show that the difference between
the proposed approximate solution and exact solution of thesemi-infinite problem converges in
probability to zero as the sample size tends to infinity. Further, we also show that the convergence
is uniform over a collection of distributions and we characterize the collections of distributions.

The papers that employ a contact set estimator for bootstraptesting (1.1) under the null are Lin-
ton et al. (2010) (LSW, hereafter) and Donald and Hsu (2016).The bootstrap test of Andrews and
Shi (2017) also applies for testing (1.1) and, more generally, to the setup that has many conditional
moment inequalities. Andrews and Shi’s model coincides with that of LSW when specialized
to (1.1), which places no assumptions on the moment functions beyond the existence of mild mo-
ment conditions. By contrast, Donald and Hsu (2016) requirethe distributions’ supports to be
closed and bounded intervals, which may be restrictive for some studies. Hence, in this paper we
omit a discussion of Donald and Hsu’s test. We adopt the statistical framework of LSW and defer
a discussion of Andrews and Shi’s testing procedure to Appendix D, for ease of exposition.

We describe collections of population distributions on which the LSW and Andrews and Shi
tests are asymptotically equivalent to their corresponding modified versions, at first-order. How-
ever, they differ in finite-samples. For this reason, we compare the tests according to the criteria
described in (c) above. The comparisons using deficiency andnormalized deficiency are more
refined than efficiency because they discriminate tests on the basis of higher-order asymptotics
(e.g., Albers, 1975). In the Supplementary Appendix, Section B illustrates the advantages of our
general approach in terms of deficiency and normalized deficiency in the context of a simple exam-
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ple: testing on a bivariate Gaussian mean. The example creates a new avenue for future research
on the comparison of testing procedures for parameters defined by moment inequality conditions.

We report Monte Carlo simulation results in Section 6 that compare the LSW and Andrews and
Shi tests with their respective modified versions. Overall,the simulation results corroborate the
theoretical superior performance of our method, and that the differences in their relative perfor-
mance may be substantial.

1.1 Related Literature

The literature related to this paper includes numerous papers on inference with unconditional mo-
ment inequality models, where there is only a finite number ofsuch inequalities and the parameter
of interest is finite-dimensional; for example, Andrews andSoares (2010), Andrews and Guggen-
berger (2009, 2010), and Canay (2010), among others. By contrast, the parameter of interest in
this paper is infinite-dimensional and there is a continuum of inequality restrictions.

The literature on constrained estimation of CDFs subject toorder restrictions is related to this
paper. Several estimators have been proposed in that literature (e.g., Brunk et al., 1966, Lo,
1987, El-Barmi and Mukerjee, 2005, and Davidov and Herman, 2012). The procedure of Brunk
et al. (1966) is closest to the estimation procedure in this paper. They developed the empirical like-
lihood estimator of two CDFs subject to a first-order stochastic dominance constraint, and prove
its pointwise consistency when the constraints hold in the population. A key assumption in their
method is that the random samples are drawn from statistically independent CDFs. By contrast, the
proposed estimation procedure (i) allows for general dependence between the population CDFs,
(ii) applies to stochastic dominance constraints higher than the first-order, and (iii) is uniformly
consistent over a collection of CDFs when the constraints hold in the population.

Accommodating general dependence between the population CDFs is necessary in many empir-
ical settings; for example, where income distributions arecompared over time, as in the illustration
described previously. Stochastic dominance orderings greater than one arise in practical situations;
for example, when comparing income distributions using anypoverty index from the Foster et al.
(1984) class of poverty indices. Each ordering of the CDFs utilizing a poverty index from that class
is in a one-to-one correspondence with their ranking according to a particular restricted stochastic
dominance relation (Foster and Shorrocks, 1988). Furthermore, uniform consistency of the pro-
posed estimator is particularly crucial for the test problem in this paper, because the asymptotic
null distribution of conventional test statistics are discontinuous functions of the population CDFs.

The literature on shape-constrained estimation via tilting the empirical distribution, overlaps
with this paper. It focuses on nonparametric density and regression estimation, for example, Hall
and Huang (2001, 2002), Carroll et al. (2011), and Du et al. (2013) among others, where en-
forcement of the constraints is on a predesignated grid of points that the practitioner must choose.
By contrast, the constrained estimation method this paper proposes is for distributions and uses a
data-driven grid of points.

There are also tests for restricted stochastic dominance that posit a null and alternative of non-
dominance and restricted dominance, respectively; for example, Berger (1988), Davidson and Duc-
los (2013), and Alvarez-Esteban et al. (2017). By contrast,our paper and the literature discussed
earlier, have non-dominance as one of the configurations under the alternative. Therefore, these
two approaches are not directly comparable, but they do complement each other.
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1.2 Organization of The Paper

We organize the paper as follows. Section 2 introduces the statistical framework of LSW. Sec-
tion 3 introduces the constrained empirical likelihood optimization problem, the data-driven dis-
cretization method and its asymptotic properties, and the proposed contact set estimator. Section 4
presents the asymptotic null properties of the proposed contact set estimator and modified LSW
test. Section 5 presents the asymptotic power properties ofthe modified LSW test. Section 6
reports the results of Monte Carlo simulations. Section 7 continues the empirical illustration de-
scribed above, and Section 8 concludes.

2 Setup

2.1 Statistical Model, Null Hypothesis and a Property of theMoment Func-
tions

Let P0 denote the “true" distribution of the random vectorX = [XA, XB]. For ease of exposition,
let Gs =

{

x 7→ g (x; t) , t ∈ [t, t]
}

denote the set of moment functions in (1.1), where

g (x; t) =

(

t− xB
)s−1

(s− 1)!
1
[

xB ≤ t
]

−
(

t− xA
)s−1

(s− 1)!
1
[

xA ≤ t
]

.

Implicit in this notation for the moment functions is the order of stochastic dominance,s ∈ Z+,
which is fixed by the null hypothesis. Givens ∈ Z+ and the interval[t, t], the testing problem of
main interest takes the following form:

H0 : EP0 [g (X; t)] ≤ 0 ∀t ∈ [t, t] versusH1 : ∃t ∈ [t, t] such thatEP0 [g (X; t)] > 0.

Let P denote the set of all potential continuous distributions ofX that satisfies the following
assumption.

Assumption 2.1. (i) [t, t] ⊂ Interior(supp(PA) ∪ supp(PB)) ; (ii) supp(P ) ⊆ R2; (iii) {Xi}ni=1 is
i.i.d. P, and (iv)supP∈P EP

[

|XK|2((s−1)∨1)+δ
]

< +∞ for K = A,B, and for someδ > 0.

DefineP0 =
{

P ∈ P : EP [g (X; t)] ≤ 0 ∀t ∈ [t, t]
}

. This paper characterizes submodels ofP0

that serve as models of the null hypothesis for which the proposed testing procedure has asymp-
totically exact size and is asymptotically similar. Although the term ‘size’ and ‘similar’ relating to
a test are quite familiar, it is convenient to recall the following asymptotic versions (for e.g., see
Definition 1 of LSW).

Definition 2.1. Suppose thatΩ ⊆ P0 is the model of the null hypothesis. (i) A testτ with a nominal
levelα is said to have anasymptotically exact sizeif there exists a nonempty subsetΩ′ ⊂ Ω such
that:

lim sup
n→+∞

sup
P∈Ω

EP τ ≤ α, and (2.1)

lim sup
n→+∞

sup
P∈Ω′

|EP τ − α| = 0. (2.2)

(ii) When a testτ satisfies (2.2), we say that the test isasymptotically similaronΩ′.
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At the heart of the desirable properties that emanate from the proposed modification is the
combination of constrained estimation and the inherent non-negative covariance structure among
the elements of{g (X; t) : t ∈ ∆(P )} , where∆(P ) = {t ∈ [t, t] : EP [g (X; t)] = 0} is the
contact set with respect toP ∈ P. The non-negative covariance structure is due to the following
property ofGs.

Property 1. For eachs ∈ Z+, the class of functionsGs satisfies the following property. For each
x ∈ R2, eitherg (x; t) ≤ 0 ∀t ∈ [t, t] or g (x; t) ≥ 0 ∀t ∈ [t, t].

This property states that the sign of the moment functionsg is determined solely by its first ar-
gument – the datax. It is a consequence of the moment functions having the formg(x; t) =
h(xB; t)−h(xA; t), whereh(xK ; t) is weakly monotonically increasing in its second argument for
a givenxK ∈ supp(PK), K = A,B. This property of the moment functions implies that for any
P ∈ P, CovP (g (X; t1) , g (X; t2)) = EP [g (X; t1) g (X; t2)] ≥ 0 ∀t1, t2 ∈ ∆(P ).

2.2 Test Statistic, Asymptotic Theory and LSW Bootstrap Procedure

The test statistic LSW use is of the Cramér-von-Mises type. In the setting of this paper it is given

by T̂n = n
∫ t

t
max{EP̂n

[g(X; t)], 0}2 dt, whereP̂n = n−1
∑n

i=1 δXi
is the empirical measure based

on the random sample{Xi}ni=1, andEP̂n
denotes the expectation underP̂n. Theorem 1 of LSW

establishes the pointwise-asymptotic null distribution of T̂n using the Donsker property ofGs for
eachs ∈ Z+ :

T̂n
d−→
{

∫

∆(P )
max {ν(t), 0}2 dt, if P ∈ P00,

0, if P ∈ P0 −P00,
(2.3)

whereP00 =
{

P ∈ P0 :
∫

∆(P )
dt > 0

}

, andν(·) is a zero-mean Gaussian process on[t, t] with

covariance kernelC(t1, t2) = CovP (g (X; t1) , g (X; t2)) , for t1, t2 ∈ ∆(P ) .
The asymptotic null distribution of̂Tn depends on the form of contact set∆(P0) . Hence, it

exhibits a discontinuity in the underlying probabilityP that generates the data. A consequence of
the discontinuity is that it invalidates the use of the canonical nonparametric bootstrap implemen-
tation ofTn for testingH0. For this reason, LSW propose a bootstrap testing procedure that uses a
contact set estimator. Their contact set estimator is defined as

∆̂n = {t ∈ [t, t] : |EP̂n
[g (X; t)] | < rn}, (2.4)

where{rn}n≥1 is a suitably chosen null sequence of positive (possibly random) numbers that
satisfies

√
nrn → +∞ asn→ +∞.

The LSW bootstrap procedure follows these steps. Using the data, computêPn andT̂n. Then
draw a random sample of sizen, {X⋆

i,l}ni=1, for l = 1, . . . , B, using resampling with replacement

from P̂n. Then for each bootstrap sample, compute the bootstrap test statistic as follows:

T̂ ⋆
n,l =















∫ t

t

(max {Gn,l, 0})2 dt, if
∫

∆̂n
dt = 0,

∫

∆̂n

(max {Gn,l, 0})2 dt, if
∫

∆̂n
dt > 0,

(2.5)
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where

Gn,l =
1√
n

n
∑

i=1

[

g
(

X⋆
i,l; t
)

− EP̂n
[g (X; t)]

]

, l = 1, . . . , B,

is the bootstrap empirical process, and∆̂n as defined in (2.4). After that, compute the approximate
bootstrap p-valuêΥB = B−1

∑B
l=1 1[T̂

⋆
n,l ≥ T̂n]. Finally, rejectH0 if Υ̂B ≤ α, whereα ∈ (0, 1/2)

is a given nominal level.
The modification of the LSW test this paper proposes follows the steps of their bootstrap proce-

dure, but replaceŝ∆n with a different set estimator of∆(P0) . As their contact set estimator (2.4)
employs the empirical measurêPn, which is the unrestricted empirical likelihood estimator of P0,
this paper proposes to replacêPn with the constrained empirical likelihood estimator ofP0 that
imposes the restrictions of the null hypothesis.

The benefit of using the proposed modification is that it reformulates the LSW bootstrap test
statistics in a data-dependent way that incorporates the statistical information contained in the con-
straints of the null hypothesis. Under the null, our approach imposes restrictions that are correct,
which yields a more accurate estimator of the contact set; inconsequence, the bootstrap distribu-
tion under our method is more reliable than the distributionof T̂ ⋆

n,l as an estimator of the sampling
distribution ofTn. Under the alternative, the constraints our method imposes are false but enables
the modified test to be better than the LSW test at detecting that the alternative hypothesis holds.
The next section introduces the empirical likelihood estimator procedure and the contact set esti-
mator based on it.

3 Empirical Likelihood and Contact Set Estimation

Consider the following constrained empirical likelihood optimization problem:

p̃ = argmax

{

n
∑

i=1

log (pi) ;

n
∑

i=1

pig (Xi; t) ≤ 0 ∀t ∈ [t, t],

n
∑

i=1

pi = 1, pi ≥ 0 ∀i
}

, (3.1)

wherep̃ = [p̃1, p̃2, . . . , p̃n] ∈ Rn. Given a sample size,n, there is a continuum of constraints
being imposed in estimation and there is a finite number of choice variables. This feature of the
optimization problem classifies it as a (strictly concave) semi-infinite programming problem (SIP)
with a random constraint set.

For the cases = 1, the optimization problem (3.1) is, in fact, a finite programming problem:
there is a finite subset of the constraints

∑n
i=1 pig (Xi; t) ≤ 0 ∀t ∈ [t, t] for which p̃ is also the

solution of the optimization problem that replaces this continuum of inequality constraints with that
finite subset. However, it is, in general, not possible to finda such a finite subset of the continuum
of inequality constraints for orders of stochastic dominances > 1.

We propose a data-driven discretization scheme for the SIP problem (3.1). Fors > 1, the
solution of the discretized SIP problem approximates the SIP’s solutioñp, and in the case ofs = 1
it is equal top̃. The discretization scheme uses a finite subset of the constraints

∑n
i=1 pig (Xi; t) ≤

0 ∀t ∈ [t, t] whose index set,Tn = {t(j)}Nj=0, comprises the order statistics of
{

XA
i , X

B
i

}n

i=1
∩

(t, t) ∪
{

t, t
}

, wheret(0) = t andt(N) = t. The solution of the discretized SIP problem is defined
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as

ṕ = argmax

{

n
∑

i=1

log (pi) ;
n
∑

i=1

pig (Xi; t) ≤ 0 ∀t ∈ Tn,
n
∑

i=1

pi = 1, pi ≥ 0 ∀i
}

. (3.2)

As the discretization is data-driven, there is an additional layer of randomness that must be ac-
counted for in deriving the subsequent large-sample results.

Next, we characterize subsets ofP where the probability of the event{p̃andṕ exist} tends to
unity exponentially fast and with uniformity. The uniformity in the convergence is so that the same
minimal sample size controls the probability of that event for all elements in the particular subset
of P, which is particularly important because the test statisticexhibits a pointwise discontinuous
limiting behavior.

Definition 3.1. Letf(xA, xB) denote the joint density function corresponding to a joint distribution
P ∈ P. For eachc1 ∈ (0, 1) andc2 ∈

(

0, (t− t)−2
)

define the sets of probabilities

P1 (c1) =

{

P ∈ P : P

[

sup
t∈[t,t]

g (X; t) < 0

]

≥ c1

}

and (3.3)

P2 (c2) =

{

P ∈ P : inf
(xA,xB)∈[t,t]×[t,t]

f(xA, xB) ≥ c2

}

. (3.4)

In Appendix C.1.1, we show that Part (i) of Assumption 2.1 implies thatP [supt∈[t,t] g(X; t) <
0] > 0 for eachP ∈ P. Therefore, the setP1 (c1) restrictsP by excluding distributions that are
arbitrarily close to distributions that place zero probability on the event{supt∈[t,t] g (X; t) < 0}.
The setP2 (c2) also restrictsP, but by excluding distributions whose joint densities are arbitrarily
close to zero on the square[t, t] × [t, t]. This condition begets the uniform convergence of the
sequence{Tn}n≥1 to the interval[t, t] in the Hausdorff metric.

The constants,c1 and c2, appear in the base of the exponential rate of uniform convergence
of P [p̃andṕexist] to unity; see Section F.1 in Appendix F for more details. Thus, particular
numerical values of these constants yield explicit rates ofuniform convergence. In practice, it is
important to verify that there are values of these constantsthat are consistent withP0, i.e., there
exists values ofc1 ∈ (0, 1) andc2 ∈

(

0, (t− t)−2
)

such thatP0 ∈ P1 (c1) and/orP0 ∈ P2 (c2) . In
Appendices C.1.1 and C.1.2 we discuss how to verify these conditions in using statistical tests.

We have the following result.

Theorem 3.1.Let p̃ andṕ be given by (3.1) and (3.2), respectively. Furthermore, foreachs ∈ Z+,
c1 ∈ (0, 1) andc2 ∈

(

0, (t− t)−2
)

, letP1 (c1) andP2 (c2) be given by (3.3) and (3.4), respectively,
in Definition 3.1. The following statements hold.

1. Lets = 1. For eachc1 ∈ (0, 1), limn→+∞ infP∈P1(c1) P [ṕ = p̃] = 1.

2. Lets > 1. For eachc1 ∈ (0, 1), c2 ∈
(

0, (t− t)−2
)

and for eachǫ > 0,

lim
n→+∞

sup
P∈P1(c1)∩P2(c2)

P [‖ṕ− p̃‖ > ǫ] = 0,

where‖ · ‖ denotes the Euclidean metric onRn.
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Proof. See Appendix E.1.

Part 1 of Theorem 3.1 indicates that fors = 1 and large enoughn, the vector of probabilities
p̃ and ṕ coincide with uniformity over sets of probabilitiesP1(c). Part 2 of Theorem 3.1 estab-
lishes the uniform convergence of the error betweenp̃ and ṕ to zero over sets of probabilities
P1(c1) ∩ P2(c2), for any s > 1. The result of Theorem 3.1 is crucial for ensuring good finite-
sample properties for the modified LSW test because the (pointwise) limiting distribution of the
LSW test statistic under the null hypothesis exhibits various forms of discontinuity; see (2.3).

The computational cost of́p is rather low, even whenn is large. For brevity, we relegate to
Appendix C.1.3 a discussion of this point and show how to improve the numerical accuracy of the
optimization problem (3.2).

The contact set estimator this paper proposes is defined as

∆́n = {t ∈ [t, t] : |EṔn
[g (X; t)] | < rn}, (3.5)

where Ṕn =
∑n

i=1 ṕiδXi
and ṕ is given by (3.2). SincêPn is obtained without imposing the

restrictions of the null hypothesis, the resulting estimator EP̂n
[g (X; ·)] of EP [g (X; ·)] does not

necessarily satisfy the restrictions of the null hypothesis. By contrast, the definition of́Pn im-
pliesEṔn

[g (X; ·)] satisfies the constraints (1.1) whens = 1, and approximately satisfies these
constraints whens > 1, but with the approximation error disappearing asymptotically, with uni-
formity.

The next section presents the uniform asymptotic null properties of the contact set estimator
∆́n, and the asymptotic size properties of the proposed testing procedure which uses it instead of
∆̂n in the LSW bootstrap procedure.

4 Asymptotic Null Properties

4.1 Behavior of The Contact Set Estimator

The following definition characterizes subsets ofP0 on which we establish the uniform asymptotic
properties of∆́n under the null hypothesis.

Definition 4.1. For eachs ∈ Z+, c1 ∈ (0, 1), c2 ∈
(

0, (t− t)−2
)

andc3 ∈ (0,+∞), let

Ps
0(c1, c2, c3) =







{P ∈ P0(c1) : inf
t∈∆(P )

EP

[

g2 (X; t)
]

≥ c3}, if s = 1

{P ∈ P0(c1, c2) : inf
t∈∆(P )

EP

[

g2 (X; t)
]

≥ c3}, if s > 1,

whereP0(c1) = P0 ∩ P1(c1) andP0(c1, c2) = P0 ∩ P1(c1) ∩ P2(c2).

Definition 4.1 distinguishes the casess = 1 ands > 1 because there is an additional layer
of randomness due to the discretization scheme that affectsthe asymptotic behavior of́∆n when
s > 1 which does not arise in the cases = 1. The defining conditioninft∈∆(P )EP [g2 (X; t)] ≥ c3
in this Definition restrictsP0 by excluding probabilities whose variances of the moment functions
that are indexed by the contact set are arbitrarily close to zero. It begets the convergence in proba-
bility to zero of the Lagrange multipliers from the problem in (3.2), uniformly overPs

0(c1, c2, c3).
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For brevity, we relegate the formal statement and proof of this technical intermediate result to Ap-
pendix G. This type of condition is common in models with a finite-dimensional parameter and a
finite number of moment inequality restrictions for achieving uniform asymptotic validity of pure
and Generalized Empirical Likelihood tests using the dual approach. See, for example, Condition
(iii) of Definition 3.1 in Canay (2010), and Condition (b) of Assumption GEL in Andrews and
Guggenberger (2009).

We have the following result.

Theorem 4.1. For eachs ∈ Z+, let the contact set estimatorŝ∆n and ∆́n be given by (2.4)
and (3.5), respectively, andP000 = {P ∈ P0 : ∆(P ) 6= ∅} . For eachs ∈ Z+, c1 ∈ (0, 1), c2 ∈
(

0, (t− t)−2
)

andc3 ∈ (0,+∞), let Ps
0(c1, c2, c3) be given by Definition 4.1, and the following

statements hold.

1. limn→+∞ infP∈Ps
0 (c1,c2,c3)

P
[

EṔn
[g (X; t)] ≤ EP̂n

[g (X; t)] ∀t ∈ [t, t]
]

= 1.

Moreover,{Ṕn 6= P̂n} =⇒ {EṔn
[g (X; t)] < EP̂n

[g (X; t)] ∀t ∈ [t, t]}.

2. limn→+∞ infP∈Ps
0 (c1,c2,c3)

P
[

∆(P ) ⊆ ∆́n ⊆ ∆̂n

]

= 1.

3. limn→+∞ supP∈Ps
0 (c1,c2,c3)

P
[

∆̂n ( ∆́n

]

= 0.

4. limn→+∞ infP∈Ps
0 (c1,c2,c3)

⋂
P000 P

[

∆́n ( ∆̂n

]

≥ 1
2
.

5. ∀ǫ > 0, limn→+∞ infP∈P P
[

∆̂n ⊆
{

t ∈ [t, t] : |EP [g (X; t)]| ≤ (1 + ǫ)rn
}

]

= 1.

Proof. See Appendix E.2.

Remark 4.1. Part 1 of Theorem 4.1 is the consequence of the marriage between Property 1 of the
moment function and constrained empirical likelihood estimation introduced in Section 3. This
result is used in the proofs of Parts 2 - 4 of the same theorem.

Remark 4.2. Parts 2 and 3 of Theorem 4.1 imply the LSW bootstrap test statistic T̂ ⋆
n , described

in (2.5), weakly dominates its modified counterpart stochastically at the first-order, conditional on
the sample{Xi}ni=1, whenn is large enough. Moreover, this ordering holds strictly on the event
{∆́n ( ∆̂n}. Part 4 of Theorem 4.1 indicates the probability of{∆́n ( ∆̂n} in large samples, with
uniformity. This result is derived from Lemma G.1 which usesthe classical Berry-Esseen bound
for s = 1, and the generalized Berry-Esseen bound of Feller (1968) when s > 1. For s > 1, the
proof does not require the existence of higher-order absolute moments of the moment functions,
i.e.,δ < 1 in Condition (iv) of Assumption 2.1 is feasible.

Remark 4.3. The set
{

t ∈ [t, t] : |EP [g (X; t)]| ≤ (1 + ǫ)rn
}

is an enlargement of∆(P ) that
shrinks to it as the sample size tends to infinity because{(1 + ǫ)rn}n≥1 is a null sequence for
eachǫ > 0. Therefore, Parts 2 and 5 of Theorem 4.1 imply that the two contact set estimators
converge to∆(P ), uniformly overPs

0(c1, c2, c3). These results of this theorem drive the uniform
asymptotic equivalence of the testing procedures under thenull, which the next section presents.
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4.2 Asymptotic Size Properties

This section introduces the asymptotic size properties of the proposed modification of the LSW
test and characterizes the sets of probabilities under nullfor which the proposed test has asymptot-
ically exact size. LSW pay attention to the control of asymptotic rejection probabilities uniform in
P ∈ P. They introduce a regularity condition on the asymptotic Gaussian processν in (2.3) with
respect tor-enlargements of the contact setB(r) =

{

t ∈ [t, t] : |EP [g (X; t)]| ≤ r
}

. For ease of
exposition, this condition is given by Definition C.1 in Appendix C.2.1 along with a discussion.

The set of probabilities under which the proposed bootstraptest has asymptotically exact size
is given by the following definition.

Definition 4.2. (i) For eachǫ > 0, s ∈ Z+, c1 ∈ (0, 1), c2 ∈
(

0, (t− t)−2
)

andc3 ∈ (0,+∞), let
Ps

0(c1, c2, c3, ǫ) be the collection of probabilities inPs
0(c1, c2, c3) under whichν in (2.3) isregular

onBn in the sense of Definition C.1, for eachn ≥ 1, where

Bn =

{

B ((1− ǫ)rn) , if
∫

B((1+ǫ)rn)
dt > 0, and

[t, t], if
∫

B((1+ǫ)rn)
dt = 0;

(4.1)

(ii) Given ξn → 0, let Ps
00(c1, c2, c3, ǫ, {ξn}) be the collection of probabilities inPs

0(c1, c2, c3, ǫ)
under which for eachn > 1/ǫ, ν in (2.3) isregular onB

(

n−1/2ξn
)

in the sense of Definition C.1,

∫

B((1−ǫ)rn)

dt > 0 and
∫

B((1+ǫ)rn)−B(n−1/2ξn)
dt ≤ ξn. (4.2)

Denote byΎB = B−1
∑B

l=1 1[T́
⋆
n,l ≥ T̂n] the bootstrap p-value that uses the bootstrap test

statistics{T́ ⋆
n,l}Bl=1 computed as in (2.5) of the LSW procedure, but with∆̂n replaced bý∆n.

Theorem 4.2.For eachn, letAn denote the Borel sigma-algebra generated by the random sample

{Xi}ni=1. For eachǫ > 0, s ∈ Z+, c1 ∈ (0, 1), c2 ∈
(

0, (t− t)−2
)

andc3 ∈ (0,+∞), Υ̂B−ΎB
P−→

0 conditional onAn uniformly in Ps
0(c1, c2, c3, ǫ).

Proof. See Appendix E.3.

Theorem 4.2 establishes the asymptotic equivalence of the bootstrap p-valueŝΥB and ΎB,
uniformly overPs

0(c1, c2, c3, ǫ). For eachǫ > 0, s ∈ Z+, c1 ∈ (0, 1), c2 ∈
(

0, (t− t)−2
)

and
c3 ∈ (0,+∞), the LSW test has asymptotically exact size, in the sense of Definition 2.1, uni-
formly over a superset ofPs

0(c1, c2, c3, ǫ); therefore, it also has this property overPs
0(c1, c2, c3, ǫ).

Consequently, the proposed test inherits the uniform asymptotic properties of the LSW test over
the setsPs

0(c1, c2, c3, ǫ). By applying Theorem 2 of LSW in the setup of our paper, these properties
are: for eachǫ > 0, s ∈ Z+, c1 ∈ (0, 1), c2 ∈

(

0, (t− t)−2
)

andc3 ∈ (0,+∞),

(i) lim supn→+∞ supP∈Ps
0 (c1,c2,c3,ǫ)

P [Υ̂∞ ≤ α] ≤ α, and

(ii) lim supn→+∞ supP∈Ps
00(c1,c2,c3,ǫ,{ξn}) |P [Υ̂∞ ≤ α] − α| = 0, for each decreasing sequence

ξn → 0.

Therefore, Theorem 4.2 implies that these properties hold with Υ̂∞ replaced býΥ∞.
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Remark 4.4. The subsets ofP0 that establish the validity of the testing procedure this paper pro-
poses (i.e., Definition 4.1) are subsets of their LSW counterparts. They are sets of probabilities that
can be included in the empirical likelihood framework. The extent to which they are smaller than
their LSW counterparts depends on the specific choices of theconstantsc1, c2 andc3. In general,
the closer these constants are to the lower bounds of their domains, the subsets ofP0 demarcated
by Definition 4.1 are closer to the LSW counterparts. For easeof exposition, Appendix C.2.2
elaborates on this point, and Appendices C.1.2 and C.2.3 discusses the choice of the constants in
practice.

5 Asymptotic Power Properties

5.1 Test Consistency

This section establishes consistency of the proposed testing procedure.

Theorem 5.1.Givens ∈ Z+, supposeP ∈ P−P0 is such that
∫ t

t
max {EP [g (X; t)] , 0}2 dt > 0.

Then,limn→+∞ P [ΎB ≤ α] = 1.

Proof. See Appendix E.4.

Therefore, the proposed test is consistent against all alternatives. This property is also shared by
the LSW test; see Theorem 3 of their paper. The next section focuses on the local asymptotic
power property of the proposed test and compares it to the LSWtest.

5.2 Power Against Local Alternatives

This section compares the local asymptotic power functionsof the LSW test and its modified
counterpart, as well as the direct comparison of their localpowers at equal sample sizes. This
sort of comparison of the tests requires that we specify a setof probabilities satisfying Part (i) of
Definition 4.2 as the model of the null hypothesis, where the limit of the local alternatives (in some
topology onP), satisfieslimn→+∞ Pn ∈ P00.

To that end, we introduce the following notation. Consider asequence of probabilities under
the alternative hypothesis,{Pn}n≥1 ⊂ P −P0, such that

EPn [g (X; t)] = H(t) + δ(t)/
√
n andσ2

Pn
(t) = EPn

[

g2 (X; t)
]

− (EPn [g (X; t)])2 , (5.1)

where the functionsH(t), δ(t) andσ2
Pn
(t) satisfy the following conditions.

Assumption 5.1. (i)
∫

C
dt > 0, whereC =

{

t ∈ [t, t] : H(t) = 0
}

.

(ii) supt∈[t,t]H(t) ≤ 0. (iii)
∫

C
max {δ(t), 0}2 dt > 0. (iv) inft∈[t,t],n∈N σ

2
Pn
(t) > 0.

Except for Part (iv), Assumption 5.1 is identical to Assumption 5 of LSW. Therefore, the sequence
{Pn}n≥1 represents local alternatives that converge to the boundary pointsP00 at the

√
n rate in the

directionδ(t). Part (iv) ensures the valid use of the Weak Law of Large Numbers and the Central
Limit Theorem for triangular arrays of row-wise i.i.d. random variables.
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Givens ∈ Z+, define the collection

H =
⋃

{

Ps
0(c1, c2, c3, ǫ) : [c1, c2, c3, ǫ] ∈ (0, 1)×

(

0, (t− t)−2
)

× R2
++

}

, (5.2)

whereR2
++ = (0,+∞)× (0,+∞). The setH collects all submodels ofP0 that are characterized

by Part (i) of Definition 4.2. Additionally, for eachΩ ∈ H, definePs
1(Ω) as the following set of

local alternatives

Ps
1(Ω) =

{

{Pn}n≥1 ⊂ P − P0 : conditions (5.1) andAssumption 5.1 hold,

and lim
n→+∞

Pn ∈ P00 ∩ Ω

}

. (5.3)

5.2.1 Behavior of Contact Set Estimator Under Local Alternatives

We first present a result that characterizes the behavior of the contact set estimators under the
collections of local alternative sequences (5.3).

Theorem 5.2.Let s ∈ Z+ andH be given by (5.2). For eachΩ ∈ H, let Ps
1(Ω) be given by (5.3).

Then, for eachΩ ∈ H, the following limits hold for each{Pn}n≥1 ∈ Ps
1(Ω) :

1. limn→+∞ Pn

[

EṔn
[g (X; t)] ≤ EP̂n

[g (X; t)] ∀t ∈ [t, t]
]

= 1.

2. limn→+∞ Pn

[

C ⊆ ∆́n ⊆ ∆̂n

]

= 1.

3. limn→+∞ Pn

[

∆̂n ( ∆́n

]

= 0.

4. limn→+∞ Pn

[

∆̂n ⊆
{

t ∈ [t, t] : |EPn [g (X; t)]| ≤ (1 + ǫ)rn
}

]

= 1 ∀ǫ > 0.

Proof. See Appendix E.5.

The results of Theorem 5.2 are similar to those of Theorem 4.1but under local alternatives. Parts
2 and 3 of Theorem 5.2 imply that́T ⋆

n ≤ T̂ ⋆
n holds with probability tending to unity, conditional on

the data. Thus, when some moment inequality is satisfied under the alternative and is sufficiently
far from being an equality, then the proposed procedure detects this configuration more easily than
the LSW procedure, and therefore, take it into account by delivering a bootstrap p-value that is
suitable for the case where this moment inequality is omitted.

5.2.2 Comparison of Local Asymptotic Power Functions

Next, we compare the local asymptotic power functions of theLSW test and its modified counter-
part. We have the following corollary to Theorem 5.2.

Corollary 5.1. Let s ∈ Z+ and suppose the conditions of Theorem 5.2 hold. Then, for each
Ω ∈ H,

1. limn→+∞ Pn

[

Ύ∞ ≤ α
]

= limn→+∞ Pn

[

Υ̂∞ ≤ α
]

∀ {Pn}n≥1 ∈ Ps
1(Ω).
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2. and large enoughn,

Pn

[

Ύ∞ ≤ α
]

≥ Pn

[

Υ̂∞ ≤ α
]

∀ {Pn}n≥1 ∈ Ps
1(Ω). (5.4)

Furthermore, the inequalities in (5.4) are strict for each{Pn}n≥1 ∈ Ps
1(Ω) such that∃N ∈

Z+, for whichPn[∆́n ( ∆̂n] > 0 ∀n ≥ N.

Proof. See Appendix E.6.

Part 1 of Corollary 5.1 establishes the equality of the limiting local power functions of the
two testing procedures in testing problems where the null models are demarcated by Part (i) of
Definition 4.2, and with a corresponding set of local alternative sequences defined by (5.3). In
conjunction with Theorem 4.2, Part 1 of Corollary 5.1 indicates that the testing procedures are
asymptotically equivalent. Part 2 of Corollary 5.1 shows the modified test has local power no less
than that of the LSW test in large samples, and strictly higher local power along sequences of local
alternatives for which the probability of the proposed contact set estimator being proper subset of
its LSW counterpart, is positive.

The consequence of Part 2 of Corollary 5.1 is that the testingprocedures may differ in large-
samples. This occurs along local alternatives for whichPn[∆́n ( ∆̂n] > 0 holds in large-samples.
Thus, a comparison of the tests that stops at the result of Part 1 of Corollary 5.1, is misleading.
The result of Part 2 of Corollary 5.1 implies that a more informative comparison is in terms of the
criteria: efficiency, deficiency, and normalized deficiency. The ensuing section presents results for
these types of comparisons.

5.2.3 Efficiency, Deficiency, and Normalized Deficiency

This section studies the relative asymptotic performance of the tests using their minimal required
sample sizes for achieving a predesignated magnitude of local power. For every sample sizen,
define

kn = min{N ∈ Z+ : Pm[Υ̂∞ ≤ α] ≥ Pn[Ύ∞ ≤ α] ∀m ≥ N}. (5.5)

i.e. the minimal sample size the LSW test needs to attain local power which is at least as large as its
modified counterpart along these local alternative sequences. The relative asymptotic performance
of the two testing procedures is based on comparingkn with n, when the former exists.

Consider the following collections of local alternatives.Givens ∈ Z+, for eachΩ ∈ H, define

Ps
1,+(Ω) =

{

{Pn}n≥1 ∈ Ps
1(Ω) : ∃N ∈ Z+ such thatPn[∆́n ( ∆̂n] > 0 ∀n ≥ N, and

Pn[Υ̂∞ ≤ α] ր p∞ ∈ (0, 1) asn→ +∞
}

, and (5.6)

Ps
1,−(Ω) =

{

{Pn}n≥1 ∈ Ps
1(Ω) : ∃N ∈ Z+ such thatPn[∆́n ( ∆̂n] > 0 ∀n ≥ N, and

Pn

[

Ύ∞ ≤ α
]

ց p∞ ∈ (0, 1) asn→ +∞
}

. (5.7)

Local alternatives in these collections must satisfy (5.4)with strict inequality whenn is large
enough. These collections of local alternatives distinguish the cases in whichkn exists and does
not exist, in large samples.

We have the following result.
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Theorem 5.3. Let s ∈ Z+ and suppose the conditions of Theorem 5.2 hold. Furthermore, let kn
be defined as in (5.5). Then, for eachΩ ∈ H,

1. kn exists for large enoughn andkn > n, ∀ {Pn}n≥1 ∈ Ps
1,+(Ω), wherePs

1,+(Ω) is given
by (5.6).

2. kn does not exist forn large enough,∀ {Pn}n≥1 ∈ Ps
1,−(Ω), wherePs

1,−(Ω) is given by (5.7).

Proof. See Appendix E.7.

Theorem 5.3 distinguishes the cases whenkn exists and does not exist, in large samples. In light
of the result in Part 2 of Corollary 5.1, Part 1 of Theorem 5.3 indicates the local power functions
n 7→ Pn[Ύ∞ ≤ α] andn 7→ Pn[Υ̂∞ ≤ α], whenn is large enough, are increasing towards
a horizontal asymptote atp∞ ∈ (0, 1). This large-sample behavior of the local power functions
implies thatkn exists and satisfieskn > n. By contrast, Part 2 of Theorem 5.3 indicates the
power functions are decreasing towards a horizontal asymptote atp∞ ∈ (0, 1), whenn is large
enough. In this contingency,kn does not exist in large enough samples, which does not preclude
the comparison of the local powers. The only deduction is that the LSW test can never outperform
its modified version according to any measure of relative performance that useskn.

Next, we characterize the large sample behavior of efficiency, deficiency and normalized de-
ficiency of the modified test relative to the LSW test. As already mentioned, these criteria are
functions ofkn; therefore, for eachΩ ∈ H the comparison of the tests are based on the local
alternatives given byPs

1,+(Ω) in (5.6). Finite-sample efficiency and deficiency are definedas

en = kn/n and dn = kn − n, (5.8)

respectively, and they are related through the following equation en = 1 + dn/n, for eachn.
Intuitively, these criteria quantify the ‘price’ of using the LSW test instead of its modified version,
at sample sizen.

Historically, the literature has focused on deriving lowerbounds on

lim inf
n→+∞

en and lim inf
n→+∞

dn,

that do not depend on the underlying population, because they compactly summarize useful infor-
mation on the relative asymptotic performance of statistical procedures, when these limit infinma
exist. See, for example, Theorem 1 of Hodges and Lehmann (1956), which provides a lower bound
on the asymptotic efficiency of Wilcoxon test relative to thet-test for testing against shift of a con-
tinuous distribution. In this paper, we derive lower boundsfor these limit infima (when they exist)
that hold for a collection of local alternatives, because they indicate how low asymptotic efficiency
and deficiency of the LSW test, relative to its modified version, can actually drop.

More recently, Akahira (1999) provides examples of statistical problems in which asymptotic
efficiency and deficiency fail to discriminate particular statistical procedures. This contingency
occurs when the procedures in those problems satisfy

lim
n→+∞

en = 1 and lim
n→+∞

dn = +∞. (5.9)

See, for example, Albers (1975) for results of this sort who compares linear rank tests and para-
metric tests for the symmetry problem. For such situations,Akahira (1999) also proposes that one
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compares statistical procedures usingqn-normalized deficiency. This criterion arises from the fact
that the limits in (5.9) implykn has the following expansion

kn = n+ ℓqn + o(qn), (5.10)

whereℓ > 0, and{qn}n≥1 is a sequence of positive numbers such thatlimn→+∞ qn = +∞ and
qn = o(n). From this expansion ofkn, Akahira suggests using the limitlimn→+∞(dn/qn) = ℓ to
quantify the relative performance of statistical procedures. Appendix B demonstrates numerically
that the limits in (5.9) also arise in testing inequality restrictions on a bivariate Gaussian mean,
when comparing appropriate versions of the LSW test and its modified counterpart for that testing
problem. Moreover, we find thatqn =

√
n is the appropriate normalizing sequence andℓ ≈

19; see Appendix B for more details. Consequently, it is reasonable to expect that asymptotic
efficiency and deficiency will not necessarily separate the LSW test and its modified version for
every sequence of local alternatives inPs

1,+(Ω), for eachΩ ∈ H. Hence, for eachΩ ∈ H, we
characterize sub-collections ofPs

1,+(Ω) where the limits (5.9) hold, and compare the tests using
qn-normalized deficiency on these sub-collections.

The conditions of Part 1 of Theorem 5.3 are sufficient for the existence ofkn, which is because
they imply thatPn[Υ̂∞ ≤ α] < Pn[Ύ∞ ≤ α] holds for large enoughn. We exploit this relationship
between the local power functions to classify local alternatives according to the different limiting
behaviors ofen anddn. The quantity that is key in doing so is

ψn =

(

Pkn[Υ̂∞ ≤ α]− Pn[Υ̂∞ ≤ α]
)

(

Pn[Υ̂∞ ≤ α]− bn

) , (5.11)

wherebn is the intercept of the linear function that passes through the points
(

n, Pn[Υ̂∞ ≤ α]
)

and
(

kn, Pkn[Υ̂∞ ≤ α]
)

.

It is useful becausedn = nψn holds wheneverkn exists, and it describes the relative concavity of
the local power functionsn 7→ Pn[Υ̂∞ ≤ α] andn 7→ Pn[Ύ∞ ≤ α].

We have the following result.

Corollary 5.2. Let s ∈ Z+, and suppose the conditions of Theorem 5.2 hold. Furthermore, for
eachn, let kn be defined as in (5.5) andψn by (5.11). Additionally, for eachΩ ∈ H, let Ps

1,+(Ω)
be given by (5.6). Then, for eachΩ ∈ H,

1. en > 1 anddn > 0 for largen, and hence,lim inf
n→+∞

en ≥ 1 andlim inf
n→+∞

dn ≥ 0, ∀ {Pn}n≥1 ∈
Ps

1,+(Ω).

2. lim inf
n→+∞

en > 1, ∀ {Pn}n≥1 ∈ Ps
1,+(Ω) such thatlim inf

n→+∞
ψn > 0.

3. lim
n→+∞

en = 1, ∀ {Pn}n≥1 ∈ Ps
1,+(Ω) such thatlim sup

n→+∞
ψn = 0.

4. lim
n→+∞

en = 1, lim
n→+∞

dn = +∞, and lim
n→+∞

(dn/qn) = ℓ > 0 wherekn = n+ ℓqn + o(qn) for

large enoughn, ∀ {Pn}n≥1 ∈ Ps
1,+(Ω) such thatlim sup

n→+∞
ψn = 0 andlim inf

n→+∞
nψn = +∞,
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Proof. See Appendix E.8.

Overall, the results of Corollary 5.2 provide strong evidence for the superior performance of the
proposed testing procedure over the LSW test. The large sample and asymptotic bounds in Part 1
of Corollary 5.2 indicate that in large enough sample sizes the modified LSW test is superior to
the LSW test according to efficiency and deficiency, for each sequence of local alternatives that
satisfies Assumption 5.1 and the conditions of Part 1 of Theorem 5.3. Parts 2 and 3 give conditions
under which the the asymptotic bound on efficiency in Part 1 holds with strictly inequality and
equality, respectively. Part 4 covers the case where asymptotic efficiency and deficiency fail to
separate the tests. It establishes that, in large-samples,dn ≈ ℓqn. Thus, in this circumstance,
the price for using the LSW test is increasing with the samplesize at the rateℓqn. This point is
consistent with the fact that when comparing the tests alongthe sequences of local alternatives, the
testing problems become progressively harder as more observations become available.

6 Monte Carlo Experiments

This section reports the results of Monte Carlo experimentsthat compares the performance of
the LSW and Andrews and Shi (2017) (AS, hereafter) tests withtheir modified counterparts. In
contrast to the LSW test, the AS test uses a one-sided Kolmogorov-Smirnov test statistic in which
the sample moments are Studentized. Furthermore, they Studentize the sample moments that arise
in the construction of their contact set estimator. See Appendix D for a detailed discussion of the
AS test and how the results in this paper on the comparison between the LSW test and its modified
version carries over to the AS test and the modified AS test.

The experimental setup is the same as the one in Section 5 of LSW who focus on testing for
first-order stochastic dominance. The simulation results indicate the modified versions of the tests
are noticeably less conservative and have higher power in comparison to their non-modified coun-
terparts. In each simulation experiment, the nominal levelwas fixed at 5%,rn(t) = σ̂t

√

log(n)/n,

whereσ̂2
t = EP̂n

[g (X; t)]2 − (EP̂n
[g (X; t)])2 andt ∈ [t, t]. This choice forrn is the Bayesian

Information Criterion (BIC) choice. An alternative choiceis rn = an−1/2 log log n, which LSW
use, is a constant function oft ∈ [t, t], wherea is a given constant. Presently, there isn’t a theoret-
ical reason to prefer one choice over the other. Instead, themoment inequality inference literature
has relied on simulation-based evidence in proposing a choice for this localization parameter. An-
drews and Soares (2010) suggest the BIC choice for use in practice, and we follow their lead. We
sett = 0.05 andt = 0.95. Finally, the number of Monte Carlo replications was set to 10000 in
each simulation experiment, and the number of bootstrap replications was 499.

6.1 Simulation UnderH0

We compare the type I error rate properties of the LSW and AS tests, and their modified versions.
LSW use the following generating process under the null. LetU1 andU2 be U(0, 1) random
variables. Then defineXB = U1 andXA = c−1

0 (U2 − a0)1 [0 < U2 ≤ x0] + U21 [x0 < U2 < 1] ,
wherec0 = (x0−a0)/x0 ∈ (0, 1) andx0 ∈ (0, 1). In this setup, the inequalities (1.1) hold for each
s ∈ Z+, and we examine the cases = 1. The cumulative distribution function (CDF) ofXA has a
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Figure 2: The empirical rejection probabilities under the null.

“kink" at XA = x0 and the slope of the CDF changes fromc0 to 1 at the kink pointx0. See Figure
2 in LSW for a graphical representation of these CDFs.

In the simulations we tookx0 ∈ {0, 0.1, 0.2, . . . , 0.9} andc0 ∈ {0.2, 0.4, 0.6, 0.8} . The sample
size wasn = 500. The casex0 = 0 corresponds to the least favorable case as the CDFs ofXA and
XB are equal to the CDF ofU1. For a givenc0 > 0, the contact set gets smaller asx0 increases;
therefore, the data-generating process (DGP) moves away from the least favorable case toward the
interior of the null. For each of these DGPs, the two CDFs coincide on a set of positive Lebesgue
measure.

Figure 2 the empirical rejection frequencies of the tests along with their pointwise 95% confi-
dence intervals. For each value ofc0, the discrepancy between the performances of the LSW and
AS tests and their modified versions are not large whenx0 close to zero, i.e. the least favorable
case. However, asx0 increases i.e. the contact set get smaller, the rejection probabilities under
the modified tests are statistically closer to the 5% nominallevel than the ones based on the LSW
and AS tests. These results suggest the bias of the LSW and AS tests is larger than their modified
versions.

6.2 Simulation UnderH1

Let us now focus on the power properties of the two methods against directions of non-dominance.
Directions of non-dominance in the alternative hypothesishave stochastic dominance conditions
with some positive elements and some elements that are negative. Consider the following config-
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Figure 3: The empirical rejection probabilities under the alternative: directions of non-dominance.

uration of DGPs from LSW. SetXA ∼ U [0, 1]. Then defineXB = (U − a0b1)1[a0b1 ≤ U ≤
x0]+(U +a0b2)1[x0 < U ≤ 1−a0b2] for a0 ∈ (0, 1), whereU ∼ U [0, 1]. As a0 becomes closer to
zero, the distribution ofXB becomes closer to the uniform distribution. The scalea0 plays the role
of the "distance"P0 is fromH0. Whena0 is large,P0 is farther fromH0, and whena0 = 0, XA

andXB have the same distribution which meansP0 belongs to the model of the null hypothesis
under the least favorable configuration. For a graphical depiction of the CDFs ofXA andXB, see
Figure 4 in LSW. We set(b1, b2, x0) = (0.1, 0.5, 0.15) anda0 ∈ {0, 0.05, 0.1, 0.15, 0.2, . . . , 0.45} .
The configurations for whicha0 6= 0 correspond to alternative DGPs for which there are some
non-violated inequalities for the case ofs = 1 in the moments (1.1). We considered the following
sample sizesn = 256, 512, 1024, and setXA and the uniform random variable in the definition of
XB to be negatively correlated, with a correlation coefficientof -0.5.

Figure 3 reports the simulation results, which present the empirical rejection frequencies along
with their pointwise 95% confidence intervals. For each sample size and fora0 sufficiently large,
there is no difference between the tests, which is expected since they are all consistent. For moder-
ate values ofa0, the modified versions of the LSW and AS tests have statistically higher power than
their non-modified versions, and the power differences can be large. For example, whenn = 256
anda0 = 0.15, the difference in powers for the LSW and AS type tests are approximately 10% and
21%, respectively. And whenn = 1024 anda0 = 0.1, these differences are approximately 25%
and 12%, respectively.
These findings suggest that the modified tests can better detect DGPs inH1 that are "close" toH0,
when the sample size is moderately large. Overall, the simulation results show that our method
yields tests that perform better than their non-modified versions.

7 Empirical Illustration

This section continues the discussion of the empirical illustration presented in Section 1. As an
important and substantial change in income can occur at retirement, a central question for both
academic researchers and policy makers is whether poverty increases at retirement. Recall that
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[g(X, ·)], and the values of the localization
parameterrn(·) for the test problem (7.1). The right panel reports the same quantities but for the
test problem (7.2).

the left panel in Figure 1 depicts the empirical CDFs of weekly net incomes (in 2001 Australian
dollars) from the HILDA panel survey for the years 2001 and 2006 for households ‘at risk’ of
retiring. The data consists of n = 1351 pairs on household netincomes.

In this illustration, the range of poverty lines is the interval [250, 500]. Thus, we focus on the
following first-order restricted stochastic dominance test problems,

H0 : F2006(t) ≤ F2001(t) ∀t ∈ [250, 500] vs. H1 : NotH0, and (7.1)

H0 : F2001(t) ≤ F2006(t) ∀t ∈ [250, 500] vs. H1 : NotH0. (7.2)

In terms of the notation of this paper, the test problem (7.1)corresponds to the setup in which
populationsXA andXB areX2001 andX2006, respectively,t = 250, t = 500, ands = 1. For the
test problem (7.2), the setup is the same as that for the former problem except that the roles ofXA

andXB are now reversed. We apply the LSW and AS tests along with their modified versions to
these test problems.

Figure 4 reports the sample-analog and constrained empirical likelihood estimates of the differ-
ences between CDFs for the two test problems. We setrn(·) as in the Monte Carlo experiments. As
can be seen in the left panel of Figure 4, the event{∆́n ( ∆̂n} occurs. Thus, we expect the boot-
strap p-values of the modified tests to be stochastically smaller than their respective non-modified
counterparts, conditional on the data, for the test problem(7.1). In contrast to test problem (7.1),
the right panel in Figure 4 indicates that this event does notoccur for the test problem (7.2). Con-
sequently, the bootstrap statistics of the modified versions are not necessarily stochastically larger
than there respective modified counterparts, conditional on the data.

Table 1 reports the bootstrap p-values for the tests. The number of bootstrap simulations was set
toB = 999, where the same random numbers were used in the implementation of the tests, so as
to properly compare the outputs from the modified and non-modified tests. With the nominal level
set toα = 0.05, all of the tests do not rejectH0 in (7.1), while all of them, except the LSW test,
rejectH0 in (7.2). Therefore, all of the tests, except the LSW test, indicate poverty–as measured by
theheadcount ratio– decreased from 2001 to 2006 in Australia for households ‘atrisk’ of retiring.
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Table 1: Bootstrap P-values

Procedure Test problem (7.1) Test problem (7.2)
AS 0.0761 0.01

Modified AS 0.0731 0.004
LSW 0.2142 0.0551

Modified LSW 0.1972 0.0470

8 Conclusion

While the main body of our paper focuses exclusively on the LSW test, the method we propose
extends to the testing framework of AS. Appendix D outlines these results for the AS test.

The modification this paper presents easily extends to the partial identification setup in which
testing is on a finite-dimensional parameter defined by a finite number of unconditional moment
inequality conditions; for example, as in the general framework of Andrews and Soares (2010).
Within their setup, the surgical modification we propose simplifies to solving a finite program:
constrained empirical likelihood subject to a finite numberof inequality constraints. A detailed
theoretical analysis of this modification of their procedure goes beyond the intended scope of
this paper. However, in Appendix B.5, we illustrate using a simple numerical example that our
proposed modification can improve the finite-sample properties under the null hypothesis of such
tests, which points to the potential usefulness of our method in other moment inequality testing
problems.

The constrained empirical likelihood estimation methodology we developed for restricted stoch-
astic dominance restrictions extends to other types of shape constraints that can be imposed through
tilting the empirical distribution function. Examples of shape constraints that our methodology
extends to are monotonicity and modality of a density function (e.g., Hall and Huang, 2001, 2002),
and convexity (or concavity) of a regression function (e.g., Du et al., 2013). The key is that the
shape constraints are linear in the probabilities,p1, . . . , pn.
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A Outline

This Appendix provides supplementary material to this paper. It is organized as follows.

• Appendix B presents a motivating simple example of the method this paper proposes.

• Appendix C covers further discussions of points raised in the paper.

• Appendix D presents (i) the framework of Andrews and Shi (2017), but in the context of
testing for restricted stochastic dominance; (ii) the modification of Andrews and Shi’s test
based on this paper’s proposal; and (iii) the comparison of Andrews and Shi’s test and its
modification under the null and local alternatives.

• Appendix E presents the proofs the results in the paper: Theorems 3.1, 4.1,
4.2, 5.1, 5.2, and Corollaries 5.1, 5.2.

• Appendix F presents technical lemmas used in the proof of Theorem 3.1.

• Appendix G presents technical lemmas used in the proofs of Theorems 4.1 and 4.2.

• Appendix H presents technical lemmas used in the proofs of Theorems 5.1 and 5.2.

B Illustrative Example

This section illustrates the advantages of our general approach in the context of testing on a bi-
variate Gaussian mean. The hypothesis testing problem is anexample of what Silvapulle and Sen
(2011) refer to as a Type B testing problem in Section 3.2 of their book.

B.1 Statistical Model, Testing Problem, and Test Statistic

Let X = [X1, X2] ∼ N(µ,Ω), whereµ = [µ1, µ2] andΩ is the2 × 2 correlation matrix with
correlation coefficientρ. Denote byM the statistical model consisting of the set of all Gaussian
distributionsP of X that satisfy the following assumption.

Assumption B.1. (i) {Xi}ni=1 i.i.d. P, (ii) µ ∈ R2, and (iii) ρ0 = 1/2.

We setρ0 as positive to mimic the inherent correlational structure between the moment functions
in (1.1) that are indexed by the contact set, which we discussin Section 3.

The hypothesis testing problem of interest in this example is

H0 : µ1 ≤ 0 andµ2 ≤ 0 versus H1 : eitherµ1 > 0 orµ2 > 0 or both. (B.1)

The model of the null hypothesis is defined asM0 = {P ∈ M : µj ≤ 0, j = 1, 2} .
Consider the test statisticTn = max {√nµ̂1,

√
nµ̂2} , whereµ̂j = n−1

∑n
i=1Xji for j = 1, 2.

Let Fµ,Ω0(·, ·) denote the cumulative distribution function (CDF) ofN(µ,Ω0), whereΩ0 is the
correlation matrix withρ = ρ0. The CDF ofTn is F√

nµ,Ω0
(u, u), for u ∈ R.
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The pointwise-asymptotic null distribution ofTn is non-degenerate provided the contact set,
∆(P ) = {j ∈ {1, 2} : µj = 0} , is nonempty:

lim
n→+∞

F√
nµ,Ω0

(u, u) =



















F0,Ω0(u, u) if µ1 = µ2 = 0

Φ(u) if µ1 = 0, µ2 < 0

Φ(u) if µ1 < 0, µ2 = 0,

1, if µ1, µ2 < 0,

∀u ∈ R, (B.2)

where0 ∈ R2 denotes the zero vector andΦ(·) is the CDF ofN(0, 1). Hence,Tn exhibits a
discontinuity in its asymptotic null distribution as a function of the underlying distribution,P, with
respect to the topology of weak convergence. This type of asymptotic behavior motivates the use
of generalized moment selection (GMS) testing procedures.

B.2 Testing Procedures

This section introduces a GMS testing procedure that is a special case of the procedure Andrews
and Soares (2010) introduce, and its modified version that isbased on the proposal of this paper.
The former test is defined aŝτn = 1 [Tn > ĉ] , where1[·] is the indicator function, and̂c is the
GMS critical value. This critical value depends on a localization parameter through the GMS
function. This parameter is a sequence{rn}n of positive numbers such that (i)rn → 0 and (ii)√
nrn → +∞, asn → +∞. The GMS function is the vector̂ϕ = [ϕ̂1, ϕ̂2] whose components are

defined as follows

ϕ̂j =

{

0 if |µ̂j | < rn

+∞ if |µ̂j | ≥ rn
j = 1, 2.

The GMS critical value is defined as

ĉ =

{

inf {u ∈ R : F0,Ω0 (u+ ϕ̂1, u+ ϕ̂2) ≥ 1− α} , if ϕ̂ 6= [+∞,+∞]

inf {u ∈ R : F0,Ω0 (u, u) ≥ 1− α} , otherwise,

whereα is the given nominal level.
The modified version of̂τn is τ̃n = 1 [Tn > c̃] , where the critical valuẽc is defined in exactly

the same way aŝc, except that the constrained maximum likelihood estimator of µ,

µ̃ = argmax

{

−1

2

n
∑

i=1

(Xi − µ)′ Ω−1 (Xi − µ) ; µ ∈ R2
−

}

, (B.3)

replaces the estimator̂µ in the GMS functionϕ̂. The constraints in the definition of̃µ are the
restrictions of the null hypothesis in (B.1). Using the Karush-Kuhn-Tucker conditions for the
constrained optimization problem in (B.3), it is a straightforward task to deduce that

µ̃ = [µ̃1, µ̃2] =



















[µ̂1, µ̂2] if µ̂1, µ̂2 ≤ 0

[µ̂1 − ρ0µ̂2, 0] if µ̂1 ≤ 0, µ̂2 > 0

[0, µ̂2 − ρ0µ̂1] if µ̂1 > 0, µ̂2 ≤ 0

[0, 0] if µ̂1, µ̂2 > 0.

(B.4)

We omit the statement of these first-order conditions for brevity.
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B.3 Relative Performance of Tests Under The Null and
√
n Local Alterna-

tives

Setting the nominal levelα = 0.05 and the localization parameterrn =
√

log(n)/n, the following
numerical results establish the test’s exact sizes are approximately equal to 0.05 for sample sizes
n = 100, 101, 102, . . . , 10000. The left panel in Figure 5 reports exact sizes of the tests, which are
defined assupP∈M0

EP τ̂n andsupP∈M0
EP τ̃n. They were computed using numerical integration

and optimization packages in Matlab.
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Figure 5: The first panel reports the exact sizes of the testsτ̂n andτ̃n. The second panel reports the
differencesupP∈M0

EP τ̂n − supP∈M0
EP τ̃n.

The right panel in Figure 5 reports the difference

sup
P∈M0

EP τ̂n − sup
P∈M0

EP τ̃n.

Overall, the exact sizes of the tests are approximately equal to the nominal level and they are
within 0.0003 of each other. Hence, it is reasonable to compare the tests’ rejection probabilities
along local alternatives for sample sizesn ≥ 100 without adjusting them.

Consider local alternatives{Pn}n ⊂ M−M0 wherePn satisfies the hypothesis

Hn : µ1n = −0.1 and µ2n = 2/
√
n, ∀n. (B.5)

Figure 6 reports the local powers of the tests forn = 100, 101, 102, . . . , 7000. These numerical
results indicate that the local powers satisfy

lim
n→+∞

EPn τ̂n = lim
n→+∞

EPn τ̃n = 1− Φ(c− 2) ≈ 0.6388,

wherec = Φ−1(1− α) is the common probability limit of̂c andc̃, andEPn τ̂n < EPn τ̃n ∀n.
In consequence, the equality of the limiting local power functions does not reflect the large-

sample situation. In this case, the standard practice is to compare the tests using the criteria:
asymptotic efficiency and deficiency. Furthermore, when these criteria fail to separate the tests,
normalized deficiency suitably compares them. In this numerical example, asymptotic efficiency
and deficiency of̂τn relative toτ̃n, do not separate the tests as they are equal to unity and+∞,
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Figure 6: The left panel plots the local powersEPn τ̂n andEPn τ̃n. The right panel plots the differ-
enceEPn τ̃n − EPn τ̂n.

Table 2: Relative Performance Criteria

Efficiency Deficiency
√
n-Normalized Deficiency

Finite-sample kn/n dn = kn − n dn/
√
n

Asymptotic lim
n→+∞

(kn/n) lim
n→+∞

dn lim
n→+∞

(dn/
√
n)

respectively. We show
√
n-normalized deficiency of̂τn relative toτ̃n, separates the tests. These

criteria are functions ofkn = min {N ∈ Z+ : EPm τ̂n ≥ EPn τ̃n ∀m ≥ N} , which is the minimal
sample sizêτn needs to attain the local power that is at least as large as thelocal power ofτ̃n at
sample sizen. Table 2 defines these criteria. A value(kn/n) > 1 or dn > 0 indicates that̃τn
is superior tôτn, becausêτn requires more observations thann to achieve at least the same local
power ofτ̃n.

Figure 7 reports the numerical values of the criteria described Table 2. The leftmost panel
indicateskn/n > 1 ∀n ≥ 100, and that it is decreasing to unity with the sample size. Therefore,
asymptotic efficiency does not reflect the relative behaviorof the tests’ local powers in large-
samples, suggesting that it is insensitive to small power differences in moderate and large sample
sizes. The middle panel
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Figure 7: The panels, from left to right, plot the efficiencykn/n, deficiencydn, and normalized
deficiencydn/

√
n of τ̂n with respect tõτn, respectively.

indicates thatdn > 0 ∀n and diverges to+∞, albeit slowly. The rightmost panel reports the√
n-normalized deficiency criterion, indicating thatlimn→+∞ (dn/

√
n) ≈ 19.

The conclusion from using normalized deficiency is the following. In large sample sizes, the
number of additional observation needed to compensate for the amount by whichEPn τ̂n. falls
short ofEPn τ̃n is approximately19

√
n. Note that such a result is typically much stronger than

the mere assertion thatkn/n tends to 1 asn → +∞. This result is not unusual because the local
alternatives (B.5) become progressively more difficult to detect as more observations are available.
Results of this sort exist in the statistics literature; see, for example, Albers (1975) for results
similar to our numerical findings, but in the context of the symmetry problem.

Now consider local alternatives{Pn}n ⊂ M−M0 wherePn satisfies the hypothesis

Hn : µ1n = −2/
√
n and µ2n = 2/

√
n, ∀n = 100, 101, . . . , 50000. (B.6)

Figure 8 reports the numerical results. They showEPn τ̃n > EPn τ̂n for all the values ofn under
consideration, and that the local powers are decreasing with the sample sizen; therefore,kn does
not exist. This result does not preclude the comparison of the the tests. The only deduction is
that τ̂n can never outperform̃τn according to any measure of relative performance that useskn; for
example, the criteria described in Table 2.

B.4 Synthesis

The marriage of constrained estimation and Condition (iii)of Assumption B.1 (i.e., positive cor-
relation) produces the relative asymptotic behavior of thetestsτ̂n andτ̃n described in the previous
sections. From the characterization ofµ̃, given by (B.4), this marriage yields

µ̃j ≤ µ̂j for j = 1, 2, (B.7)

with probability one under anyP ∈ M. Hence, there are sample realizations that satisfy

{µ̃j1 ≤ −rn < µ̂j1 < 0} ∩ {0 < µ̂j2 < rn} ,
under the null and local alternatives of the form (B.5). These realizations implỹc < ĉ occurs
because the modified GMS function omits and retains the dimension j1 and j2, respectively, to
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Figure 8: The left panel plots the local powersEPn τ̂n andEPn τ̃n. The right panel plots the differ-
enceEPn τ̃n − EPn τ̂n.

computẽc, whereaŝϕ retains both dimensions to computeĉ. Thus, whenµj < 0 holds (under the
null or alternative)̃τn detects this configuration more easily thanτ̃n becausẽµj is a more reliable
estimator than̂µj, and therefore, takes it into account by delivering a critical value that is suitable
for the case where this moment inequality is omitted.

The results of this section carry over to the more complicated setup of restricted stochastic
dominance when combining constrained empirical likelihood estimation with the non-negative
correlational structure of the moment functions indexed bythe contact set. That setup is more
complicated because the statistical model is nonparametric and there is a continuum of moment
inequality restrictions that characterize the null hypothesis. Consequently, the discontinuity in the
asymptotic null distribution of conventional test statistics is more complex than (B.2), and can
have a profound effect on the relative performance of the Linton et al. (2010) and Andrews and Shi
(2017) tests and their respective modified versions.

B.5 Negative Correlation: ρ < 0.

This section illustrates the finite-sample behavior of the tests, τ̂n and τ̃n, underH0, when the
correlation coefficient in Assumption B.1 is negative. Notethat negative correlations between
estimators of the moments in stochastic dominance constraints do not arise; see Property 1 in
Section 2. However, negative correlations can arise in other types of moment inequality models
(e.g., Andrews and Soares, 2010). Thus, the purpose of this section is to point at the potential of
the proposed modification to better control the type I error rate in finite-samples in comparison to
its plain-vanilla counterpart in such models.

Figure 9 depicts the exact sizes of the testsτ̂n andτ̃n whenρ = −0.9, where the nominal level
is α = 0.05. The exact size of̃τn is 0.05 for sample sizesn ≥ 100, while its counterpart for̂τn
declines very slowly to the nominal level. In consequence, the testτ̂n over-rejects underH0 for
n ≥ 100. While the magnitude of the over-rejection byτ̂n is not large, this may not be the case
when there is a larger number of inequality constraints. Furthermore, the test̃τn does not require a
size-correction. These features of the illustration renders our method as potentially useful in other
moment inequality models as it circumvents the use of size-correction tuning-parameters because
it can better control the Type I error rate in finite-samples.

31



10
2

10
3

10
4

0.048

0.049

0.05

0.051

0.052

0.053

0.054

0.055

0.056
Exact Size

Sample Size (Log−Scale)

 

 

10
2

10
3

10
4

−6

−5

−4

−3

−2

−1

0
x 10

−3 Difference in Exact Sizes

Sample Size (Log−Scale)

tau tilde

tau hat

Figure 9: The first panel reports the exact sizes of the testsτ̂n andτ̃n. The second panel reports the
differencesupP∈M0

EP τ̂n − supP∈M0
EP τ̃n.

C Further Discussion

C.1 Section 3

C.1.1 Definition 3.1

Definition 3.1 specifies two subsets ofP, which areP1 (c1) andP2 (c2). Focusing firstly on
P1 (c1) , we describe the event

{

supt∈[t,t] g (X; t) < 0
}

. It is given by

{

sup
t∈[t,t]

g (X; t) < 0

}

=

{

{

XA < t,XB > t
}

, if s = 1,
{

XA < t,XB > t
}

∪
{

XA < t,XA < XB ≤ t
}

, if s ≥ 2.
(C.1)

Hence, this event is a tail event, and Part (i) of Assumption 2.1 implies

P

[

sup
t∈[t,t]

g (X; t) < 0

]

> 0 ∀P ∈ P.

Consequently, the setP1 (c1) excludes distributions that place probability less thanc1 on the re-
spective tail events in (C.1) whens = 1, and whens > 1.

The sets of the formP2 (c2) also restrictP. They are subsets over which the convergence of the
grid Tn to the interval[t, t], is uniform. These subsets exclude distributions whose joint densities
are arbitrary close to zero on the box[t, t]× [t, t]. This condition is essential for controlling the size
of the derivative of the quantile function, with uniformity. Specifically, we express the elements of
the grid in terms ofU(0, 1) random variables using the Mean Value Theorem, and the reciprocals
of the marginal densities ofP arise in it. This representation of the grid allows us to use the theory
of maximal uniform spacings (e.g. Devroye, 1982) to establish the uniform convergence of the
grid to the interval[t, t]. For ease of exposition, these intermediate technical results are relegated
to Appendix F.
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C.1.2 Verifying The Conditions ofP1 (c1) and P2 (c2).

The conditions of Definition 3.1 are, in fact, verifiable in practice by means of statistical testing.
In the case ofP1 (c1) , givenc1 ∈ (0, 1) the testing problem is

H0 : P0

[

sup
t∈[t,t]

g (X; t) < 0

]

≥ c1 versus H1 : P0

[

sup
t∈[t,t]

g (X; t) < 0

]

< c1. (C.2)

A t-test based on the statistic1
n

∑n
i=1 1

[

supt∈[t,t] g (Xi; t) < 0
]

and a least favorable critical value,
yields a valid testing procedure, in which the critical value can be derived using, for example, the
canonical bootstrap in a standard way.

In the case ofP2 (c2) , givenc2 ∈ (0, (t− t)−2), the testing problem is

H0 : inf
(xA,xB)∈[t,t]×[t,t]

f(xA, xB) ≥ c2 versus H1 : inf
(xA,xB)∈[t,t]×[t,t]

f(xA, xB) < c2,

wheref(xA, xB) is the joint density whose probability measure isP0. This testing problem is a
test on an intersection bound for the joint densityf(xA, xB). Hence, the estimation and inference
procedures Chernozhukov et al. (2013) introduce apply to this testing problem.

C.1.3 Computational Aspects

The data-driven discretization scheme, introduced in Section 3, is a sequence of finite program-
ming optimization problems. The optimization problems in the scheme can be easily implemented
using standard numerical computing packages and built-in optimization routines (e.g., fmincon
in Matlab), even whenn is large. That’s because the constraints in (3.2) are linearin the choice
variablesp1, . . . , pn. Furthermore, these problems are strictly concave; therefore, it is sufficient to
compute only a local optimum when searching for the global optimum (which is unique).

Property 1 implies the solutiońp, given by (3.2), satisfies the following property

EṔn
[g (X; t)] ≤ EP̂n

[g (X; t)] ∀t ∈ [t, t], (C.3)

when it exists. Therefore, the inequalities (C.3) can be used to increase the numerical accu-
racy and speed of computation in the optimization problem (3.2) by replacing the constraints
∑n

i=1 pig (Xi; t) ≤ 0 ∀t ∈ Tn, with the following:

n
∑

i=1

pig (Xi; t) ≤ 0 ∀t ∈ Tn ∩
{

t ∈ [t, t] : EP̂n
[g (X; t)] ≥ 0

}

and (C.4)

n
∑

i=1

pig (Xi; t) ≤ EP̂n
[g (X; t)] ∀t ∈ Tn ∩

{

t ∈ [t, t] : EP̂n
[g (X; t)] < 0

}

, (C.5)

The reason is that this replacement shrinks the domain of theprobabilitiesp1, . . . , pn over which
the optimization routine searches for the solutionṕ1, . . . , ṕn.
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C.2 Section 4

C.2.1 Regularity On The Asymptotic Gaussian Processν

LSW pay attention to the control of asymptotic rejection probabilities uniform inP ∈ P. For this
reason, they introduce a regularity condition on the asymptotic Gaussian processν in (2.3) which
is given by Definition 2 of their paper. In the context of the present work, this condition is the
following.

Definition C.1. A Gaussian processν is regular onA ⊂ [t, t] if for any α ∈ (0, 1/2], there exists
ǫ > 0 depending only onα such that

P

[
∫

A

max {ν(t), 0}2 dt < ǫ

]

< 1− α (C.6)

and for anyc > 0,

lim sup
η↓0

sup
P∈P0

P

[∣

∣

∣

∣

∫

A

max {ν(t), 0}2 dt− c

∣

∣

∣

∣

≤ η

]

= 0. (C.7)

Condition (C.6) is a weak requirement. It restricts the nullparameter space by excluding prob-
abilities for which the bootstrap p-value has a large mass point at zero that exceedsα. To under-
stand this condition, note that the bootstrap empirical process in the definition of the bootstrap
statisticT̂ ⋆

n converges to the Gaussian processν at the
√
n rate; therefore, the behavior of the se-

quence{rn}n implies the asymptotic behavior of̂T ⋆
n (conditional upon the data) is equivalent to

∫

An
max {ν(t), 0}2 dt, whereAn = {t ∈ [t, t] : |EP [g (X; t)] | ≤ rn}. Condition (C.7) requires

all pointsc > 0 to be points at which the distribution of
∫

A

max {ν(t), 0}2 dt

is continuous, uniformly inP0.

C.2.2 Proposed and LSW Null Parameter Spaces

The sets of probabilities on which the proposed test has asymptotically correct size are defined in
Part (i) of Definition 4.2. And the sets of probabilities on which the proposed test is asymptotically
similar on the boundary of the null hypothesis are defined in Part (ii) of Definition 4.2. These sets
are subsets of their LSW counterparts that can be included inthe empirical likelihood framework
described in Sections 3, 4.1 and 4.2. The sets of probabilities included in the LSW framework that
yield asymptotically correct size are: for eachǫ > 0

P0(ǫ) = {P ∈ P0 : ν in (2.3) is regular onBn ∀n ≥ 1} ,

whereBn is defined in (4.1), in Part (i) of Definition 4.2. And the sets of probabilities in their
framework that yield asymptotic similarity are: for eachǫ > 0 and decreasing sequenceξn → 0,

P0 (ǫ, {ξn}) ={P ∈ P0(ǫ) : ν in (2.3) is regular onB(n−1/2ξn),

and(4.2) holds∀n ≥ 1/ǫ}.
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A natural question to raise at this point is by how much the setof probabilities in Parts (i) and
(ii) of Definition 4.2 are more restrictive than their LSW counterparts. That is, givenǫ > 0 and a
decreasing sequenceξn → 0, how large are the set differences

P0(ǫ)− Ps
0(c1, c2, c3, ǫ) and P0 (ǫ, {ξn})− Ps

0(c1, c2, c3, ǫ, {ξn}), (C.8)

wherec1 ∈ (0, 1), c2 ∈ (0, (t − t)−2) andc3 ∈ (0,+∞). The answer to this question depends
on the values of the constantscj for j = 1, 2, 3. It is easily seen that these set differences (C.8)
tend to the empty set ascj → 0 for j = 1, 2, 3. In consequence, the sets of probabilities that are
relevant to our framework can be made arbitrarily close to their LSW counterparts by settingc1, c2
andc3 arbitrarily close to zero. Otherwise, for values of the constants close to the upper bounds of
their domains, the set differences (C.8) can be non-negligible. In practice, the appropriate values
for these constants can be determined via statistical tests; Appendices C.1.2 and C.2.3 elaborate on
this point.

C.2.3 Verifying The Regularity Condition in Definitions 4.1

The first step in setting up the model of the null hypothesis, defined in Part (i) of Definition 4.2,
is to set values forc1 ∈ (0, 1), c2 ∈ (0, (t − t)−2) and c3 ∈ (0,+∞), so as to designate sets
of probabilitiesPj(cj), j = 1, 2, 3, respectively. Appendix C.1.2 establishes that the conditions
that define the sets of probabilitiesPj(cj), j = 1, 2 are, in fact, verifiable in practice by means
of statistical testing. In this section, we discuss how to test for the condition that defines the set
P3(c3).

Givenc3 ∈ (0,+∞), consider the testing problem

H0 : inf
t∈∆(P0)

EP0

[

g2 (X; t)
]

≥ c3 versus H1 : inf
t∈∆(P0)

EP0

[

g2 (X; t)
]

< c3. (C.9)

It is also testing problem on an intersection bound, but for the variances of the moment functions
indexed by the contact set∆(P0) . It should be noted that the methods Chernozhukov et al. (2013)
introduce must be appropriately adjusted for this intersection bound testing problem because the
set over which the infimum is being taken depends onP0, which is a case that their work does not
cover. Such a modification of their testing procedures is, however, beyond the intended scope of
this paper.

D The Framework of Andrews and Shi (2017)

This section specializes the framework of Andrews and Shi (2017) to the case of restricted stochas-
tic dominance described in Section 2. For eachs ∈ Z+, their statistical model coincides withP
when the envelope and scale functions in their model are specified as

M(x) = smax
{

|t|, |t|
}s−1 (|xB|s−1 + |xA|s−1

)

and (D.1)

σP (0) = 1 for P ∈ P, (D.2)

respectively.
A distinguishing feature of their testing procedure is thattheir test statistic and it bootstrap

version employ Studentization. Specifically, they are functions of Studentized empirical processes.
The next section details their testing procedure.
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D.1 Bootstrap Testing Procedure

We outline the steps of the bootstrap procedure Andrews and Shi (2017) (AS, hereafter) propose.
The Monte Carlo experiments implement their test in Section6 for testing restricted stochastic
dominance. They propose a Kolmogorov-Smirnov and Cramér-von-Mises test statistics for in-
ference on possibly infinite number of conditional moment inequality conditions. Recall that the
setting of this paper considers a continuum of unconditional moment inequality conditions, which
the AS procedure covers as a special case. In this setting, the AS test statistics are identical, and
given by

T̂n = sup
t∈[t,t]

(

max

{

√
n

(

1

n

n
∑

i=1

g (Xi; t)

)

/σ̂(t), 0

})2

, where (D.3)

σ̂2(t) =
1

n

n
∑

i=1

g2 (Xi; t)−
[

1

n

n
∑

i=1

g (Xi; t)

]2

. (D.4)

Next we describe the steps for computing the AS bootstrap GMScritical value in the setting of
this paper. The critical value is obtained through the following steps.

1. Computeϕn(t) for t ∈ [t, t], whereϕn(t) is defined as follows. Let

ξn(t) = κ−1
n

√
n

(

1

n

n
∑

i=1

g (Xi; t)

)

/σ̂(t), (D.5)

whereκn = (0.3 log(n))1/2 . Define

ϕn(t) = σ̂(t)Bn1 [ξn(t) < −1] and Bn = (0.4 log(n)/ log log(n))1/2 . (D.6)

2. GenerateB bootstrap samples
{

X⋆
i,l

}n

i=1
for l = 1, . . . .B using the ECDF on the data.

3. For each bootstrap sample, compute1
n

∑n
i=1 g

(

X⋆
i,l; t
)

, andσ̂2
l (t) just asσ̂2(t) is computed

but with the bootstrap sample in place of the original sample.

4. For each bootstrap sample, compute the bootstrap test statistic T̂ ⋆
n,l asT̂n is computed in (D.3)

but with
√
n
(

1
n

∑n
i=1 g (Xi; t)

)

replaced by√
n
(

1
n

∑n
i=1 g

(

X⋆
i,l; t
)

− 1
n

∑n
i=1 g (Xi; t)− ϕn(t)

)

and withσ̂2(t) replaced bŷσ2
l (t).

5. Take the bootstrap GMS critical valuecn,1−α to be the1 − α + η sample quantile of the

bootstrap test statistics
{

T̂ ⋆
n,l, l = 1, . . . , B

}

plusη, whereη = 10−6.

For a given nominal levelα ∈ (0, 1/2), the AS test rejectsH0 if T̂n > cn,1−α. Denote their test by
τ̂AS = 1[T̂n > cn,1−α].
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D.2 Model of The Null Hypothesis

This section describes the subsets ofP0 on whichτ̂AS satisfies (2.1) in Definition 2.1. Define the
scaled covariance kernel function

h2P (t1, t2) =
CovP (g (X; t1) , g (X; t2))

√

VARP (g (X; t1))VARP (g (X; t2))
t1, t2 ∈ [t, t], (D.7)

and consider the set of covariance kernels that correspond to P0 given by

C = {h2P (·, ·) : P ∈ P0} . (D.8)

On the setC define the uniform metric

d
(

h
(1)
2 , h

(2)
2

)

= sup
t1,t2∈[t,t]

∣

∣

∣
h
(1)
2 (t1, t2)−, h(2)2 (t1, t2)

∣

∣

∣
. (D.9)

According to Theorem 5.1 of AS, the subsets ofP0 on whichτ̂AS satisfies (2.1) are of the form

{P ∈ P0 : h2P ∈ Ccpt} , (D.10)

whereCcpt is a compact subset ofC with respect to the uniform metricd(·, ·). That is, givens ∈ Z+,

lim sup
n→+∞

sup
P∈{P∈P0:h2P∈Ccpt},

EP τ̂
AS ≤ α, (D.11)

for every compact subsetCcpt of C.

D.3 Proposed Modification of Andrews and Shi’s Bootstrap Procedure

The proposed modification this paper suggests alters the AS testing procedure by replacing the
sample-analog estimator of the moments in (D.5) with the constrained empirical likelihood es-
timator described in Section 3. Let́ϕn(t) be constructed in the same way asϕn(t), but with
∑n

i=1 ṕig (Xi; t) in place of 1
n

∑n
i=1 g (Xi; t) . Then, the contact set estimator in the AS procedure

and its modified version are given by

∆̂AS
n =

{

t ∈ [t, t] : ϕn(t) = 0
}

and ∆́AS
n =

{

t ∈ [t, t] : ϕ́n(t) = 0
}

, (D.12)

respectively.
Property 1 of the moment functions implies that

[t, t]− ∆̂AS
n ⊆ [t, t]− ∆́AS

n (D.13)

holds numerically wheńp exists and is characterisable by Lagrange multipliers, which is equiva-
lent to∆́AS

n ⊆ ∆̂AS
n . These set inclusions imply

ϕ́n(t) = ϕn(t) for t ∈ ∆́AS
n , (D.14)

ϕ́n(t) > ϕn(t) for t ∈ ∆̂AS
n − ∆́AS

n , and (D.15)

ϕ́n(t) = ϕn(t) for t ∈ [t, t]− ∆̂AS
n , (D.16)
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whenṕ exists and is characterisable in terms of Lagrange multipliers. Thus, conditional upon the
sample, the inequalities (D.14) - (D.16) yield̂T ⋆

n,s ≥ T́ ⋆
n,s, whereT́ ⋆

n,s is computed in exactly the

same way aŝT ⋆
n,s but with ϕ́n(·) in place ofϕn(·). Moreover, if∆́AS

n ( ∆̂AS
n and∆́AS

n 6= ∅, then

T̂ ⋆
n,s > T́ ⋆

n,s holds with positive probability conditional on the sample.In consequence, we expect
that results analogous to those in the paper regarding the LSW test and its modification would also
hold for the AS test.

D.4 Asymptotic Equivalence Under The Null Hypothesis

Appendix D.2 describes subsets ofP0 on which the AS test is asymptotically levelα. These sub-
sets differ from the subsets on which the LSW test is asymptotically level α. Hence, we must
characterize subsets ofP0 on which the AS test and its modification are asymptotically equivalent.

Intuitively, we specify subsets ofP0 on which the AS procedure is asymptotically valid that
are relevant for the empirical likelihood framework this paper introduces. For eachs ∈ Z+,
c1 ∈ (0, 1), c2 ∈

(

0, (t− t)−2
)

, c3 ∈ (0,+∞) andCcpt compact subset ofC, these subsets are

Ps
0(c1, c2, c3, Ccpt) = {P ∈ P0 : h2P ∈ Ccpt} ∩ Ps

0(c1, c2, c3), (D.17)

wherePs
0(c1, c2, c3) is given by Definition 3.1.

The characterization (D.17) follows from an application ofProposition G.1 in Appendix G.3 to

ξ́n(t) = κ−1
n

√
n

(

n
∑

i=1

ṕig (Xi; t)

)

/σ̂(t) (D.18)

= ξn(t) + κ−1
n

√
n

(

n
∑

i=1

(ṕi −
1

n
)g (Xi; t)

)

/σ̂(t) (D.19)

appearing in the GMS functiońϕn(t). It yields

ξ́n(t) = ξn(t) +OP

(

κ−1
n

)

uniformly in Ps
0(c1, c2, c3, Ccpt), (D.20)

= ξn(t) + oP (1) uniformly in Ps
0(c1, c2, c3, Ccpt). (D.21)

The large-sample behavior (D.21) implies that with probability tending to unity,∆́AS
n and∆̂AS

n tend
to∆(P0) asn→ +∞, uniformly inPs

0(c1, c2, c3, Ccpt).

D.5 Relative Behavior Under Local Alternatives

Given s ∈ Z+, c1 ∈ (0, 1), c2 ∈
(

0, (t− t)−2
)

, c3 ∈ (0,+∞) andCcpt compact subset ofC,
let Ps

0(c1, c2, c3, Ccpt) be the model of the null hypothesis. Consider a sequence of local alterna-
tives{Pn}n≥1 ⊂ P − P0 such thatlimn→+∞ Pn ∈ ∂Ps

0 (c1, c2, c3, Ccpt), where∂Ps
0 (c1, c2, c3, Ccpt)

denotes the boundary of the null model.
Denote the modified AS test býτAS. It was shown in Appendix D.3 that the bootstrap critical

value fromτ́AS is never larger than that from̂τAS, for anyP ∈ P whenn is large enough. Because
the test statistics in these tests are identical, the ordering of their bootstrap critical values implies
that

EPn τ́
AS ≥ EPn τ̂

AS , (D.22)
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holds, for large enoughn. Moreover, in light of the discussion in Appendix D.3, this inequality in
their local powers holds strictly whenever

Pn

[

∆́AS
n ( ∆̂AS

n and∆́AS
n 6= ∅

]

> 0, (D.23)

for large enoughn.
In consequence, results analogous to Theorem 5.3 and Corollary 5.2 for the LSW test and

its modified version hold for comparison of betweenτ́AS and τ̂AS. A remarkable point is that
additional regularity conditions on{Pn}n≥1 are not required for these results, which is in contrast
to the comparison of the LSW test and its modified version (seeAssumption5.1), which is due to
the set inclusioń∆AS

n ⊂ ∆̂AS
n holding for large enoughn.

E Proofs of Results

E.1 Theorem 3.1

Proof. The proof proceeds by the direct method. The following random sets are used in the proof:

H0(X) =

{

p ∈ Hn :
n
∑

i=1

pig (Xi; t) ≤ 0 ∀t ∈ [t, t]

}

, (E.1)

H0
n(X) =

{

p ∈ Hn :

n
∑

i=1

pig (Xi; t) ≤ 0 ∀t ∈ Tn

}

, (E.2)

Hn =

{

p ∈ Rn :

n
∑

i=1

pi = 1, pi ≥ 0 ∀i
}

and (E.3)

H◦
n =

{

p ∈ Rn :

n
∑

i=1

pi = 1, pi > 0 ∀i
}

. (E.4)

Part 1. This part of the proof covers the case of first-order stochastic dominance i.e.s = 1. The
moment functions in this case are therefore of the followingform:

g(Xi; t) = 1
[

XB
i ≤ t

]

− 1
[

XA
i ≤ t

]

t ∈ [t, t]. (E.5)

As the difference betweenH0
n(X) andH0(X) is that the former constraint set is based on a subset

of the inequality constraints that define the latter constraint set, it follows thatH0(X) ⊆ H0
n(X)

holds regardless of the underlying probability. To conclude the proof, we need to show the reverse
set inclusion, and then apply Lemma F.6 to establish thatH0(X) is asymptotically non-empty, with
uniformity.

Now we will show that the eventH0
n(X) ⊆ H0(X) occurs regardless of the underlying proba-

bility. We have that∀t ∈ [t, t]− Tn ∃j ∈ {1, 2, . . . , N} such that

t(j) ≤ t ≤ t(j+1). (E.6)

Because the moment functions are of the form (E.5) for eachi = 1, . . . , n, it follows that

g(Xi; t) = g(Xi; t(j)) ∀t ∈ [t, t]− Tn. (E.7)
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Hence,∀p ∈ H0
n(X)

n
∑

i=1

pig(Xi; t) =

n
∑

i=1

pig(Xi; t(j)) ≤ 0 t ∈ [t, t]− Tn. (E.8)

Furthermore,p ∈ H0
n(X) implies

∑n
i=1 g(Xi; t) ≤ 0 ∀t ∈ Tn. Putting these two parts together

yields∀p ∈ H0
n(X) that

∑n
i=1 pig(Xi; t) ≤ 0 ∀t ∈ [t, t].

So we just proved thatH0
n(X) ⊆ H0(X) holds, which now in conjunction with the set inclusion

H0(X) ⊆ H0
n(X), impliesH0

n(X) = H0(X). Lemma F.5 establishes that when the extrema of the
SIP and its discretized counterpart exist, then the solution sets are both singletons equal top̃ and
ṕ, respectively. The constraint set equality we just proved implies the equalitỹp = ṕ. Therefore,
to conclude the proof, we need to show that givenc1 ∈ (0, 1), p̃ exists and is the unique solution of
the SIP problem with probability approaching unity, uniformly over the set of probabilitiesP1(c1).
Lemma F.6 establishes this result:

1 = lim
n→+∞

inf
P∈P1(c1)

P
[

H0(X) ∩ H◦
n 6= ∅

]

≤ lim
n→+∞

inf
P∈P1(c1)

P [p̃ exists and is unique] (E.9)

because{H0(X) ∩ H◦
n 6= ∅} ⊆ {p̃ exists and is unique} , whereH◦

n denotes the interior of the
n− 1 simplexHn. This concludes the proof for this part of the theorem.

Part 2. We first present a sketch of the proof because the main steps in it use the intermediate
technical results presented in Appendix F.

Sketch of Proof. The proof proceeds using the direct method. We derive an upper bound
on ‖ṕ − p̃‖ which converges to zero in probability, with uniformity over set of probabilities
P1(c1)

⋂P2(c2). The derivations in the proof are based on the the occurrence of the event

{p̃ exists and is unique} .

That is, on this event, we construct the upper bound on‖ṕ − p̃‖. The result then follows di-
rectly since Lemma F.6 in Appendix F.2 establishes that, foreachc1 ∈ (0, 1), the probability of
{p̃ exists and is unique} converges to unity with uniformity over the set of probabilitiesP1(c1).
The proof proceeds in 4 steps, where the details of Steps 1,2 and 3 are based on the contents in
Appendices F.2, F.5 and F.6, respectively.

Step 1. On the event that{p̃ exists and is unique} ,Part 2 of Lemma F.5 in Appendix F.2 implies
the occurrence of the event{ṕ exists and is unique} , because the set inclusionH0(X) ⊆ H0

n(X),
holds.

Step 2. By Lemma F.9 in Appendix F.5, we can construct a probabilityvectorp̆ in H0(X)∩H◦
n

that is nearby tóp. The consequence of this step is that by the triangular inequality we can conclude

‖ṕ− p̃‖ ≤ ‖p̆− p̃‖+ ‖ṕ− p̆‖, where ‖ṕ− p̆‖ ≤ ṕ(1)
2n3/2

. (E.10)

Step 3. Sincep̆ ∈ H0(X)∩H◦
n, there exists a large enoughǫ > 0 such that‖p̆− p̃‖ ≤ ǫ. Then

Lemma F.10 in Appendix F.6 establishes, via a quadratic growth condition in a neighborhood of
p̃, that

‖p̆− p̃‖2 ≤ h (p̆)− h (p̃)

K0
=
h (p̆)− h (ṕ)

K0
+
h (ṕ)− h (p̃)

K0
, (E.11)
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whereK0 = 1/(2ǫ2 +10) andh (p) = −∑n
i=1 log (pi) . Then noting thath (ṕ)− h (p̃) ≤ 0 holds

asH0(X) ⊆ H0
n(X), it follows that

‖p̆− p̃‖2 ≤ h (p̆)− h (ṕ)

K0
. (E.12)

Step 4. Combining the inequalities in (E.10) and (E.12), yields

‖ṕ− p̃‖ ≤
[

h (p̆)− h (ṕ)

K0

]1/2

+
ṕ(1)
2n3/2

. (E.13)

In consequence, to prove the result of this part of the theorem, we need to show that the two parts
on the right side of (E.13) converge to zero in probability, with uniformity over sets of probabilities
P1(c1)

⋂P2(c2). Observe that by the inequalitylog(1 + y) ≤ y ∀y > −1

h (p̆)− h (ṕ) =
n
∑

i=1

log

(

1 +
ṕi − p̆i
p̆i

)

≤
n
∑

i=1

ṕi − p̆i
p̆i

. (E.14)

Then using the construction of the probability vector in Part 2 of Lemma F.9 i.e.̆pi ≥ ṕ(1)/2 and

|ṕi − p̆i| ≤ ṕ(1)
2n2 ∀i, and the Cauchy-Schwartz inequality for sums yields

n
∑

i=1

ṕi − p̆i
p̆i

≤

√

√

√

√

n
∑

i=1

1

p̆−2
i

‖ṕ− p̆‖ ≤ 2
√
n

ṕ(1)
‖ṕ− p̆‖ ≤ 1/n. (E.15)

Hence, from the inequality (E.13) it follows that

‖ṕ− p̃‖ ≤ (K0n)
−1/2 + n−3/2, (E.16)

becausép(1) < 1.
Therefore, the steps described above yields the following event inclusion

{p̃ exists and is unique} ⊆
{

‖ṕ− p̃‖ ≤ (K0n)
−1/2 + n−3/2

}

. (E.17)

Hence, givenc1 ∈ (0, 1) andc2 ∈
(

0, 1
(t−t)2

)

, Lemmas F.5 and F.6 establish

1 = lim
n→+∞

inf
P∈P1(c1)

P [p̃ exists and is unique] (E.18)

≤ lim
n→+∞

inf
P∈P1(c1)

⋂
P2(c2)

P
[

‖ṕ− p̃‖ ≤ (K0n)
−1/2 + n−3/2

]

, (E.19)

which implies the desired result and concludes the proof.

E.2 Theorem 4.1

Proof. Part 1. The proof proceeds by the direct method. Lemma G.2 implies that theṕi can be
characterized in terms of Lagrange multipliers as in (G.31). Without loss of generality, let

∆(Ṕn) = {t1, t2, . . . , tωn} . (E.20)
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Therefore, the probabilities (G.31) can be expressed as

ṕi =
1

n

(

1 +

ωn
∑

j=1

µ́jg(Xi; tj)

)−1

. (E.21)

Therefore,

EṔn
[g (X; t)]−EP̂n

[g (X; t)] = −
n
∑

i=1

ṕi
∑

t′∈∆(Ṕn)

µ́t′g (Xi; t
′) g (Xi; t) , (E.22)

whereµ́t′ ≥ 0 ∀t′ ∈ ∆(Ṕn). Finally, givent′, Property 1 implies the desired result because

g (x; t′) g (x; t) ≥ 0 ∀(t,x) ∈ [t, t]× supp(P ) . (E.23)

On the event
{

Ṕn 6= P̂n

}

, the Lagrange multipliers cannot all be equal to zero. Then Lemma F.1

implies that there existsXi such thatg (Xi; t
′) g (Xi; t) > 0 ∀t, which concludes the proof.

Part 2. First, we prove the probability of the event
{

∆́n ⊆ ∆̂n

}

(in An) converges to unity in

probability uniformly overPs
0(c1, c2, c3), as the sample size tends to infinity. The proof follows the

direct method and makes use of the result in part 1 of the this theorem.
Let t ∈ ∆́n, then

{

−rn < EṔn
[g (X, t)]

}

occurs. Consequently, part 1 of the theorem implies
the probability of the event

{

−rn < EP̂n
[g (X, t)]

}

, converges to unity in probability, uniformly
overP0(c1, c2), as the sample size tends to infinity. Now we show the probability of the event
{

rn > EP̂n
[g (X, t)]

}

, for eacht ∈ ∆́n, tends to unity with uniformity.

Noting that fort ∈ ∆́n,

EP̂n
[g (X, t)] = EP̂n

[g (X, t)]− EṔn
[g (X, t)] + EṔn

[g (X, t)]

< EP̂n
[g (X, t)]− EṔn

[g (X, t)] + rn

= OP (n
−1/2) + rn uniformly over Ps

0(c1, c2, c3), (E.24)

where (E.24) follows by Proposition G.1. Next we show that the probability of the event

{EP̂n
[g (X, t)] ∈ [rn, OP (n

−1/2) + rn)}

is uniformly asymptotically negligible.
Consider the following probabilityP [EP̂n

[g (X, t)] ∈ [rn, OP (n
−1/2) + rn)], which is equal to

P
[√
n
(

EP̂n
[g (X, t)]− EP [g (X, t)]

)

+
√
nEP [g (X, t)] ∈ [

√
nrn, OP (1) +

√
nrn)

]

. (E.25)

For t ∈ ∆(P ), this probability is equal to

P
[√
nEP̂n

[g (X, t)] ∈ [
√
nrn, OP (1) +

√
nrn)

]

,

and the Uniform Central Limit Theorem establishes that
√
nEP̂n

[g (X, t)] = Op(1), uniformly
overPs

0(c1, c2, c3). Because
√
nrn → +∞, it follows that

sup
P∈Ps

0 (c1,c2,c3)

P
[√
nEP̂n

[g (X, t)] ∈ [
√
nrn, OP (1) +

√
nrn)

]

→ 0. (E.26)
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Therefore, ift ∈ ∆(P ), theninfP∈Ps
0 (c1,c2,c3)

P
[

EP̂n
[g (X, t)] < rn

]

→ 1.
Now we focus on the last case underH0, which is whent /∈ ∆(P ). In this case,EP [g (X, t)] <

0 and we have that
√
nEP̂n

[g (X, t)] =
√
n
(

EP̂n
[g (X, t)]− EP [g (X, t)]

)

+
√
nEP [g (X, t)] (E.27)

OP (1) +
√
nEP [g (X, t)] uniformly over Ps

0(c1, c2, c3). (E.28)

Note that
√
nEP [g (X, t)] diverges to−∞,

√
nEP̂n

[g (X, t)] also diverges to−∞, but uniformly
overPs

0(c1, c2, c3).Combining this result with the fact that
√
nrn → +∞, implies that the probabil-

ity (E.25) tends to zero with uniformity. Therefore,infP∈Ps
0(c1,c2,c3)

P
[

EP̂n
[g (X, t)] < rn

]

→ 1,
which concludes the proof of this part of the theorem.

Now we turn our focus to the event
{

∆(P ) ⊆ ∆́n

}

. Let t ∈ ∆(P ) and consider the event

{−rn < EṔn
[g (X, t)] < rn}.By adding and subtracting the termEP̂n

[g (X, t)] fromEṔn
[g (X, t)] ,

this event is equal to the event
{

−rn < EṔn
[g (X, t)]−EP̂n

[g (X, t)] + EP̂n
[g (X, t)] < rn

}

.

Now we can apply Proposition G.1 to the differenceEṔn
[g (X, t)]− EP̂n

[g (X, t)] to deduce that
this event is also equal to the event

{

−√
nrn < OP (1) +

√
nEP̂n

[g (X, t)] <
√
nrn
}

, (E.29)

uniformly overPs
0(c1, c2, c3). As t ∈ ∆(P ) , we have that

√
nEP̂n

[g (X, t)] = OP (1) uniformly
overPs

0(c1, c2, c3), by the Uniform Central Limit Theorem. Therefore, the event (E.29) is equal to
{

−
√
nrn ≤ OP (1) ≤

√
nrn
}

, (E.30)

whose probability tends to unity uniformly overPs
0(c1, c2, c3), because

√
nrn → +∞. This con-

cludes part 2.
Part 3. The proof proceeds by the direct method. We have that
{

∆̂n ( ∆́n

}

=
{

∆̂n ( ∆́n andP̂n 6= Ṕn

}

⊆
{

∃t ∈ ∆́n;EṔn
[g (X, t)] < rn ≤ EP̂n

[g (X, t)]
}

=
{

∃t ∈ ∆́n;EṔn
[g (X, t)]− EP̂n

[g (X, t)] < rn − EP̂n
[g (X, t)] ≤ 0

}

=
{

∃t ∈ ∆́n;OP

(

n−1/2
)

< rn − OP

(

n−1/2
)

− EP [g (X, t)] ≤ 0
}

=
{

∃t ∈ ∆́n;OP (1) <
√
nrn −OP (1)−

√
nEP [g (X, t)] ≤ 0

}

,

for anyt ∈ [t, t], uniformly overPs
0(c1, c2, c3) by Proposition G.1. Since for anyt ∈ [t, t],

√
nrn −OP (1)−

√
nEP [g (X, t)]

diverges to+∞ asn → +∞, uniformly overPs
0(c1, c2, c3), it implies that the event of it being

non-positive tends to zero, with uniformity; i.e.,

lim
n→+∞

sup
P∈Ps

0 (c1,c2,c3)

P
[

∃t ∈ ∆́n;OP (1) <
√
nrn − OP (1)−

√
nEP [g (X, t)] ≤ 0

]

= 0.
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This concludes the proof since, for eachP ∈ Ps
0(c1, c2, c3), the above set inclusions imply that

P
[

∆̂n ( ∆́n

]

≤ P
[

∃t ∈ ∆́n;OP (1) <
√
nrn − OP (1) +

√
nEP [g (X, t)] ≤ 0

]

,

holds for eachn.
Part 4. The proof proceeds by the direct method. First note the following decomposition of the

event
{

∆́n ( ∆̂n

}

:

{

∆́n ( ∆̂n

}

=
{

Ṕn 6= P̂n

}

⋂

{

∃t ∈ ∆̂n;
∣

∣EṔn
[g (X; t)]

∣

∣ ≥ rn

}

⋂

{

∆́n ⊆ ∆̂n

}

. (E.31)

Noting that
{

∀t ∈ ∆̂n;
∣

∣EṔn
[g (X; t)]

∣

∣ < rn

}

=
{

∆̂n ⊆ ∆́n

}

, the probability of the complement

of (E.31) is

P
[{

Ṕn = P̂n

}

⋃

{

∀t ∈ ∆̂n;EṔn
[g (X; t)] > −rn

}

⋃

{

∆́n 6⊆ ∆̂n

}]

,

which equals

P
[

Ṕn = P̂n

]

+ P
[

∆̂n ⊆ ∆́n

]

+ P
[

∆́n 6⊆ ∆̂n

]

− P
[

∆́n = ∆̂n

]

− P
[

∆̂n ( ∆́n

]

and simplifies toP
[

Ṕn = P̂n

]

+ P
[

∆́n 6⊆ ∆̂n

]

. Then,

lim
n→+∞

inf
P∈Ps

0 (c1,c2,c3)
⋂

P000

P
[

∆́n ( ∆̂n

]

= 1− lim
n→+∞

sup
P∈Ps

0(c1,c2,c3)
⋂

P000

P
[

Ṕn = P̂n

]

− lim
n→+∞

sup
P∈Ps

0 (c1,c2,c3)
⋂

P000

P
[

∆́n 6⊆ ∆̂n

]

≥ 1

2

because Lemma G.1 establishes thatlimn→+∞ supP∈Ps
0 (c1,c2,c3)

⋂
P000

P
[

Ṕn = P̂n

]

≤ 1/2, and by

Part 2 of Theorem 4.1

lim
n→+∞

sup
P∈Ps

0 (c1,c2,c3)
⋂P000

P
[

∆́n 6⊆ ∆̂n

]

≤ lim
n→+∞

sup
P∈Ps

0 (c1,c2,c3)

P
[

∆́n 6⊆ ∆̂n

]

= 0.

Part 5. The proof follows identical steps to those in the second part of the proof of Claim 1, in
LSW on page 200.

E.3 Theorem 4.2

Proof. The proof proceeds by the direct method. As the test statistic is the same, it is sufficient to
show that the proposed and LSW bootstrap test statistics areasymptotically equal with uniformity.
Let

γ⋆n (t) =

(

max

{

1√
n

n
∑

i=1

[

g
(

X⋆
i,l; t
)

− EP̂n
[g (X; t)]

]

, 0

})2

, (E.32)
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then consider the following,

∣

∣

∣
T̂ ⋆
n,l − T́ ⋆

n,l

∣

∣

∣
=























∫

[t,t]−∆́n
γ⋆n (t) dt if

∫

∆́n
dt > 0,

∫

∆̂n
dt = 0

∫

[t,t]−∆̂n
γ⋆n (t) dt if

∫

∆́n
dt = 0,

∫

∆̂n
dt > 0

∫

∆́n⊖∆̂n
γ⋆n (t) dt if

∫

∆́n
dt > 0,

∫

∆̂n
dt > 0

0 if
∫

∆́n
dt = 0,

∫

∆̂n
dt = 0,

(E.33)

where⊖ denotes the symmetric difference operator on sets. We have

∣

∣

∣
T̂ ⋆
n,l − T́ ⋆

n,l

∣

∣

∣
≤























(

supt∈[t,t] γ
⋆
n (t)

) ∫

[t,t]−∆́n
dt if

∫

∆́n
dt > 0,

∫

∆̂n
dt = 0

(

supt∈[t,t] γ
⋆
n (t)

) ∫

[t,t]−∆̂n
dt if

∫

∆́n
dt = 0,

∫

∆̂n
dt > 0

(

supt∈[t,t] γ
⋆
n (t)

) ∫

∆́n⊖∆̂n
dt if

∫

∆́n
dt > 0,

∫

∆̂n
dt > 0,

0 if
∫

∆́n
dt = 0,

∫

∆̂n
dt = 0.

(E.34)

To prove the result we need to prove that
(

supt∈[t,t] γ
⋆
n (t)

)

is OP (1) conditional onAn, uni-
formly in Ps

0(c1, c2, c3, ǫ). and then apply Theorem 4.1 to the integrals in (E.34). Since the set of
moment functions

{

x 7→ g(x, t), t ∈ [t, t]
}

is uniform Donsker with respect toPs
0(c1, c2, c3, ǫ),

Lemma A.2 of LSW implies that it is also bootstrap uniform Donsker. Therefore, applying
Lemma A.1 (uniform continuous mapping theorem) of LSW to

(

supt∈[t,t] γ
⋆
n (t)

)

yields the de-
sired result.

Parts 3 and 2 of Theorem 4.1 imply that∆̂n and∆́n are consistent estimators of∆(P ) uniformly
in Ps

0(c1, c2, c3), asPs
0(c1, c2, c3, ǫ) ⊂ Ps

0(c1, c2, c3). Noting thatP ∈ Ps
0(c1, c2, c3, ǫ) implies that

∫

∆(P )
dt > 0, for largen, we must have∆́n 6= ∅, ∆̂n 6= ∅ with probability tending to one,

uniformly in Ps
0(c1, c2, c3, ǫ). Applying Part 2 of Theorem 4.1 to this case in (E.34) implies∆́n ⊖

∆̂n = ∆̂n − ∆́n with probability approaching unity uniformly inPs
0(c1, c2, c3, ǫ). Consequently,

by Parts 2 and 3 of Theorem 4.1
(

sup
t∈[t,t]

γ⋆n (t)

)

∫

∆́n⊖∆̂n

dt
P−→ 0 (E.35)

conditional onAn uniformly in Ps
0(c1, c2, c3, ǫ). Therefore,T̂ ⋆

n,l − T́ ⋆
n,l

P−→ 0 conditional onAn

uniformly in Ps
0(c1, c2, c3, ǫ). This concludes the proof.

E.4 Theorem 5.1

Proof. The proof proceeds by the direct method. Because Theorem 3 ofLSW shows the test
statistic

T̂n = n

∫ t

t

max
{

EP̂n
[g (X; t)] , 0

}2
dt, (E.36)

diverges to infinity under the alternative, to prove the desired result we only need to show that the
bootstrap test statistic isOP (1) (conditional onAn) underH1. These two conditions imply that the
bootstrap p-valuéΥB converges to zero in probability underH1.
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Corollary F.1 and Part 2 of Lemma F.5 implies the existence and uniqueness of the solution
from the constrained empirical likelihood problem,ṕ, to be an event with probability converging
to unity. Hence, the contact set∆́n exists with probability converging to unity. Since the bootstrap
test statisticT́ ⋆

n is bounded above by

∫ t

t

(

max

{

1√
n

n
∑

i=1

[

g (X⋆
i ; t)−EP̂n

[g (X; t)]
]

, 0

})2

dt, (E.37)

which converges in distribution (conditional onAn) to the distribution of

∫ t

t

(max {ν(t), 0})2 dt,

it follows thatT́ ⋆
n = OP (1) conditional onAn. This concludes the proof.

E.5 Theorem 5.2

Proof. Part 1. The proof follows steps identical to those in Part 1 of Theorem 4.1 except that we
are taking limits under the local alternatives, which is based on Lemma H.4. We omit the details
for brevity.

Part 2. The proof proceeds by the direct method. We first focus on proving

lim
n→+∞

Pn

[

C ⊆ ∆́n

]

= 1. Lemma H.4 implies that the random set∆́n exists for large enoughn,

with probability approaching unity under the local alternatives. Considert ∈ [t, t] such thatH(t) =
0 and the event

{

−rn ≤ EṔn
[g (X; t)] ≤ rn

}

. Upon adding and subtractingEP̂n
[g (X, t)] and

EPn [g (X, t)] toEṔn
[g (X; t)] , and multiplying through

√
n/σn(t) on all sides of the inequalities

in this event, it is equal to
{∣

∣

∣

∣

A(t)

σn(t)
+
B(t)

σn(t)
+

δ(t)

σn(t)

∣

∣

∣

∣

≤
√
nrn

σn(t)

}

, (E.38)

where

A(t) =
√
n
(

EṔn
[g (X; t)]−EP̂n

[g (X, t)]
)

and

B(t) =
√
n
(

EP̂n
[g (X; t)]−EPn [g (X, t)]

)

.

Now we derive the large sample behaviors of each of the elements in the event given by (E.38),
then combine them to deduce the main result. Noting that,

A(t) = −
√
n
∑

t′∈∆(Ṕn)

µ́t′

n
∑

i=1

ṕig (Xi; t
′) g (Xi; t) , (E.39)

we can follow steps identical to those in Proposition G.1 to deduce that

n
∑

i=1

ṕig (Xi; t
′) g (Xi; t) = OPn(1)
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under the local alternatives, and we omit them for brevity. In consequence, Part 5 of Lemma H.4
implies the right side of (E.39) isOPn(1). We also have that

lim
n→+∞

√
nrn

σn(t)
→ +∞

becauseσn(·) is uniformly bounded by Part(iv) of Assumption 5.1 and Assumption 2.1, and be-
causelimn→+∞

√
nrn = +∞. Furthermore, and

B(t)

σn(t)
= OPn(1) asn→ +∞

by the Lindeberg-Feller Central Limit Theorem for IID triangular arrays. Finally, becauseδ(t) is a
uniformly bounded function by Part (iii) of Assumption 5.1,it follows that

lim
n→+∞

Pn

[

C ⊆ ∆́n

]

= 1.

Next we focus on provinglim
n→+∞

Pn

[

∆́n ⊆ ∆̂n

]

= 1. Parts 1 and 2 of Lemma H.4 implies that

asymptotically the set estimatoŕ∆n exist with probability approaching unity under the local alter-
natives. Suppose thatt ∈ ∆́n, then by Part 4 of Lemma H.4,lim

n→+∞
Pn

[

EP̂n
[g (X; t)] > −rn

]

= 1.

Thus, to prove the result we need to show thatlim
n→+∞

Pn

[

EP̂n
[g (X; t)] < rn

]

= 1.

We will show that lim
n→+∞

Pn

[

EP̂n
[g (X; t)] ≥ rn

]

= 0. Noting that

EP̂n
[g (X; t)] = EP̂n

[g (X; t)]−EPn [g (X; t)] + EPn [g (X; t)] , and (E.40)
√
n
(

EP̂n
[g (X; t)]−EPn [g (X; t)]

)

/σPn(t) = OPn(1) (E.41)

by the Lindeberg-Feller Central Limit Theorem for triangular arrays of row-wise IID random vari-
ables, it follows thatlimn→+∞ Pn

[

EP̂n
[g (X; t)] ≥ rn

]

equals

lim
n→+∞

Pn

[

OPn(1) +

√
n

σPn(t)
EPn [g (X; t)] ≥

√
nrn/σPn(t)

]

. (E.42)

As
√
nrn/σPn(t) → +∞, for t ∈ C, the term

√
nEPn [g (X; t)] /σPn(t) = δ(t)/σPn(t), is uni-

formly bounded with uniformity overn; hence, the limit (E.42) is equal to zero. Furthermore, for
t ∈ [t, t]− C, the term

√
nEPn [g (X; t)] /σPn(t) = (

√
nH(t) + δ(t))/σPn(t) → −∞ (E.43)

asH(t) < 0 and becauseδ(t)/σPn(t) is uniformly bounded inn andt by the conditions of As-
sumption 5.1. Therefore, the limit (E.42) is equal to zero for sucht since the divergence to−∞
in (E.43) is at rate

√
n whereas the divergence of

√
nrn/σPn(t) to +∞ is slower than

√
n. This

concludes the proof.
Part 3. The proof proceeds by the direct method and follows steps identical to those in Part 3

of Theorem 4.1, except that the limits are taken under the sequence of local alternatives. We have
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that
{

∆̂n ( ∆́n

}

=
{

∆̂n ( ∆́n andP̂n 6= Ṕn

}

⊆
{

∃t ∈ ∆́n;EṔn
[g (X, t)] < rn ≤ EP̂n

[g (X, t)]
}

=
{

∃t ∈ ∆́n;EṔn
[g (X, t)]− EP̂n

[g (X, t)] < rn − EP̂n
[g (X, t)] ≤ 0

}

=
{

∃t ∈ ∆́n;OPn

(

n−1/2
)

< rn − OPn

(

n−1/2
)

−EPn [g (X, t)] ≤ 0
}

=
{

∃t ∈ ∆́n;OPn (1) <
√
nrn − OPn (1)−

√
nEPn [g (X, t)] ≤ 0

}

,

for anyt ∈ [t, t], under the sequence of local alternatives by Proposition H.1. For t ∈ C, we have
√
nrn −OPn (1)−

√
nEPn [g (X, t)] =

√
nrn −OPn (1)− δ(t) → +∞ (E.44)

asn → +∞, because
√
nrn → +∞ asn → +∞ andδ(t) is finite. Similarly, fort ∈ [t, t] − C,

we have
√
nrn − OPn (1)−

√
nEPn [g (X, t)] =

√
nrn − OPn (1)−

√
nH(t)− δ(t) → +∞ (E.45)

asn → +∞, because
√
nrn → +∞ and−√

nH(t) → +∞ asn → +∞ and δ(t) is finite.
In consequence, the event (E.44) tends to the empty set underthe sequence of local alternatives,
which implies that

lim
n→+∞

Pn

[

∆̂n ( ∆́n

]

= 0,

and concludes the proof.
Part 4. The proof proceeds by the direct method. Givenǫ > 0 andt ∈ ∆̂n, observe that

|EPn [g (X; t)]| =
∣

∣EPn [g (X; t)]−EP̂n
[g (X; t)] + EP̂n

[g (X; t)]
∣

∣

≤
∣

∣EPn [g (X; t)]−EP̂n
[g (X; t)]

∣

∣ +
∣

∣EP̂n
[g (X; t)]

∣

∣

≤
∣

∣EPn [g (X; t)]−EP̂n
[g (X; t)]

∣

∣ + rn

≤ sup
t∈[t,t]

∣

∣EPn [g (X; t)]−EP̂n
[g (X; t)]

∣

∣+ rn

by the triangular inequality and the definition of∆̂n. Hence, to conclude the proof, we need to
establish that

lim
n→+∞

Pn

[

sup
t∈[t,t]

∣

∣EPn [g (X; t)]−EP̂n
[g (X; t)]

∣

∣ ≤ ǫrn

]

= 1, (E.46)

holds under the conditions of the theorem. In fact, the empirical process
√
n
[

EPn [g (X; t)]− EP̂n
[g (X; t)]

]

(E.47)

is tight under the sequence of local alternatives, which implies that

lim
n→+∞

Pn

[

sup
t∈[t,t]

√
n
∣

∣EPn [g (X; t)]−EP̂n
[g (X; t)]

∣

∣ > ǫ
√
nrn

]

= 0, (E.48)

holds. This limit result implies the limit (E.46) since it isthe limit of the probabilities of the
complementary event under the sequence of local alternatives. This concludes the proof.
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E.6 Corollary 5.1

Proof. The proof proceeds by the direct method. Since the test statistics are the same, it suffices
to compare the bootstrap p-values of the tests asB → +∞. They are

Ύ∞ = P ⋆
[

T́ ⋆
n ≥ T̂n

]

and Υ̂∞ = P ⋆
[

T̂ ⋆
n ≥ T̂n

]

, (E.49)

which are conditional onAn. By Theorem 5.2, the bootstrap test statisticsT́ ⋆
n andT̂ ⋆

n converge in
distribution conditional onAn to

∫

∆́n
max {ν(t), 0}2 dt and

∫

∆̂n
max {ν(t), 0}2 dt, respectively,

under the sequence of local alternatives. Furthermore, Theorem 5.2 implies that asymptotically
∫

∆́n

max {ν(t), 0}2 dt ≤
∫

∆̂n

max {ν(t), 0}2 dt (E.50)

holds with probability tending to unity under the sequence of local alternatives. So that

Ύ∞ = P ⋆

[∫

∆́n

max {ν(t), 0}2 ≥ T̂n

]

≤ P ⋆

[∫

∆̂n

max {ν(t), 0}2 ≥ T̂n

]

= Υ̂∞ (E.51)

holds asymptotically, conditional onAn, which implies the following relationship between the

rejection events
{

Υ̂∞ ≤ α
}

⊆
{

Ύ∞ ≤ α
}

holds conditional onAn, with probability tending to

unity under the sequence of local alternatives. In consequence,

lim
n→+∞

Pn

[

Ύ∞ ≤ α
]

≥ lim
n→+∞

Pn

[

Υ̂∞ ≤ α
]

.

Furthermore, Part 4 of Theorem 5.2 implies that the contact set estimatorś∆n and∆̂n converge to
the setC; therefore, we must have the equality

lim
n→+∞

Pn

[

Ύ∞ ≤ α
]

≤ lim
n→+∞

Pn

[

Υ̂∞ ≤ α
]

.

Finally, on the event{∆́n ( ∆̂n}, the inequalities (E.50) and (E.51) hold strictly. As for largen
the probabilityPn[∆́n ( ∆̂n] > 0, these inequalities hold strictly with positive probability, which
implies that

Pn

[({

Ύ∞ ≤ α
}

−
{

Υ̂∞ ≤ α
})

⋂

{

∆́n ( ∆̂n

}]

> 0. (E.52)

E.7 Theorem 5.3

Proof. The proof proceeds by the direct method. Lets ∈ Z+, ǫ > 0, c1 ∈ (0, 1), c2 ∈
(

0, 1

(t−t)
2

)

andc3 ∈ (0,+∞), be given, and suppose thatlimn→∞
Pn ∈ lim

n→+∞
Pn ∈ P00

⋂

Ps
0(c1, c2, c3, ǫ).

Part 1. By Part 2 of Corollary 5.1, the conditionPn

[

∆́n ( ∆̂n

]

> 0 for largen, implies

thatPn

[

Ύ∞ ≤ α
]

> Pn

[

Υ̂∞ ≤ α
]

holds for largen. In conjunction with this implication, the
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conditionPn

[

Υ̂∞ ≤ α
]

ր p∞ ∈ (0, 1) asn → +∞, further impliesPn

[

Ύ∞ ≤ α
]

ր p∞ as
n→ +∞. In consequence,

p∞ > Pn

[

Ύ∞ ≤ α
]

> Pn

[

Υ̂∞ ≤ α
]

for large n. (E.53)

From the convergence ofPn

[

Υ̂∞ ≤ α
]

to p∞ asn→ +∞, by settingγn = p∞ − Pn

[

Ύ∞ ≤ α
]

,

∃Nγn ∈ Z+ such thatp∞ − Pm

[

Υ̂∞ ≤ α
]

< γn ∀m ≥ Nγn . Substituting outγn yields

Pm

[

Υ̂∞ ≤ α
]

> Pn

[

Ύ∞ ≤ α
]

∀m ≥ Nγn . (E.54)

Hence,
{

N ∈ Z+ : Pm

[

Υ̂∞ ≤ α
]

≥ Pn

[

Ύ∞ ≤ α
]

∀m ≥ N
}

6= ∅, (E.55)

asNγn is an element of it. Moreover, the set in (E.55) is bounded from below by the integer 1;
therefore, the infimum

k′n = inf
{

N ∈ Z+ : Pm

[

Υ̂∞ ≤ α
]

≥ Pn

[

Ύ∞ ≤ α
]

∀m ≥ N
}

, (E.56)

exists. Consequently,kn is equal to the smallest integer that is greater thank′n. This ends the proof
for this part of the theorem.

Part 2. By Part 2 of Corollary 5.1, the conditionPn

[

∆́n ( ∆̂n

]

> 0 for largen, implies

thatPn

[

Ύ∞ ≤ α
]

> Pn

[

Υ̂∞ ≤ α
]

holds for largen. In conjunction with this implication, the

conditionPn

[

Ύ∞ ≤ α
]

ց p∞ ∈ (0, 1) asn → +∞, further impliesPn

[

Υ̂∞ ≤ α
]

ց p∞ as
n→ +∞. In consequence,

Pn

[

Ύ∞ ≤ α
]

> Pn

[

Υ̂∞ ≤ α
]

> p∞ for large n. (E.57)

From the convergence ofPn

[

Ύ∞ ≤ α
]

to p∞ asn→ +∞, by setting

γn = Pn

[

Ύ∞ ≤ α
]

− p∞,

∃Nγn ∈ Z+ such thatPm

[

Υ̂∞ ≤ α
]

− p∞ < γn ∀m ≥ Nγn . Substituting outγn yields

Pm

[

Υ̂∞ ≤ α
]

< Pn

[

Ύ∞ ≤ α
]

∀m ≥ Nγn . (E.58)

Hence,
{

N ∈ Z+ : Pm

[

Υ̂∞ ≤ α
]

≥ Pn

[

Ύ∞ ≤ α
]

∀m ≥ N
}

= ∅, (E.59)

which implies thatkn does not exist. This concludes the proof.
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E.8 Corollary 5.2

Proof. Part 1. The proof proceeds by the direct method. GivenΩ ∈ H and{Pn}n≥1 ∈ Ps
1,+(Ω),

under the conditions of the Corollary, whenn is large enough, Part 1 of Theorem 5.3 establishes

the existence ofkn, and therefore,Pkn

[

Υ̂∞ ≤ α
]

exists. The strict inequality,kn > n, holds, since

Pn

[

Υ̂∞ ≤ α
]

< Pn

[

Ύ∞ ≤ α
]

; hence,en = kn/n > 1 anddn = kn − n > 0, whenn is large

enough. In consequence,lim inf
n→+∞

(en) ≥ 1 and lim inf
n→+∞

dn ≥ 0, for each{Pn}n≥1 ∈ Ps
1,+(Ω). As

Ω ∈ H was arbitrary, the above manipulations hold for eachΩ ∈ H, and concludes the proof.
Part 2. The proof proceeds by the direct method. GivenΩ ∈ H and{Pn}n≥1 ∈ Ps

1,+(Ω) such
that lim infn→+∞ ψn > 0. The proof makes use of the following linear function ofm ∈ R+ that
passes through the points(n, Pn[Υ̂∞ ≤ α]) and(kn, Pkn[Υ̂∞ ≤ α]):

Y = bn +





Pkn

[

Υ̂∞ ≤ α
]

− Pn

[

Υ̂∞ ≤ α
]

dn



 m, (E.60)

where atm = n, Y = Pn

[

Υ̂∞ ≤ α
]

, and atm = kn, Y = Pkn

[

Υ̂∞ ≤ α
]

. These two points

define the interceptbn as either

bn = Pn

[

Υ̂∞ ≤ α
]

−





Pkn

[

Υ̂∞ ≤ α
]

− Pn

[

Υ̂∞ ≤ α
]

dn



 n, or (E.61)

bn = Pkn

[

Υ̂∞ ≤ α
]

−





Pkn

[

Υ̂∞ ≤ α
]

− Pn

[

Υ̂∞ ≤ α
]

dn



 kn. (E.62)

Solving fordn in equation (E.61) yields

dn =





Pkn

[

Υ̂∞ ≤ α
]

− Pn

[

Υ̂∞ ≤ α
]

Pn

[

Υ̂∞ ≤ α
]

− bn



 n = ψn n. (E.63)

Noting thaten = 1+dn/n,we have thaten = 1+ψn. In consequence,lim inf
n→+∞

(en) ≥ 1+lim inf
n→+∞

ψn,

which is greater than one by hypothesis. AsΩ ∈ H was arbitrary, the above manipulations hold
for eachΩ ∈ H with local alternatives inPs

1,+(Ω) that satisfylim inf
n→+∞

ψn > 0. This concludes the

proof.
Part 3. The proof follows steps identical to those inPart 2 to deduce thaten = 1 + ψn,

except that now we apply limit supremum toen and use the conditionlim inf
n→+∞

ψn = 0. That is,

lim sup
n→+∞

(en) ≤ 1+ lim sup
n→+∞

ψn = 1. As Part 1 of this corollary establisheslim inf
n→+∞

(en) ≥ 1 for each

{Pn}n≥1 ∈ Ps
1,+(Ω), it follows that

1 = lim sup
n→+∞

en = lim inf
n→+∞

en = lim inf
n→+∞

en = lim
n→+∞

en, (E.64)
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for each{Pn}n≥1 ∈ Ps
1,+(Ω) that satisfieslim inf

n→+∞
ψn = 0. Finally, the above manipulation holds

for anyΩ ∈ H, which concludes the proof.
Part 4. GivenΩ ∈ H, the proof follows steps identical to those inPart 3 to establish that

limn→+∞ en = 1. To establish thatlimn→+∞ dn = +∞, we use the extra condition

lim inf
n→+∞

nψn = +∞

on the sequences{Pn}n≥1 ∈ Ps
1,+(Ω). Noting that we established in the proof ofPart 2, we have

dn = nψn whenn is large enough. So this extra condition implieslim infn→+∞ dn = +∞, which,
in turn, implieslimn→+∞ dn = +∞. In consequence, on such sequences{Pn}n≥1, kn admits
the following expansion:kn = n + ℓqn + o(qn), whenn is large enough, whereqn = o(n),
limn→+∞ qn = +∞ andℓ > 0. The result follows from re-writing the expansion as

dn/qn = ℓ+ o(1). (E.65)

This concludes the proof.

F Intermediate Technical Results for Theorem 3.1

This section presents intermediate technical results thatare used in the proofs of Theorem 3.1.

F.1 Consequences of Definition 3.1

Define the sets

I−n =
{

i ∈ {1, . . . , n} : g (Xi; t) < 0 ∀t ∈ [t, t]
}

, (F.1)

I+n =
{

i ∈ {1, . . . , n} : g (Xi; t) ≥ 0 ∀t ∈ [t, t]
}

and (F.2)

In =
{

(i, K) ∈ {1, . . . , n} × {A,B} : XK
i ∈ [t, t]

}

. (F.3)

The results of this subsection concern the large-sample behavior of the likelihoods of the events
{I−n 6= ∅} , {I+n 6= ∅} and{In 6= ∅} with uniformity over probabilities inP1(c1) andP2(c2). Fur-
thermore, we will show that probabilities inP2(c2) have marginal densities bounded from below
by c2 over the interval[t, t].

We first focus on the event{I−n 6= ∅} .
Lemma F.1. Givenc1 ∈ (0, 1) and recall thatP1(c1) is defined in (3.3). Then

lim
n→+∞

inf
P∈P1(c1)

P
[

I−n 6= ∅
]

= 1.

Proof. The proof proceeds by the direct method. We observe that

inf
P∈P1(c1)

P
[

I−n 6= ∅
]

= 1− sup
P∈P1(c1)

P
[

I−n = ∅
]

. (F.4)

We show that the probability of the complement of{I−n 6= ∅} converges to zero uniformly in
P1(c1). The complement of this event is

{

I−n = ∅
}

=
{

for each i∃t ∈ [t, t]; g (Xi; t) ≥ 0
}

.
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By the bivariate random sampling assumption on{Xi}ni=1 , we have that

sup
P∈P1(c1)

P
[

I−n = ∅
]

= sup
P∈P1(c1)

(

P

[

sup
t∈[t,t]

g (X1; t) ≥ 0

])n

(F.5)

= sup
P∈P1(c1)

(

1− P

[

sup
t∈[t,t]

g (X1; t) < 0

])n

(F.6)

≤ (1− c1)
n → 0 (F.7)

asn→ +∞, sincec1 ∈ (0, 1).

Next, we focus on the event{In 6= ∅} .

Lemma F.2. Givenc2 ∈
(

0, 1
(t−t)2

)

and recall thatP2(c2) is defined in (3.4). Then

lim
n→+∞

inf
P∈P2(c2)

P [In 6= ∅] = 1.

Proof. The proof proceeds by the direct method. We will make use of the joint densityf(xA, xB)
of probabilityP ∈ P2(c2) in the proof. We observe that

inf
P∈P2(c2)

P [In 6= ∅] = 1− sup
P∈P2(c2)

P [In = ∅] . (F.8)

We show that the probability of the complement of{I− 6= ∅} converges to zero uniformly in
P2(c2). The complement of this event is

{In = ∅} =
{

∀(i, K) ∈ {1, . . . , n} × {A,B} : XK
i /∈ [t, t]

}

.

By the bivariate random sampling assumption on{Xi}ni=1 , we have that

sup
P∈P2(c2)

P [In = ∅] = sup
P∈P2(c2)

(

P
[

XA
i , X

B
i /∈ [t, t]

))n
(F.9)

= sup
P∈P2(c2)

(

1− P

[

⋂

K=A,B

{

XK
i ∈ [t, t]

}

])n

(F.10)

= sup
P∈P2(c2)

(

1−
∫

[t,t]×[t,t]

f(xA, xB) dxAdxB
)n

(F.11)

≤
(

1− c2(t− t)2
)n → 0 (F.12)

asn→ +∞, sincec2 ∈
(

0, 1
(t−t)2

)

.

Now we focus on the event{I+n 6= ∅} .

Lemma F.3. Givenc2 ∈
(

0, 1
(t−t)2

)

and recall thatP2(c2) is defined in (3.4). Then

lim
n→+∞

inf
P∈P2(c2)

P
[

I+n 6= ∅
]

= 1.
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Proof. The proof proceeds by the direct method. Given[t, t] ands ∈ Z+, observe that given by
{

sup
t∈[t,t]

g (X; t) < 0

}

=

{

{

XA < t,XB > t
}

, if s = 1,
{

XA < t,XB > t
}

∪
{

XA < t,XA < XB ≤ t
}

, if s ≥ 2.
(F.13)

This representation of the event
{

supt∈[t,t] g (X; t) < 0
}

is useful for proving the result of the
lemma since it implies the following event inclusion

{

Xi ∈ [t, t]× [t, t]
}

⊆
{

I+n 6= ∅
}

. (F.14)

We observe that by Property 1 of the moment functions

P
[

I+n 6= ∅
]

= 1− P
[

I+n = ∅
]

(F.15)

= 1− P
[

I−n 6= ∅
]

(F.16)

= 1−Πn
i=1

(

1− P
[

g (Xi; t) ≥ 0 ∀t ∈ [t, t]
])

(F.17)

≥ 1− Πn
i=1

(

1− P
[

Xi ∈ [t, t]× [t, t
])

(F.18)

≥ 1− Πn
i=1

(

1− c2
(

t− t
)2
)

(F.19)

= 1−
(

1− c2
(

t− t
)2
)n

→ 1 (F.20)

asn → +∞. Since the lower bound1 −
(

1− c2
(

t− t
)2
)n

does not depend onP ∈ P2(c2), the

above manipulation implies that

lim
n→+∞

inf
P∈P2(c2)

P
[

I+n 6= ∅
]

≥ 1, (F.21)

which is the desired result.

The last result concern a lower bound on the marginal densities of probabilities inP2(c2).

Lemma F.4. Givenc2 ∈
(

0, 1
(t−t)2

]

. Then marginal densities corresponding to probabilitiesP ∈
P2(c2) are bounded from below byc2(t− t) on the interval[t, t].

Proof. The proof proceeds by the direct method. Letf(xA, xB) denote a joint density correspond-
ing to someP ∈ P2(c2). Then the marginal distribution forB is defined as

fB(x
B) =

∫ ∞

−∞
f(xA, xB) dxA (F.22)

with a similar definition for the marginal density ofA. Then

min
xB∈[t,t]

fB(x
B) = min

xB∈[t,t]

∫ ∞

−∞
f(xA, xB) dxA (F.23)

≥ min
(xA,xB)∈[t,t]×[t,t]

∫ t

t

f(xA, xB) dxA + min
xB∈[t,t]

∫

R−[t,t]

f(xA, xB) dxA (F.24)

≥ c2(t− t). (F.25)

sinceminxB∈[t,t]
∫

R−[t,t]
f(xA, xB) dxA ≥ 0 andP ∈ P2(c2). An identical argument applies to the

marginal density ofA. We omit it for brevity.
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F.2 Existence and Uniqueness of̃p and ṕ

Recall thatHn = {pi, i = 1, . . . , n;
∑n

i=1 pi = 1, pi ≥ 0, ∀i = 1, . . . , n} , and denote the interior
of this set byH◦

n. Additionally, recall the feasible sets

H0(X) =

{

p ∈ Hn :
n
∑

i=1

pig (Xi; t) ≤ 0 ∀t ∈ [t, t]

}

and (F.26)

H0
n(X) =

{

p ∈ Hn :

n
∑

i=1

pig (Xi; t) ≤ 0 ∀t ∈ Tn

}

. (F.27)

Lemma F.5. 1. On the event{H0(X) ∩ H◦
n 6= ∅} , the random set

argmax

{

n
∑

i=1

log (pi) ; pi ≥ 0,

n
∑

i=1

pi = 1,

n
∑

i=1

pig (Xi; t) ≤ 0 ∀t ∈ [t, t]

}

is nonempty and a singleton.

2. On the event{H0
n(X) ∩ H◦

n 6= ∅} , the random set

argmax

{

n
∑

i=1

log (pi) ; pi ≥ 0,

n
∑

i=1

pi = 1,

n
∑

i=1

pig (Xi; t) ≤ 0 ∀t ∈ Tn

}

is nonempty and a singleton.

Proof. Part 1. The proof proceeds by verifying the conditions of Weierstrass’ Theorem. The
objective function is strictly concave in the probabilities. The constraint set,H0(X), is certainly
bounded. It is the infinite intersection of closed half-planes (which are convex), and since convexity
and closedness are preserved under an arbitrary number of intersections, it is closed and convex.
Thus, we are done wheneverH0(X) ∩H◦

n 6= ∅.
Part 2. The proof follows identical steps as in part 1 of this lemma,except that we replace

H0(X) with H0
n(X) and observe that the latter set is defined by a finite intersection of closed half-

planes (which are convex), and since convexity and closedness are preserved under an arbitrary
number of intersections, it is closed and convex.

The next couple of results indicate that for large enoughn the constraint sets are non-empty
with probability approaching unity, with uniformity. Thisevent is shown to occur by constructing
a strictly positive probability vector that satisfies the inequality constraints.

Lemma F.6. Givenc1 ∈ (0, 1) and recall thatP1(c1) is defined in (3.3). Then

lim
n→+∞

inf
P∈P1(c1)

P
[

H0(X) ∩ H◦
n 6= ∅

]

= 1.

Proof. The proof proceeds by the direct method.
For largen and uniformly inP1(c1), Lemma F.1 implies that the event

∃i ∈ {1, 2, . . . , n} g (Xi, t) < 0 ∀t ∈ [t, t] (F.28)

55



occurs with probability approaching 1. Therefore, withoutloss of generality, suppose that this
event holds only fori = 1. Then it follows that

∀i ∈ {2, 3, . . . , n} : sup
t∈[t,t]

g (Xi, t) ≥ 0. (F.29)

A probability vectorp in H0(X) ∩ H◦
n must satisfypi > 0 ∀i = 1, . . . , n,

∑n
i=1 pi = 1 and

n
∑

i=1

pig (Xi; t) ≤ 0 ∀t ∈ [t, t] ⇐⇒ 1 > p1 ≥
n
∑

i=2

pi

(

g (Xi; t)

−g (X1; t)

)

∀t ∈ [t, t] (F.30)

Therefore, a sufficient condition for the inequalities in (F.30) is

sup
t∈[t,t]

n
∑

i=2

pi

(

g (Xi; t)

−g (X1; t)

)

≤ max
2≤i≤n

(

sup
t∈[t,t]

g (Xi; t)

−g (X1; t)

)

n
∑

i=2

pi (F.31)

≤ max
2≤i≤n

(

supt∈[t,t] g (Xi; t)

inft∈[t,t]−g (X1; t)

) n
∑

i=2

pi < 1. (F.32)

It should be noted thatinft∈[t,t]−g (X1; t) > 0 follows directly from (F.28). On the event

max
2≤i≤n

(

supt∈[t,t] g (Xi; t)

inft∈[t,t]−g (X1; t)

)

∈ [0, 1],

any positive probability vector satisfies the inequalities(F.30). Otherwise, on the event

max
2≤i≤n

(

supt∈[t,t] g (Xi; t)

inft∈[t,t] −g (X1; t)

)

> 1,

the inequality (F.31) is equivalent to
n
∑

i=2

pi <
1

max2≤i≤n

(

supt∈[t,t] g(Xi;t)

inft∈[t,t] −g(X1;t)

) ⇐⇒ 1− 1

max2≤i≤n

(

supt∈[t,t] g(Xi;t)

inft∈[t,t] −g(X1;t)

) < p1. (F.33)

Thus, for anyp1 such that

1−
(

max
2≤i≤n

(

supt∈[t,t] g (Xi; t)

inft∈[t,t]−g (X1; t)

))−1

< p1 < 1,

there is a set of possible choices forp2, p3, . . . , pn such thatpi > 0 ∀i = 1, . . . , n, and
∑n

i=1 pi = 1.
This concludes the proof.

SinceH0(X) ⊆ H0
n(X) holds for eachn, we have the following result.

Corollary F.1. Givenc1 ∈ (0, 1) and recall thatP1(c1) is defined in (3.3). Then

lim
n→+∞

inf
P∈P1(c1)

P
[

H0
n(X) ∩ H◦

n 6= ∅
]

= 1.

Proof. We observe thatP [H0
n(X) ∩ H◦

n 6= ∅] ≥ P [H0(X) ∩H◦
n 6= ∅] holds for alln, which im-

plies that

inf
P∈P1(c1)

P
[

H0
n(X) ∩H◦

n 6= ∅
]

≥ inf
P∈P1(c1)

P
[

H0(X) ∩H◦
n 6= ∅

]

(F.34)

holds for eachn. Finally, taking limits asn → +∞ on both sides of the above inequality and
applying Lemma F.6 to the right side of the above inequality implies the desired result.
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F.3 Convergence of{Tn}n≥1: A Maximal Spacings Approach

Recall that{Tn}n≥1 comprises the order statistics from the set comprises the order statistics from
the sample

{

XA
i , X

B
i

}n

i=1

⋂

(t, t)
⋃

{

t, t
}

, (F.35)

wheret(0) = t and t(N) = t. Let dH
[

Tn, [t, t]
]

denote the Hausdorff distance between the grid
Tn and the interval[t, t]. This section presents a convergence result for this distance that holds
uniformly over sets of probabilities of the form (3.4).

We have the following result

Lemma F.7. For everyǫ > 0 andc2 ∈
(

0, 1
(t−t)2

)

,

lim
n→+∞

sup
P∈P2(c2)

P
[

dH
[

Tn, [t, t]
]

> ǫ
]

= 0, and (F.36)

dH
[

Tn, [t, t]
]

= OP

(

log n

n

)

uniformly in P ∈ P2(c2), (F.37)

whereP2(c2) is defined in (3.4).

Proof. The proof proceeds using the direct method. For large n with probability approaching unity,
Lemma F.2 implies that the gridTn =

{

t(j)
}N

j=0
will contain at least one element from the bivariate

random sample. Observe that

dH
[

Tn, [t, t]
]

≤ max
j=1,...,N

(

t(j+1) − t(j)
)

≤ max
K=A,B

max
j=0,...,NK

(

XK
(j+1) −XK

(j)

)

(F.38)

≤
∑

K=A,B

max
j=0,...,NK

(

XK
(j+1) −XK

(j)

)

, (F.39)

whereXK
(0) = t, XK

(NK+1) = t and
{

XK
(j)

}NK

j=1
are the elements of

{

t(j)
}N

j=0
that belong to popula-

tionK for K = A,B.
Next, express the spacingsXK

(j+1) − XK
(j) in terms of spacings from Uniform(0, 1) random

variables using the CDFFK(·). Noting thatUK
(j) = FK

(

XK
(j)

)

for j = 0, . . . , NK , the spacings

can be expressed as

XK
(j+1) −XK

(j) =
F−1
K

(

UK
(j+1)

)

− F−1
K

(

UK
(j)

)

UK
(j+1) − U(j)

(

UK
(j+1) − U(j)

)

(F.40)

=
UK
(j+1) − UK

(j)

fK

(

F−1
K

(

aUK
(j+1) + (1− a)UK

(j)

)) (F.41)

wherea ∈ [0, 1] and the second equality follows from an application of the Mean Value Theorem to
the marginal quantile functionF−1

K (·), andfK(·) is the marginal PDF. ForP ∈ P2(c2) Lemma F.4
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shows that the marginal densities on the interval[t, t] are bounded from below byc2(t−t). Because
{

XK
(j)

}NK

j=1
are the elements of

{

t(j)
}N

j=0
, they can only take values in the interval[t, t]. Hence,

UK
(j+1) − UK

(j)

fK

(

F−1
K

(

aUK
(j+1) + (1− a)UK

(j)

)) ≤
UK
(j+1) − UK

(j)

c2(t− t)
(F.42)

So that the spacingXK
(j+1) −XK

(j) is bounded from above by
UK
(j+1)

−UK
(j)

c2(t−t)
.

In consequence,

max
j=0,...,NK

(

XK
(j+1) −XK

(j)

)

≤
(

c2(t− t)
)−1

max
j=0,...,NK

(

UK
(j+1) − UK

(j)

)

K = A,B, (F.43)

≤
(

c2(t− t)
)−1

max
i=1,...,n

(

UK
(i+1) − UK

(i)

)

K = A,B. (F.44)

whereUK
(i) = FK

(

XK
(i)

)

for i = 1, . . . , n. That is, the maximal spacings

max
j=0,...,NK

(

XK
(j+1) −XK

(j)

)

K = A,B,

are bounded above by a constant times the maximal spacing of arandom sample from Uniform(0, 1).
Combining these results yields

dH
[

Tn, [t, t]
]

≤
(

c2(t− t)
)−1

∑

K=A,B

max
i=1,...,n

(

UK
(i+1) − UK

(i)

)

, (F.45)

where the right side of this inequality depends on the the underlying probabilityP ∈ P2(c2)
only through the dependence structure between the marginaldistributions. Now we can apply the
Theorem from Devroye (1982) on maximal uniform spacings to deduce that

P

[

max
i=1,...,n

(

UK
(i+1) − UK

(i)

)

≤ log n− log log log n− log 2

n
infinitely often

]

= 1 (F.46)

for eachK = A,B. This result and the manipulation above imply that

sup
P∈P2(c2)

P
[

dH
[

Tn, [t, t]
]

> ǫ
]

≤ sup
P∈P2(c2)

P





∑

K=A,B

maxi=1,...,n

(

UK
(i+1) − UK

(i)

)

c2(t− t)
> ǫ



 (F.47)

≤ ǫ−1
∑

K=A,B

E





maxi=1,...,n

(

UK
(i+1) − UK

(i)

)

c2(t− t)



 (F.48)

≤ 2

c2(t− t)ǫ

(

logn− log log logn− log 2

n

)

, (F.49)

where we used Markov’s inequality to obtain (F.48) with expectation taken with respect to the
joint distribution of a random sample of sizen from Uniform(0, 1), which does not depend on
K = A,B. Finally, taking limits on both sides of (F.49) asn → +∞ yields the desired result.
Furthermore, (F.45) and (F.46) imply

dH
[

Tn, [t, t]
]

= OP

(

log n

n

)

uniformly in P ∈ P2(c2).
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F.4 Upper Bound On Lower Level Problem: s > 1

Recall that́p is the solution of discretized constrained empirical likelihood problem. Fors > 1,

and for eachc1 ∈ (0, 1) andc2 ∈
(

0, 1
(t−t)2

)

, this section presents an upper bound for the value

max
t∈[t,t]

n
∑

i=1

ṕig (Xi; t) (F.50)

that holds with probability approaching unity uniformly over probabilitiesP ∈ P1(c1)
⋂P2(c2).

The bound is given by

qn =

(

4q′n
c2(t− t) [(s− 1)!]

)(

log n

n

)

, where (F.51)

q′n = max

{

s−1
∑

ℓ=1

(

s− 1

ℓ

)

[

n
∑

i=1

ṕi
(

t−XA
i

)s−1−ℓ
1
[

XA
i ≤ t

]

]

, 1

}

. (F.52)

The result is the following.

Lemma F.8. Let s > 1, and for eachc1 ∈ (0, 1) andc2 ∈
(

0, 1
(t−t)2

)

lim
n→+∞

inf
P∈P1(c1)

⋂
P2(c2)

P

[

max
t∈[t,t]

n
∑

i=1

ṕig (Xi; t) ≤ qn

]

= 1. (F.53)

Proof. The proof proceeds by the direct method. We will first show

lim
n→+∞

inf
P∈P1(c1)

⋂
P2(c2)

P

[

max
t∈[t,t]

n
∑

i=1

ṕig (Xi; t) ≤
2q′nmaxj=0,...,N

(

t(j+1) − t(j)
)

(s− 1)!

]

= 1, (F.54)

whereq′n is defined in (F.52). Then, using steps identical to those in the proof of Lemma F.7, we
can (i) bound the maximal spacingmax

j=0,...,N

(

t(j+1) − t(j)
)

from above by

∑

K=A,B max
i=1,...,n

(

UK
(i+1) − UK

(i)

)

c2(t− t)
,

whereUK
(j) = FK

(

XK
(j)

)

∀j andK = A,B, and (ii) apply the Theorem in Devroye (1982) to this

bound to obtain the desired result.
On the event{H0

n(X) ∩H◦
n 6= ∅} , Part 1 of Lemma F.5 shows that the extremumṕ exists and
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is unique. Givent ∈ [t, t]− Tn, ∃j such thatt(j) < t < t(j+1). Then, for such at

g (Xi; t) ≤
(

t(j+1) −XB
i

)s−1
1
[

XB
i ≤ t(j+1)

]

(s− 1)!
−
(

t(j) −XA
i

)s−1
1
[

XA
i ≤ t(j)

]

(s− 1)!
(F.55)

= g
(

Xi; t(j+1)

)

+

(

t(j+1) −XA
i

)s−1
1
[

XB
i ≤ t(j+1)

]

(s− 1)!

−
(

t(j) −XA
i

)s−1
1
[

XA
i ≤ t(j)

]

(s− 1)!
(F.56)

≤
s−1
∑

ℓ=1

(

s− 1

ℓ

)

(

t−XA
i

)s−1−ℓ
1
[

XA
i ≤ t

] (

t(j+1) − t(j)
)

+ 1
[

t(j) < XA
i ≤ t(j+1)

] (

t(j+1) − t(j)
)

+ g
(

Xi; t(j+1)

)

. (F.57)

where we made use of the Binomial Theorem to expand
(

t(j+1) −XA
i

)s−1
and

(

t(j) −XA
i

)s−1

in (F.56), and that
(

t(j+1) − t(j)
)s−1 ≤

(

t(j+1) − t(j)
)

holds withn large, and with uniformity, be-
cause the maximal spacings tend to zero in probability. Therefore, multiplying byṕi and summing
overi, we obtain the following bound on

∑n
i=1 ṕig (Xi; t) that holds∀t ∈ [t, t]− Tn :

n
∑

i=1

ṕig (Xi; t) ≤
n
∑

i=1

ṕig
(

Xi; t(j+1)

)

+
t(j+1) − t(j)
(s− 1)!

n
∑

i=1

ṕi1
[

t(j) < XA
i ≤ t(j+1)

]

+
t(j+1) − t(j)
(s− 1)!

{

s−1
∑

ℓ=1

(

s− 1

ℓ

) n
∑

i=1

ṕi
(

t−XA
i

)s−1−ℓ
1
[

XA
i ≤ t

]

}

(F.58)

≤ 2q′n
(s− 1)!

max
j=0,...,N

(

t(j+1) − t(j)
)

, (F.59)

because max
j=0,...,N

n
∑

i=1

ṕig
(

Xi; t(j)
)

≤ 0 and
∑n

i=1 ṕi1
[

t(j) < XA
i ≤ t(j+1)

]

≤ 1. So what we have

shown is the event inclusion

{

H0
n(X) ∩ H◦

n 6= ∅
}

⊆
{

2q′n
(s− 1)!

max
j=0,...,N

(

t(j+1) − t(j)
)

}

, (F.60)

and Corollary F.1 implies the limit (F.54), because

1 = lim
n→+∞

inf
P∈P1(c1)

P
[

H0
n(X) ∩ H◦

n 6= ∅
]

≤ lim
n→+∞

inf
P∈P1(c1)

⋂
P2(c2)

P
[

H0
n(X) ∩ H◦

n 6= ∅
]

.

Now by using steps identical to those in the proof of Lemma F.7we have

max
j=0,...,N

(

t(j+1) − t(j)
)

≤
(

c2(t− t)
)−1

∑

K=A,B

max
i=1,...,n

(

UK
(i+1) − UK

(i)

)

. (F.61)
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And an application of the Theorem of Devroye (1982) to the maximal uniform spacings

max
i=1,...,n

(

UK
(i+1) − UK

(i)

)

K = A,B,

yields

P

[

∑

K=A,B

max
i=1,...,n

(

UK
(i+1) − UK

(i)

)

≤ 2
logn− log log log n− log 2

n
i.o.

]

= 1.

Combining this result with the inequality (F.61) and the event inclusion (F.60) yields the set inclu-
sion

{

H0
n(X) ∩ H◦

n 6= ∅
}

⊆
{

max
t∈[t,t]

n
∑

i=1

ṕig (Xi; t) ≤ qn

}

, (F.62)

whereqn is given by (F.51). Finally, an application of Corollary F.1yields the desired result.

F.5 Construction of p̆: s > 1

This subsection presents a result that establishes the feasibility of a particular construction of a
probability vector̆p ∈ H0(X) from ṕ. As the vectoŕp is not necessarily a member ofH0(X), the
construction is such that̆p is nearby tóp and will be essential in proving Part 2 Theorem 3.1 using
Lemma F.10. The construction uses an approach similar to that of Lemma 3 in Still (2001), but is
different since we make use of Property 1 of the moment functions.

Following Still (2001), consider the constructionp̆ = ṕ+ ρqnd, whered ∈ Rn andρ > 0, and
qn is defined in (F.51) in the previous subsection. Naturally, we need to impose restrictions on the
vectord andρ that enures̆p ∈ H0(X)∩H◦

n. Let δ andδ satisfy0 < δ < ṕ(1) and0 < δ < 1− ṕ(n),
whereṕ(1) = min

i=1,...,n
ṕi andṕ(n) = max

i=1,...,n
ṕi. Consider the following set of vectors:

Dn

(

δ, δ
)

=

{

d ∈ Rn :

n
∑

i=1

di = 0, ǫn(d) > 0, δ ≤ p̆i ≤ δ ∀i
}

. (F.63)

whereǫn(d) = − sup
t∈[t,t]

n
∑

i=1

dig (Xi; t) .

The following result has two parts. The first part shows that it is feasible to construct a vector
p̆ ∈ H0(X) ∩ H◦

n for any choice ofδ and δ that satisfies the conditions0 < δ < ṕ(1) and
0 < δ < 1 − ṕ(n). The second part shows that with additional conditions onδ and δ, we can
construct̆p ∈ H0(X) ∩ H◦

n which is close to the vectoŕp in a particular way so that we can use it
Steps 2 and 4 of the proof for Part 2 of Theorem 3.1.

Lemma F.9. Suppose that the event{I−n 6= ∅} occurs, whereI−n is given by (F.1). Furthermore,
let δ andδ satisfy0 < δ < ṕ(1) and0 < δ < 1 − ṕ(n). Also let the setDn

(

δ, δ
)

be defined as
in (F.63). Then the following statements hold.

1. For eachd ∈ Dn

(

δ, δ
)

andρ > 1
ǫn(d)

, p̆ = ṕ+ ρqnd ∈ H0(X) ∩ H◦
n.
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2. Suppose thatd ∈ Dn

(

δ, δ
)

. If ρ > 1
ǫn(d)

, δ > ṕ(1) + ṕ(n) + δ − 1 andδ = ṕ(1)/2, then

ρqn |di| ≤
ṕ(1) − δ

n2
∀i =⇒ ‖ρqnd‖ ≤ ṕ(1)

2n3/2
. (F.64)

Proof. The proof proceeds by the direct method.
Part 1. Firstly note that from the proofs of Lemmas F.5 and F.6 we have the following event

inclusions:
{

I−n 6= ∅
}

⊆
{

H0(X) ∩ H◦
n 6= ∅

}

⊆ {ṕ exists and is unique} . (F.65)

Suppose thatd ∈ Dn. The condition
∑n

i=1 di = 0 implies that
∑n

i=1 p̆i = 1. Now we will show
that any value ofρ > 1

ǫn(d)
yields

∑n
i=1 p̆ig (Xi; t) < 0 ∀t ∈ [t, t]. Using Property 1 of the

moment functions thedi can be chosen so that they obey the following sign restrictions:

sign(di) =

{

< 0, if g (Xi, t) ≥ 0 ∀t ∈ [t, t]

> 0, if g (Xi, t) < 0 ∀t ∈ [t, t].
(F.66)

These sign restrictions ond yield

n
∑

i=1

dig (Xi; t) < 0 ∀t ∈ [t, t]. (F.67)

Now sinces > 1 implies that the moment functions are continuous in the index variablet, the
compactness of the interval[t, t] and the sign restrictions imply thatǫn(d) = − sup

t∈[t,t]
g (Xi; t) > 0.

In consequence,∀t ∈ [t, t]

n
∑

i=1

p̆ig (Xi; t) =

n
∑

i=1

ṕig (Xi; t) + ρqn

n
∑

i=1

dig (Xi; t) (F.68)

≤ qn − ρǫn(d)qn, (F.69)

wheresupt∈[t,t]
∑n

i=1 ṕig (Xi; t) ≤ qn follows from Lemma F.8. Thus,

qn − ρǫn(d)qn ≤ 0 ⇐⇒ ρ ≥ 1

ǫn(d)
. (F.70)

Furthermore, observe that

p̆i ≥ δ ∀i ⇐⇒ di ≥
δ − ṕi
ρqn

∀i and
δ − ṕi
ρqn

< 0 ∀i ⇐⇒ δ < ṕ(1). (F.71)

p̆i ≤ δ ∀i ⇐⇒ di ≤
1− δ − ṕi

ρqn
∀i and

1− δ − ṕi
ρqn

> 0 ∀i ⇐⇒ δ < 1− ṕ(n). (F.72)

Hence, the conditions above withδ, δ > 0 yields p̆ = ṕ + ρqnd ∈ H0(X) ∩ H◦
n. Sinced ∈

Dn

(

δ, δ
)

was arbitrary, the result holds for alld ∈ Dn

(

δ, δ
)

, which concludes this part of the
proof.
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Part 2. The proof proceeds by the direct method. Consider a vectord ∈ Dn

(

δ, δ
)

for which

ρ > 1
ǫn(d)

, δ > ṕ(1) + ṕ(n) + δ − 1 andδ = ṕ(1)/2. If the vector also satisfiesρqn |di| ≤ ṕ(1)−δ

n2 ∀i,
then

ρqn |di| ≤
ṕ(1) − δ

n2
=
ṕ(1)
2n2

∀i. (F.73)

So by squaring both sides (F.73), then summing overi, and applying the square-root yields to both
sides the desired result. This concludes the proof.

The result of Lemma F.9 establishes that one can indeed construct a probability vector̆p defined
above whenever{I−n 6= ∅} occurs. This arises from the event inclusions in (F.65). In consequence,
the probability of constructinğp is determined by the probability of the event{I−n 6= ∅} . The next
result establishes that the probability of being able to constructp̆ as in Lemma F.9 tends to unity ,
with uniformity.

Corollary F.2. Let s > 1, and letVn denote the event:∀d ∈ Dn

(

δ, δ
)

any value ofρ > 1
ǫn(d)

yields p̆ = ṕ + ρqnd ∈ H0(X), where0 < δ < ṕ(1) and0 < δ < 1 − ṕ(n). Then, for each

c1 ∈ (0, 1) andc2 ∈
(

0, 1
(t−t)2

)

lim
n→+∞

inf
P∈P1(c1)

⋂
P2(c2)

P [Vn] = 1. (F.74)

Proof. Using the event inclusions in (F.65), Lemmas F.1 and F.6 and Corollary F.1

1 = lim
n→+∞

inf
P∈P1(c1)

P
[

I−n 6= ∅
]

≤ lim
n→+∞

inf
P∈P1(c1)

⋂
P2(c2)

P
[

I−n 6= ∅
]

≤ lim
n→+∞

inf
P∈P1(c1)

⋂P2(c2)
P
[

H0
n(X) ∩H◦

n 6= ∅
]

≤ lim
n→+∞

inf
P∈P1(c1)

⋂
P2(c2)

P [ṕ exists and is unique]

≤ lim
n→+∞

inf
P∈P1(c1)

⋂P2(c2)
P [Vn] ,

which concludes the proof.

F.6 Quadratic Growth Condition of Objective Function At p̃ : s > 1

This subsection presents a quadratic growth condition on the objective function arising in the SIP
problem for the cases > 1. The proof of the result in this subsection uses the Karush-Kuhn-
Tucker conditions for the minimization formulation of the SIP problem. It should be noted that
the objective function in the SIP problem can be reformulated so as to write it as a minimization
problem. In this reformulation, the objective function is given by−∑n

i=1 log (pi) .
As the moment functions in this case are continuous in the index variable for each probability

vector, we embed the constraints into the functional spaceC
(

[t, t]
)

, whereC
(

[t, t]
)

denotes the
space of continuous functionsγ : [t, t] → R with sup-norm. The spaceC

(

[t, t]
)

is a Banach space
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and its dual is the space of finite signed measures on
(

[t, t],B
)

, whereB is the Borel sigma algebra
of [t, t], with scalar product ofµ ∈ C

(

[t, t]
)∗

andγ ∈ C
(

[t, t]
)

given by the integral
∫

[t,t]

γ(t) dµ(t). (F.75)

thus, the SIP problem has the following Lagrangian function:

L = −
n
∑

i=1

log (pi) + λ

(

1−
n
∑

i=1

pi

)

− n

∫

[t,t]

n
∑

i=1

pig (Xi; t) dµ(t), (F.76)

whereλ ∈ R is the multiplier on the equality constraint.
The Karush-Kuhn-Tucker conditions are

− 1

pi
= λ+ n

∫

[t,t]

g (Xi; t) dµ(t) i = 1, 2, . . . , n (F.77)

n
∑

i=1

pig (Xi; t) ≤ 0 ∀t ∈ [t, t],
n
∑

i=1

pi = 1 (F.78)

supp(µ) ⊆ ∆(p̃) , (F.79)

where∆(p̃) =
{

t ∈ [t, t] :
∑n

i=1 p̃ig (Xi; t) = 0
}

and the vector of probabilities̃p denotes the
solution of the SIP problem. As the equality constraint on the probability vector is linear in
that vector, this fact in conjunction with Lemma F.6 impliesthat theStrong Slater Condition
of Mordukhovich and Nghia (2013) holds with probability tending unity, with uniformity over
sets of probabilities of the formP1(c1). In consequence, there exists a (positive) Borel measure
µ ∈ C

(

[t, t]
)∗

that solve the Karush-Kuhn-Tucker conditions (F.77) - (F.79) along withp̃.
We have the following result.

Lemma F.10. For eachc1 ∈ (0, 1) recall thatP1(c1) is defined in (3.3). LetAn denote the event
that there exists a neighborhood ofp̃, U, and a constantK0 > 0 such that

h (p)− h (p̃) ≥ K0 ‖p− p̃‖2 ∀p ∈ U ∩ H0(X), (F.80)

where‖ · ‖ is the Euclidean norm andh (p) = −∑n
i=1 log (pi) . Then

lim
n→+∞

inf
P∈P1(c1)

P [An] = 1. (F.81)

Proof. The proof proceeds by the direct method. Givenc1 ∈ (0, 1),we observe that by Lemma F.6
and Part 1 of Lemma F.5, the extremum̃p exists and is unique with probability tending to unity,
uniformly over probabilities inP1(c1). Thus, we can apply a second-order Taylor expansion to
h (p) in a neighborhood of̃p. That is,

h (p)− h (p̃) = dT∇h (p̃) + 1

2
dT∇2h (ṗ)d, (F.82)

where∇h(·) and∇2h(·) are the gradient and Hessian of a functionh, ṗ = ap̃ + (1 − a)p with
a ∈ [0, 1], anddT = p− p̃.

64



Now we will show thatdT∇h (p̃) ≥ 0 using the Karush-Kuhn-Tucker conditions (F.77) - (F.79).
Observe that

dT∇h (p̃) =
n
∑

i=1

p− p̃i
p̃i

= −
n
∑

i=1

p̃i − pi
p̃i

= −n
∫

∆(p̃)

n
∑

i=1

pig (Xi; t) dµ(t). (F.83)

For p ∈ H0(X), we must have−n
∫

∆(p̃)

∑n
i=1 pig (Xi; t) dµ(t) ≥ 0 because the Lagrange mul-

tiplier measure is non-negative. Hence,∀p ∈ H0(X) that is in a neighborhood of̃p, it follows
that

h (p)− h (p̃) ≥ 1

2
dT∇2h (ṗ)d. (F.84)

Now we will construct the neighborhoodU and the constantK0. Let ǫ > 0; we will show that
one can consider the neighborhood

U = {p :∈ Rn : ‖p− p̃‖ ≤ ǫ} . (F.85)

Observe thaṫp ∈ U since‖ṗ− p̃‖2 = (1 − a)2 ‖p̃− p‖ ≤ ǫ2. Furthermore, note that for each
i = 1, . . . , n

ṗ2i = (ṗi − p̃i + p̃i)
2 = (ṗi − p̃i)

2 + p̃2i + 2p̃i (ṗi − p̃i) (F.86)

≤ ǫ2 + p̃i + 2(1− a)p̃i (pi − p̃i) (F.87)

≤ ǫ2 + 5. (F.88)

In consequence,

1

2
dT∇2h (ṗ)d =

1

2

n
∑

i=1

d2i
ṗ2i

≥ 1

2

∑n
i=1 d

2
i

ǫ2 + 5
=

‖p− p̃‖2
2ǫ2 + 10

. (F.89)

Therefore, for anyǫ > 0, we have that

h (p)− h (p̃) ≥ ‖p− p̃‖2
2ǫ2 + 10

∀p ∈ U ∩ H0(X), (F.90)

which means that we can selectK0 = 1/(2ǫ2 + 10). For this reason, we have the event inclusion

{

H0(X) ∩ H◦
n 6= ∅

}

⊆ An, (F.91)

which implies that

1 = lim
n→+∞

inf
P∈P1(c1)

P
[

H0(X) ∩H◦
n 6= ∅

]

≤ lim
n→+∞

inf
P∈P1(c1)

P [An] .

This concludes the proof.
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G Intermediate Technical Results for Theorems 4.1 and 4.2

This section presents intermediate technical results thatare used in the proofs of Theorems 4.1
and 4.2. Subsection G.1 presents a technical result that is aconsequence of Definition 4.1. Sec-
tion G.2 uses the results of the previous sections to developthe large-sample properties of the La-
grange multipliers underH0, under collections of probabilities satisfying Definition 4.1. Finally,
Section G.3 establishes the uniform consistency of the proposed empirical likelihood estimator of
the moments from the discretized problem, underH0.

Remark G.1. For eachs ∈ Z+, the moment functions
{

x 7→ g (x; t) , t ∈ [t, t]
}

is suitably mea-
surable and Vapnik-Chervonenkis with envelope function

smax
{

|t|, |t|
}s−1 (|XB|s−1 + |XA|s−1

)

. (G.1)

In consequence, Condition (iv) in Assumption 2.1 implies that this set of moment functions are
Glivenko-Cantelli and Donsker, both uniformly inP ∈ P. These properties of the set of mo-
ment functions are established by invoking Theorems 2.8.1 and 2.8.2 in van der Vaart and Wellner
(1996), and they drive the uniform asymptotic results in thepresent work.

G.1 A Technical Lemma for Part 4 of Theorem 4.1

Lemma G.1. Let ∆
(

Ṕn

)

=
{

t ∈ Tn : EṔn
[g (X; t)] = 0

}

. For eachs ∈ Z+, c1 ∈ (0, 1), c2 ∈
(

0, 1
(t−t)2

)

andc3 ∈ (0,+∞),

lim
n→+∞

sup
P∈Ps

0 (c1,c2,c3)
⋂

P000

P
[

Ṕn = P̂n

]

≤ 1

2
and (G.2)

lim
n→+∞

inf
P∈Ps

0 (c1,c2,c3)
⋂

P000

P
[

∆
(

Ṕn

)

6= ∅
]

≥ 1

2
, (G.3)

wherePs
0(c1, c2, c3) is defined in Definition 4.1 and

P000 = {P ∈ P0 : ∆(P ) 6= ∅} .

Proof. The proof proceeds by the direct method. First we prove (G.2). Let s = 1 andΦ(·) denote
the CDF of the standard normal distribution. Then for eachn

P
[

Ṕn = P̂n

]

= P
[

EP̂n
[g (X; t)] ≤ 0 ∀t ∈ Tn

]

(G.4)

= P
[

EP̂n
[g (X; t)] ≤ 0 ∀t ∈ [t, t]

]

(G.5)

≤ P
[

EP̂n
[g (X; t)] ≤ 0 ∀t ∈ ∆(P )

]

(G.6)

≤ P
[

EP̂n
[g (X; t′)] ≤ 0 t′ ∈ ∆(P )

]

(G.7)

= P
[√
nEP̂n

[g (X; t′)] /EP

[

g2 (X; t′)
]

≤ 0 t′ ∈ ∆(P )
]

(G.8)

≤
∣

∣

∣

∣

∣

P

[

√
n
EP̂n

[g (X; t′)]
√

EP [g2 (X; t′)]
≤ 0; t′ ∈ ∆(P )

]

− Φ(0)

∣

∣

∣

∣

∣

+ Φ(0). (G.9)
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We can apply the Berry-Esseen Theorem to the random variable{g (Xi; t
′)}ni=1 becauset′ ∈ ∆(P )

and the moment functions (withs = 1) are uniformly bounded i.e. their range is a subset of the
interval[−2, 2]. That is,

∣

∣

∣

∣

∣

P

[√
nEP̂n

[g (X; t′)]
√

EP [g2 (X; t′)]
≤ 0

]

− Φ(0)

∣

∣

∣

∣

∣

≤ sup
u∈R

∣

∣

∣

∣

∣

P

[√
nEP̂n

[g (X; t′)]
√

EP [g2 (X; t′)]
≤ u

]

− Φ(u)

∣

∣

∣

∣

∣

(G.10)

≤ C0EP |g (X; t′)|3
√
n (EP [g2 (X; t′)])3/2

(G.11)

≤ C02
3

√
nc

3/2
3

, (G.12)

whereC0 is an absolute constant. Hence,

lim
n→+∞

sup
P∈Ps

0(c1,c2,c3)
⋂P000

P
[

Ṕn = P̂n

]

≤ lim
n→+∞

C02
3

√
nc

3/2
3

+ Φ(0) = Φ(0) =
1

2
. (G.13)

For the cases > 1,we follow steps identical to those above fors = 1, except that by Lemma F.7,
the steps hold for largen asTn converges with uniformity (overP2(c2)) to [t, t] at the ratelog n/n,
which is faster than the

√
n-rate. Furthermore, the random variables{g (Xi; t)}ni=1 for t ∈ ∆(P )

are no longer uniformly bounded and have a third moment whenδ ≥ s − 1 in Condition (iv) of
Assumption 2.1. However, if imposingδ ≥ s − 1 on the parameter spaceP is undesirable, then
we can use a generalized Berry-Esseen Theorem due to Feller (1968). Theorem 1 of Feller (1968)
does not require the existence of third moments for the random variables{g (Xi; t)}ni=1 . Using the
envelope function (G.1), we set the following primitives inthe notation of his paper

τ ′k = n1/e,−τk = −n1/e ∀k = 1, . . . , n, where e > 6(s− 1), (G.14)

c = n sup
P∈Ps

0 (c1,c2,c3)
⋂

P000

EP

[

∑

K=A,B

|XK|3(s−1)1
[

−n1/e < XK < n1/e
]

]

(G.15)

b′ = n sup
P∈Ps

0 (c1,c2,c3)
⋂P000

EP

[

∑

K=A,B

|XK|2(s−1)1
[

|XK | > n1/e
]

]

(G.16)

to deduce that

sup
u∈R

∣

∣

∣

∣

∣

P

[√
nEP̂n

[g (X; t′)]
√

EP [g2 (X; t′)]
≤ u

]

− Φ(u)

∣

∣

∣

∣

∣

≤ 6

(

c

n3/2c
3/2
3

+
b′

nc3

)

. (G.17)

Hence,

c

n3/2c
3/2
3

=

sup
P∈Ps

0 (c1,c2,c3)
⋂

P000

EP

[

∑

K=A,B

|XK|3(s−1)1
[

−n1/e < XK < n1/e
]

]

√
nc

3/2
3

(G.18)

≤ 2n3(s−1)/e

√
nc

3/2
3

(G.19)

≤ 2c
−3/2
3 n

3(s−1)
e

− 1
2 → 0 as n→ +∞, (G.20)
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and

b′

nc3
=

sup
P∈Ps

0 (c1,c2,c3)
⋂

P000

EP

[

∑

K=A,B

|XK |2(s−1)1
[

|XK | > n1/e
]

]

c3
(G.21)

≤
∑

K=A,B

sup
P∈P

EP

[

|XK |2(s−1)1
[

|XK | > n1/e
]]

c3
→ 0 as n→ +∞, (G.22)

sincesupP∈P EP

[

|XK |2(s−1)
]

< +∞ for K = A,B by Condition (iv) of Assumption 2.1. This
proves the limit (G.2).

Now we prove the limit (G.3). Because of the event inclusion
{

∆
(

Ṕn

)

= ∅
}

⊆
{

Ṕn = P̂n

}

,

it follows that

lim
n→+∞

sup
P∈Ps

0 (c1,c2,c3)
⋂

P000

P
[

∆
(

Ṕn

)

= ∅
]

≤ lim
n→+∞

sup
P∈Ps

0 (c1,c2,c3)
⋂

P000

P
[

Ṕn = P̂n

]

≤ 1

2
,

which implies

lim
n→+∞

inf
P∈Ps

0 (c1,c2,c3)
⋂

P000

P
[

∆
(

Ṕn

)

6= ∅
]

≥ 1

2
.

G.2 Properties of Lagrange Multipliers underH0

This subsection presents the properties of the Lagrange multipliers underH0 arising in the dis-
cretized constrained empirical likelihood problem introduced in Section 3. This optimization prob-
lem has the following Lagrangian function:

L =
n
∑

i=1

log (pi) + λ

(

1−
n
∑

i=1

pi

)

− n
∑

t∈TN

µt

n
∑

i=1

pig (Xi; t) , (G.23)

whereλ ∈ R is the multiplier on the equality constraint
∑n

i=1 pi = 1, andµt ≥ 0 for t ∈ Tn are
the multipliers on the inequality constraints. The Karush-Kuhn-Tucker (KKT) conditions are

1

pi
= λ+ n

∑

t∈Tn

µtg (Xi; t) i = 1, 2, . . . , n (G.24)

n
∑

i=1

pig (Xi; t) ≤ 0 ∀t ∈ Tn,
n
∑

i=1

pi = 1 (G.25)

µt

n
∑

i=1

pig (Xi; t) = 0 ∀t ∈ Tn. (G.26)

68



In classical optimization theory, the existence ofλ́ andµ́t for t ∈ Tn that solve KKT conditions
along withṕ results from a constraint qualification. This paper uses theMangasarian-Fromovitz
constraint qualification. In the setting of this paper, the Mangasarian-Fromovitz constraint qualifi-
cation is the following event

Sn =

{

∃d ∈ Rn :

n
∑

i=1

di = 0 and
n
∑

i=1

dig (Xi; t) < 0 ∀t ∈ ∆
(

Ṕn

)

}

where (G.27)

∆
(

Ṕn

)

=

{

t ∈ Tn :
n
∑

i=1

ṕig (Xi; t) = 0

}

. (G.28)

The following result establishes the existence of the Lagrange multipliers with probability ap-
proaching unity, with uniformity over the set of probabilities of the formP1(c1).

Lemma G.2 (Existence). Givenc1 ∈ (0, 1), suppose thatP0 ∈ P0(c1, c2). Then

sup
P∈P1(c1)

P [Sn] → 1 as n→ +∞. (G.29)

Proof. The proof proceeds by using the direct method. Givenc1 ∈ (0, 1), for large enoughn and
uniformly inP1(c1) Corollary F.1 and Part 2 of F.6 imply thatṕ exists and is unique. To prove the
desired result, we will show the probability of the eventSn converges to one, uniformly inP1(c1).

Noting that the moment functions satisfy Property 1, consider the following construction for the
d ∈ Rn :

∑n
i=1 di = 0, and the sign restrictions

sign(di) =

{

< 0, if g (Xi, t) ≥ 0 ∀t ∈ Tn

> 0, if g (Xi, t) < 0 ∀t ∈ Tn,
(G.30)

Lemma F.1 implies the occurrence of the event{∃i : g (Xi, t) < 0 ∀t ∈ Tn} with probability ap-
proaching one, uniformly inP1(c1). Therefore, the above construction is asymptotically feasible.
Such vectorsd trivially satisfy the conditions of the Mangasarian-Fromovitz constraint qualifica-
tion. This concludes the proof since the above implies that the probability of the eventSn converges
to one uniformly inP1(c1).

In fact, using the KKT conditions, one can easily show thatλ́ = n,

ṕi =
1

n

(

1

1 +
∑

t∈∆(Ṕn)
µ́tg (Xi; t)

)

i = 1, 2, . . . , n, (G.31)

where
{

µ́t = 0, ∀t ∈ TN(n) −∆(Ṕn)
}

and
{

µ́t ≥ 0, ∀t ∈ ∆(Ṕn)
}

. The Mangasarian-Fromovitz

constraint qualification implies that there exists a compact set of multipliers on the binding con-
straints that satisfy the KKT conditions. We denote this setof multipliers by

Λn

(

Ṕn

)

=
{

µ́t t ∈ ∆(Ṕn) that satisfy(G.24)− (G.26)
}

. (G.32)
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Next, we focus on the large-sample properties of the multipliers inΛn

(

Ṕn

)

, underH0. Let

w ∈ Z+ ∪ {+∞} , and define the Banach spaces, as indexed byw,

l1w =

{

a = (a1, a2, . . . , aw) ∈ Rw :

w
∑

j=1

|aj| < +∞
}

, (G.33)

normed by‖a‖l1w =
∑w

j=1 |aj|.
Lemma G.3 (Asymptotic Bound for Lagrange Multipliers).

Let ∆
(

Ṕn

)

be given by (G.28) andωn =
∣

∣

∣
∆(Ṕn)

∣

∣

∣
. For eachs ∈ Z+, c1 ∈ (0, 1), c2 ∈

(

0, 1
(t−t)2

)

andc3 ∈ (0,+∞),

1. limn→+∞ infP∈P0
⋂

P1(c1) P
[

∆
(

Ṕn

)

⊆ ∆(P )
]

= 1.

2. Denote the vector of Lagrange multipliers on the constraints binding constraints býµ and
thel1ωn

norm of the vectoŕµ by ||µ́||l1ωn
. Then∀ǫ > 0

lim
n→+∞

sup
P∈Ps

0(c1,c2,c3)

P



 sup
µ́∈Λn(Ṕn)

||µ́||l1ωn
> ǫ



 = 0, and (G.34)

sup
µ́∈Λn(Ṕn)

||µ́||l1ωn
= OP

(

n−1/2
)

(G.35)

uniformly in Ps
0(c1, c2, c3).

Proof.

1. We show this result using proof by contrapositive, that is, we show that for largen,

t /∈ ∆(P ) =⇒ t /∈ ∆(Ṕn)

Givenc1 ∈ (0, 1), for large enoughn and uniformly inP0

⋂P1(c1) Corollary F.1 and Part
2 of F.6 imply thatṕ exists and is unique. Consider anyt ∈ [t, t]. For large enoughn,
Property 1 and the non-negativity of the Lagrange multipliers implies that

n
∑

i=1

p′ig(Xi; t) ≤
1

n

n
∑

i=1

g(Xi; t) =
1

n

n
∑

i=1

g(Xi; t)−EP0 [g(X ; t)] + EP0 [g(X ; t)] (G.36)

Now, for t /∈ ∆(P ), it follows thatEP [g(X ; t)] < 0. By the Central Limit Theorem,

1

n

n
∑

i=1

g(Xi; t)− EP [g(X ; t)] = OP (n
−1/2)

uniformly in P0

⋂P1(c1). Thus, for sufficiently largen, equation (G.36) simplifies to
n
∑

i=1

ṕig(Xi; t) < 0

This shows thatt /∈ ∆(Ṕn) with probability approaching unity, uniformly over probabilities
in P0

⋂P1(c1).
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2. On the event
{

∆(Ṕn) = ∅
}

, the Lagrange multiplies that solve the KKT conditions is

a singleton equal to the zero vector i.e.Λn

(

Ṕn

)

= 0 ∈ l1ωn
. Therefore, on the event

{

∆(Ṕn) 6= ∅
}

, Λn

(

Ṕn

)

is not equal to0. In consequence.

P



 sup
µ́∈Λn(Ṕn)

||µ́||l1ωn
> ǫ



 = P



 sup
µ́∈Λn(Ṕn)

||µ́||l1ωn
> ǫ,∆(Ṕn) 6= ∅



 . (G.37)

Thus, our approach in the proof will be to construct an upper bound onsup
µ́∈Λn(Ṕn) ||µ́||l1ωn

on the event
{

∆(Ṕn) 6= ∅
}

that isop(1) uniformly in

Ps
0(c1, c2, c3).

Recall that the cardinality of the set∆(Ṕn) is ωn ≤ N . Without loss of generality, let

∆(Ṕn) = {t1, t2, . . . , tωn} . (G.38)

Therefore, the probabilities (G.31) can be expressed as

ṕi =
1

n

(

1 +
ωn
∑

j=1

µ́jg(Xi; tj)

)−1

(G.39)

For any choice oftj ∈ ∆(Ṕn), we have

n
∑

i=1

ṕig(Xi; tj) =
1

n

n
∑

i=1

g(Xi; tj)

1 +
∑ωn

j=1 µ́jg(Xi; tj)
= 0 (G.40)

To express the system of equations described by (G.40) in vectorised form, define the vector

gi = [g(Xi; t1), g(Xi; t2), . . . , g(Xi; tωn)]
T (G.41)

Now, as all the elements of́µ are non-negative, thel1ωn
norm is simply the sum of all elements

of µ́, i.e. ||µ́||l1ωn
=
∑ωn

j=1 µ
′
j . This means we can express the vectorµ́ in the form

µ́ = ||µ́||l1ωn
θ , θ ∈ Rωn

+

Under this construction, thejth element ofθ is

θj =
µ́j

∑ωn

j=1 µ́j

This implies that
∑ωn

j=1 θj = 1. The system of equations defined by (G.40) for allt ∈ ∆(Ṕn)
can be written in the following form

1

n

n
∑

i=1

gi

1 + (µ́)Tgi
= 0 =⇒ θT

(

1

n

n
∑

i=1

gi

1 + (µ́)Tgi

)

= 0 (G.42)
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Define the quantityYi = (µ́)Tgi. Using the manipulation 1
1+Yi

= 1− Yi

1+Yi
and the fact that

(µ́)Tgi = gT
i µ́ in equation (G.42) gives

θT

(

1

n

n
∑

i=1

gi

(

1− gT
i µ́

1 + Yi

)

)

= 0

θT

(

1

n

n
∑

i=1

gi

)

= θT

(

1

n

n
∑

i=1

gig
T
i µ́

1 + Yi

)

θT

(

1

n

n
∑

i=1

gi

)

= θT

(

1

n

n
∑

i=1

gig
T
i ||µ́||θ
1 + Yi

)

∴ θT

(

1

n

n
∑

i=1

gi

)

= ||µ́||l1ωn
θT

(

1

n

n
∑

i=1

gig
T
i

1 + Yi

)

θ (G.43)

We denote the sample analogue estimate of the covariance matrix of measurement functions
over the set of allt ∈ ∆(Ṕn) by

Σ̂∆(Ṕn)
=

1

n

n
∑

i=1

gig
T
i

DefineYmax = max
i

|Yi|. Note that

Ymax = max
i

ωn
∑

j=1

µ́j |g (Xi; tj)| (G.44)

≤
ωn
∑

j=1

µ́j max
i

|g (Xi; tj)| (G.45)

= ||µ́||l1ωn
smax

{

|t|, |t|
}s−1

∑

K=A,B

max
i

∣

∣XK
∣

∣

s−1
, (G.46)

where we used the envelope function (G.1) to bound the momentfunctions, uniformly in
t ∈ [t, t].

LetXmax = smax
{

|t|, |t|
}s−1∑

K=A,B maxi
∣

∣XK
i

∣

∣

s−1
, and consider

||µ́||l1ωn

(

θT Σ̂∆(Ṕn)
θ
)

= ||µ́||l1ωn

(

θT

(

1

n

n
∑

i=1

gig
T
i

)

θ

)

≤ ||µ́||l1ωn

(

θT

(

1

n

n
∑

i=1

gig
T
i

1 + Yi

)

θ

)

(1 + Ymax)

≤ ||µ́||l1ωn

(

θT

(

1

n

n
∑

i=1

gig
T
i

1 + Yi

)

θ

)

(1 +Xmax||µ́||l1ωn
)

∴ ||µ́||l1ωn

(

θT Σ̂∆(Ṕn)
θ
)

≤ θT

(

1

n

n
∑

i=1

gi

)

(1 +Xmax||µ́||l1ωn
) (G.47)
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where the last line results from substituting the expression given in (G.43). Rearranging
(G.47) gives

||µ́||l1ωn

[

θT Σ̂ωnθ − θT

(

Xmax

n

n
∑

i=1

gi

)]

≤ θT

(

1

n

n
∑

i=1

gi

)

∀µ́ ∈ Λn

(

Ṕn

)

, (G.48)

since the derivation above holds for eachµ́ ∈ Λn

(

Ṕn

)

. We consider the components of

(G.48) to find the required asymptotic bound on||µ́||. From part (i) of this lemma, for
large n we have∆(Ṕn) ⊂ ∆(P ). This means for largen, we have that for allt ∈ ∆(Ṕn),
EP [g(X ; tj)] = 0. As a result,

θT

(

1

n

n
∑

i=1

gi

)

=
ωn
∑

j=1

θj

(

1

n

n
∑

i=1

g(Xi; tj)− EP [g(X ; tj)]

)

∣

∣

∣

∣

∣

θT

(

1

n

n
∑

i=1

gi

)∣

∣

∣

∣

∣

≤
ωn
∑

j=1

θj

∣

∣

∣

∣

∣

1

n

n
∑

i=1

g(Xi; tj)− EP [g(X ; tj)]

∣

∣

∣

∣

∣

≤ max
j

∣

∣

∣

∣

∣

1

n

n
∑

i=1

g(Xi; tj)− EP [g(X ; tj)]

∣

∣

∣

∣

∣

(

ωn
∑

j=1

θj

)

≤ sup
t∈[t,t]

∣

∣

∣

∣

∣

1

n

n
∑

i=1

g (Xi; t)− EP [g (X; t)]

∣

∣

∣

∣

∣

(G.49)

The last line follows from the fact that
∑ωn

j=1 θj = 1 by construction. The upper bound
given by equation (G.49) isoP (1) uniformly in P. This follows from the moment functions
being uniformly Glivenko-Cantelli: it is a Vapnik-Chervonenkis class with square-integrable
envelope function (G.1), uniformly inP. Therefore, this upper bound is alsooP (1) uniformly
in Ps

0(c1, c2, c3).

Now we focus on the large-sample behavior of the termθT (n−1Xmax

∑n
i=1 gi). We will

show that it is alsooP (1) uniformly inPs
0(c1, c2, c3). We have

∣

∣

∣

∣

∣

θT

(

Xmax

n

n
∑

i=1

gi

)∣

∣

∣

∣

∣

≤ Xmax

ωn
∑

j=1

θj

∣

∣

∣

∣

∣

1

n

n
∑

i=1

g(Xi; tj)− EP [g(X ; tj)]

∣

∣

∣

∣

∣

≤ Xmax max
j

∣

∣

∣

∣

∣

1

n

n
∑

i=1

g(Xi; tj)− EP [g(X ; tj)]

∣

∣

∣

∣

∣

(

ωn
∑

j=1

θj

)

≤ Xmax sup
t∈[t,t]

∣

∣

∣

∣

∣

1

n

n
∑

i=1

g (Xi; t)− EP [g (X; t)]

∣

∣

∣

∣

∣

. (G.50)

Next, apply Lemma 11.2 of Owen (2001) and Theorem 2.8.2 of vander Vaart and Wellner
(1996) toXmax and

sup
t∈[t,t]

∣

∣

∣

∣

∣

1

n

n
∑

i=1

g (Xi; t)−EP [g (X; t)]

∣

∣

∣

∣

∣

,
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respectively, to deduce thatXmax = o(n1/2) and

sup
t∈[t,t]

∣

∣

∣

∣

∣

1

n

n
∑

i=1

g (Xi; t)− EP [g (X; t)]

∣

∣

∣

∣

∣

= OP (n
−1/2) uniformly in P.

Therefore, the right side of (G.50) iso(n1/2)OP (n
−1/2) = oP (1), uniformly in P. In conse-

quence,θT (n−1Xmax

∑n
i=1 gi) = oP (1) uniformly inPs

0(c1, c2, c3).

Now, for sufficiently largen, Part (i) of this lemma tells us that∆(Ṕn) ⊂ ∆(P ), with proba-
bility approaching unity uniformly overP0

⋂P1(c1). Whether or not∆(P ) 6= ∅ the follow-
ing manipulation holds. BecausePs

0(c1, c2, c3) ⊆ P0

⋂P1(c1), Definition 4.1 implies that
θTΣ∆(Ṕn)

θ ≥ c3 > 0 holds with probability tending to unity uniformly overPs
0(c1, c2, c3).

Using this result and the bound from equation (G.49), we can rewrite (G.48) as

||µ́||l1ωn
≤ oP (1)

c3 + oP (1)
∀µ́ ∈ Λn

(

Ṕn

)

, uniformly in Ps
0(c1, c2, c3). (G.51)

Consequently,

sup
µ́∈Λn(Ṕn)

||µ́||l1ωn
≤ oP (1)

c3 + oP (1)
, uniformly in Ps

0(c1, c2, c3). (G.52)

Therefore,sup
µ́∈Λn(Ṕn) ||µ́||l1ωn

= oP (1) uniformly in Ps
0(c1, c2, c3). Finally, to show that

sup
µ́∈Λn(Ṕn) ||µ́||l1ωn

= OP (n
−1/2) uniformly in Ps

0(c1, c2, c3), first note that the expression

on the right side of (G.48) has this property. So that

sup
µ́∈Λn(Ṕn)

||µ́||l1ωn
≤ OP (n

−1/2)

c3 + oP (1)
uniformly in Ps

0(c1, c2, c3), (G.53)

which implies

√
n sup

µ́∈Λn(Ṕn)
||µ́||l1ωn

≤ OP (1)

c3 + oP (1)
uniformly in Ps

0(c1, c2, c3). (G.54)

Hence,
√
n sup

µ́∈Λn(Ṕn) ||µ́||l1ωn
, a positive random variable, is bounded from above by an-

other variable that isOP (1), uniformly inPs
0(c1, c2, c3). Therefore, we must have that

√
n sup

µ́∈Λn(Ṕn)
||µ́||l1ωn

= OP (1) uniformly in Ps
0(c1, c2, c3).

G.3 Relationship BetweenE
P̂n

[g (X, ·)] andE
Ṕn

[g (X, ·)]
The following result implies that the estimatorEṔn

[g (X, ·)] is a uniformly consistent estimator of
EP0 [g (X, ·)] underH0.
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Proposition G.1. For eachs ∈ Z+, c1 ∈ (0, 1), c2 ∈
(

0, 1
(t−t)2

)

andc3 ∈ (0,+∞),

sup
t∈[t,t]

∣

∣EP̂n
[g (X, t)]−EṔn

[g (X, t)]
∣

∣ = OP (n
−1/2) uniformly over Ps

0(c1, c2, c3). (G.55)

Proof. The proof follows the direct method. Consider the followingderivation:
∣

∣EP̂n
[g (X, t)]−EṔn

[g (X, t)]
∣

∣ = EP̂n
[g (X, t)]− EṔn

[g (X, t)] (G.56)

=
n
∑

i=1

1

n
g(Xi; t)−

n
∑

i=1

ṕig(Xi; t)

=

n
∑

i=1

(

1

n
− ṕi

)

g(Xi; t)

=

n
∑

i=1

1

n

(

1− 1

1 +
∑N

j=1 µ́jg(Xi; tj)

)

g (Xi, t)

=

n
∑

i=1

1

n
·
g (Xi, t)

∑N
j=1 µ́jg(Xi; tj)

1 +
∑N

j=1 µ́jg(Xi; tj)

=
n
∑

i=1

ṕig (Xi, t)
N
∑

j=1

µ́jg(Xi; tj). (G.57)

Now using the envelope function (G.1), we can obtain the following upper bound on the term (G.57):

s2max
{

|t|, |t|
}2(s−1)

sup
µ́∈Λn(Ṕn)

||µ́||l1ωn

n
∑

i=1

ṕi

(

∑

K=A,B

∣

∣XK
i

∣

∣

s−1

)2

, (G.58)

whereΛn

(

Ṕn

)

is the set of Lagrange multipliers on∆(Ṕn) defined in (G.32). Part 2 of Lemma G.3

establishes

sup
µ́∈Λn(Ṕn)

||µ́||l1ωn
= OP (n

−1/2) uniformly over Ps
0(c1, c2, c3). (G.59)

Thus, to deduce the desired result, we need to show that

n
∑

i=1

ṕi

(

∑

K=A,B

∣

∣XK
i

∣

∣

s−1

)2

= OP (1) uniformly over Ps
0(c1, c2, c3). (G.60)

For eachi = 1, . . . , n, we will apply the expansion 1
1+Yi

= 1− Yi

1+Yi
to

ṕi =
1

n

(

1 +

N
∑

j=1

µ́jg(Xi; tj)

)−1

,
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whereYi =
∑N

j=1 µ́jg(Xi; tj), to deduce that the left side of (G.60) equals

1

n

n
∑

i=1

(

∑

K=A,B

∣

∣XK
i

∣

∣

s−1

)2

− 1

n

n
∑

i=1

(

∑N
j=1 µ́jg(Xi; tj)

1 +
∑N

j=1 µ́jg(Xi; tj)

)(

∑

K=A,B

∣

∣XK
i

∣

∣

s−1

)2

. (G.61)

Next, apply Jensen’s inequality to the second term in (G.61)to obtain the following upper bound
on (G.61)

1

n

n
∑

i=1

(

∑

K=A,B

∣

∣XK
i

∣

∣

s−1

)2

−

∑

j µ́j
1
n

∑n
i=1

(

g (Xi, tj)
(

∑

K=A,B

∣

∣XK
i

∣

∣

s−1
)2
)

1 +
∑

j µ́j
1
n

∑n
i=1 g (Xi, tj)

. (G.62)

By Condition (iv) of Assumption 2.1, the term1
n

∑n
i=1

(

∑

K=A,B

∣

∣XK
i

∣

∣

s−1
)2

converges in prob-

ability to EP

(

∑

K=A,B

∣

∣XK
i

∣

∣

s−1
)2

, uniformly in P ∈ P, which implies that it converges uni-

formly in P ∈ Ps
0(c1, c2, c3) asPs

0(c1, c2, c3) ⊆ P; therefore, this term isOP (1) uniformly in
P ∈ Ps

0(c1, c2, c3). Next, we show that the second term in (G.62) isoP (1) uniformly in P ∈
Ps

0(c1, c2, c3), which implies that it isOP (1) uniformly inP ∈ Ps
0(c1, c2, c3).

The modulus of the second term in (G.62) is bounded above by

sup
µ́∈Λn(Ṕn) ||µ́||l1ωn

maxi,j |g (Xi, tj)| 1
n

∑n
i=1

(

∑

K=A,B

∣

∣XK
i

∣

∣

s−1
)2

∣

∣

∣
1 +

∑

j µ́j
1
n

∑n
i=1 g (Xi, tj)

∣

∣

∣

. (G.63)

We tackle the numerator and denominator of (G.63) separately. Using the envelope function (G.1),
the numerator is bounded above by

smax
{

|t|, |t|
}(s−1)

sup
µ́∈Λn(Ṕn)

||µ́||l1
ωn





∑

K=A,B

max
i

∣

∣XK
i

∣

∣

s−1





1

n

n
∑

i=1





∑

K=A,B

∣

∣XK
i

∣

∣

s−1





2

. (G.64)

By Condition (iv) of Assumption 2.1, an application of Lemma11.2 of Owen (2001) and Part 2
of Lemma G.3 imply that

sup
µ́∈Λn(Ṕn)

||µ́||l1ωn

(

∑

K=A,B

max
i

∣

∣XK
i

∣

∣

s−1

)

= oP (1) uniformly inP ∈ Ps
0(c1, c2, c3).

Furthermore,1
n

∑n
i=1(
∑

K=A,B

∣

∣XK
i

∣

∣

s−1
)2 = OP (1) uniformly in P ∈ Ps

0(c1, c2, c3), which im-
plies that the term (G.64) isoP (1) uniformly in P ∈ Ps

0(c1, c2, c3).
Next, we tackle the denominator. We will show that

∑

j µ́j
1
n

∑n
i=1 g (Xi, tj) = oP (1) uniformly
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in P ∈ Ps
0(c1, c2, c3). Observe for large enoughn and uniformly inP ∈ Ps

0(c1, c2, c3) that
∣

∣

∣

∣

∣

∑

j

µ́j
1

n

n
∑

i=1

g (Xi, tj)

∣

∣

∣

∣

∣

≤ sup
µ́∈Λn(Ṕn)

||µ́||l1ωn
sup

t∈∆(Ṕn)

∣

∣EP̂n
[g (X, t)]

∣

∣ (G.65)

= OP (n
−1/2) sup

t∈∆(Ṕn)

∣

∣EP̂n
[g (X, t)]

∣

∣ (G.66)

≤ OP (n
−1/2) sup

t∈∆(P )

∣

∣EP̂n
[g (X, t)]

∣

∣ (G.67)

= OP (n
−1/2)OP (n

−1/2) = OP (n
−1) = oP (1) (G.68)

by Lemma G.3 and the Uniform Central Limit Theorem. This concludes the proof.

H Technical Lemmas for Theorems 5.1 and 5.2

H.1 Theorem 5.1

This subsection presents two technical lemmas that are useful for proving Theorem 5.1. They are a
consequence of the conditionP

[

supt∈[t,t] g (X1; t) < 0
]

> 0 being true. The first lemma is similar
to Lemma F.1, but we now do not constrainP to satisfyH0.

Lemma H.1. SupposeP0 ∈ P and letI−n be given by (F.1). Then

lim
n→∞

P
[

I−n 6= ∅
]

= 1.

Proof. The proof follows similar steps as those in the proof of LemmaF.1. We show that the
probability of the complement of{I−n 6= ∅} converges to zero. This set is

{

I−n = ∅
}

=
{

for each i∃t ∈ [t, t]; g (Xi; t) ≥ 0
}

.

By the bivariate random sampling assumption on{Xi}ni=1 , we have that

P0

[

I−n = ∅
]

=

(

P0

[

sup
t∈[t,t]

g (X1; t) ≥ 0

])n

(H.1)

=

(

1− P0

[

sup
t∈[t,t]

g (X1; t) < 0

])n

→ 0 (H.2)

n→ +∞ by Condition (i) of Assumption 2.1.

The second lemma concerns the existence and uniqueness of the constrained empirical likeli-
hood probability vectoŕp. Recall that

Hn =

{

pi, i = 1, . . . , n;

n
∑

i=1

pi = 1, pi ≥ 0, ∀i = 1, . . . , n

}
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and that its interior isH◦
n. Additionally, recall that the constraint is

H0
n(X) =

{

p ∈ Hn :
n
∑

i=1

pig (Xi; t) ≤ 0 ∀t ∈ Tn

}

.

As with the previous result, we do not constraintP to satisfyH0.

Lemma H.2. SupposeP0 ∈ P. Then

lim
n→∞

P0

[

H0
n(X) ∩H◦

n 6= ∅
]

= 1.

Proof. For largen, Lemma H.1 implies that the event

∃i ∈ {1, 2, . . . , n} g (Xi, t) < 0 ∀t ∈ Tn (H.3)

occurs with probability approaching 1, sinceTn ⊂ [t, t] for eachn. The rest of the proof proceeds
using steps similar to those in the proof of Lemma F.5; therefore, we omit them for brevity.

H.2 Theorems 5.2

This section presents technical lemmas for the local power analysis of the tests. It relies on the
WLLN and Lindeberg-Feller Central limit Theorem for triangular arrays of row-wise IID random
variables. These large sample results can be found in Section 27 of Billingsley (1995). In the
context of the paper, we have the triangular array

{{Xi,j, i = 1, . . . , n} , n = 1, 2, . . .} , (H.4)

where for eachn {Xi,j, i = 1, . . . , n} is bivariate random sample formPn that satisfies Assump-
tion 5.1.

First, we introduce a technical lemma that shows the largestvalue in a sample of sizen in
the triangular arrays of row-wise IID random variables cannot grow to infinite as fast as

√
n. We

establish this result, though, in the context of the paper.

Lemma H.3. Suppose that Assumption 5.1 holds. Then

max1≤i≤n

∑

K=A,B |Xi,n|s−1

√
n

= oPn(1).

Proof. The proof proceeds by the direct method. We will show that

∀ǫ > 0, lim
n→+∞

Pn

[

max1≤i≤n

∑

K=A,B |Xi,n|s−1

√
n

≤ ǫ

]

= 1, (H.5)

which implies the desired result.
Under Assumption 5.1 andP, we have that

sup
n
EPn

[

∑

K=A,B

|Xi,n|s−1

]2

≤ sup
P∈P

EP

[

∑

K=A,B

|Xi|s−1

]2

< +∞, (H.6)
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holds. Then, for everyǫ > 0 Markov’s inequality implies that

lim
n→+∞

n
∑

j=1

Pj





(

∑

K=A,B

|Xi,j|s−1

)2

> nǫ



 < +∞. (H.7)

As
∑n

j=1 Pj[(
∑

K=A,B |Xi,j|s−1)2 > nǫ] is a convergent series of non-negative terms, it follows
that

lim
n→+∞

Pn





(

∑

K=A,B

|Xi,n|s−1

)2

> nǫ



 = 0, (H.8)

holds. In consequence, the limit of the complementary probabilities satisfies

lim
n→+∞

Pn

[

∑

K=A,B |Xi,n|s−1

√
n

≤ ǫ

]

= 1, (H.9)

which implies that

lim
n→+∞

Pn

[

max1≤i≤n

∑

K=A,B |Xi,n|s−1

√
n

≤
√
ǫ

]

= 1, (H.10)

holds. The limit (H.10) implies the desired result asǫ > 0 was arbitrary and because the square-
root function on the positive reals is a monotonic function i.e. there is a one-to-one correspondence
between

√
ǫ andǫ.

Next, we briefly mention a few intermediate useful results regarding constrained estimation
under the local alternatives.

Lemma H.4. Suppose that the conditions of Theorem 5.2 hold. Then

1. limn→+∞ Pn [I
−
n 6= ∅] = 1, whereI−n is defined in (F.1).

2. limn→+∞ Pn [H0
n(X) ∩ H◦

n 6= ∅] = 1.

3. limn→+∞ Pn [Sn] = 1, whereSn is the event defined in (G.27).

4. limn→+∞ Pn

[

EṔn
[g (X; t)] ≤ EP̂n

[g (X; t)] ∀t ∈ [t, t]
]

= 1.

5.
√
n sup

µ́∈Λn(Ṕn) ||µ́||l1ωn
= OPn(1).

Proof. Under the conditions of Theorem 5.2, the steps for proving parts 1 to 4 of this lemma are
identical to their counterparts in Appendix G, but with probability computations under the local
alternatives; therefore, we omit them for brevity.

We now focus on proving part 5 of this lemma. We will first show that

lim
n→+∞

Pn

[

∆(Ṕn) ⊆ C
]

= 1 holds, where C =
{

t ∈ [t, t] : H(t) = 0
}

.
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The proof will follow steps similar to those of pat (i) of Lemma G.3. Proceeding by contraposition,
we need to show that

t /∈ C =⇒ t /∈ ∆(Ṕn) (H.11)

for largen with probability approaching unity, under the local alternatives. Part 4 of this lemma
implies

EṔn
[g (X; t)] ≤ EP̂n

[g (X; t)] = EP̂n
[g (X; t)]− EPn [g (X; t)] + EPn [g (X; t)] . (H.12)

Now, considert /∈ C. This implies thatlimn→+∞EPn [g (X; t)] = H(t) < 0. By the WLLN for
triangular arrays,

EP̂n
[g (X; t)]−EPn [g (X; t)] = oPn(1). (H.13)

It should be noted that the application of the WLLN for triangular arrays is valid since the set
of moment functionsF is uniformly bounded form above by the square-integrable envelope func-
tion (G.1) under the local alternatives. Thus for sufficiently largen, the inequality (H.12) simplifies
to

EṔn
[g (X; t)] ≤ H(t) < 0 as n→ +∞. (H.14)

This shows thatt /∈ ∆(Ṕn) for largen with probability approaching unity under the local alterna-
tives.

Using the notation of Lemma G.3, and following identical steps to those up to the inequal-
ity (G.48), we have that

||µ́||l1ωn

[

θT Σ̂ωnθ − θT

(

Xmax

n

n
∑

i=1

gi

)]

≤ θT

(

1

n

n
∑

i=1

gi

)

∀µ́ ∈ Λn

(

Ṕn

)

, (H.15)

where

Xmax = smax
{

|t|, |t|
}s−1

∑

K=A,B

max
1≤i≤n

∣

∣XK
i,n

∣

∣

s−1
, (H.16)

gi = [g(Xi; t1), g(Xi; t2), . . . , g(Xi; tωn)]
T , (H.17)

∆(Ṕn) = {t1, t2, . . . , tωn} (H.18)

andθ ∈ Rωn
+ with ||θ||l1ωn

= 1. Noting that

θT

(

1

n

n
∑

i=1

gi

)

=
ωn
∑

j=1

θj

(

1

n

n
∑

i=1

g(Xi; tj)− EPn [g(X ; tj)]

)

+
ωn
∑

j=1

θj(δ(tj)/
√
n) (H.19)

≤ sup
t∈[t,t]

∣

∣EP̂n
[g (X; t)]−EPn [g (X; t)]

∣

∣+ sup
t∈[t,t]

δ(t)/
√
n = oPn(1) (H.20)
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by the Uniform WLLN for triangular arrays of random variables that are row-wise IID and that

θT

(

Xmax

n

n
∑

i=1

gi

)

=
ωn
∑

j=1

θj

(

Xmax

n

n
∑

i=1

g(Xi; tj)−EPn [g(X ; tj)]

)

+

ωn
∑

j=1

θj(δ(tj)/
√
n)

≤ Xmax sup
t∈[t,t]

∣

∣EP̂n
[g (X; t)]− EPn [g (X; t)]

∣

∣ +
Xmax√
n

sup
t∈[t,t]

δ(t)

=
Xmax√
n

√
n sup

t∈[t,t]

∣

∣EP̂n
[g (X; t)]− EPn [g (X; t)]

∣

∣

+
Xmax√
n

sup
t∈[t,t]

δ(t)

= oPn(1)OPn(1) + oPn(1) = oPn(1)

by Lemma H.3 and Theorem 2.8.9 in van der Vaart and Wellner (1996) (i.e., uniform CLT), we
have that

sup
µ́∈Λn(Ṕn)

||µ́||l1ωn
≤

θT

(

1

n

∑n
i=1 gi

)

[

θT Σ̂ωnθ − θT

(

Xmax

n

∑n
i=1 gi

)] (H.21)

since Property 1 and part 1 of this lemma implies thatlimn→+∞ Pn

[

θT Σ̂ωnθ > 0
]

= 1.

Hence,

√
n sup

µ́∈Λn(Ṕn)
||µ́||l1ωn

≤

√
nθT

(

1

n

∑n
i=1 gi

)

[

θT Σ̂ωnθ − θT

(

Xmax

n

∑n
i=1 gi

)] . (H.22)

To conclude the proof, all we need to do is to show that the numerator on the right side of the
inequality (H.22) isOPn(1). Noting the inequality (H.20) above, we have that

√
nθT

(

1

n

n
∑

i=1

gi

)

≤
√
n sup

t∈[t,t]

∣

∣EP̂n
[g (X; t)]− EPn [g (X; t)]

∣

∣+ sup
t∈[t,t]

δ(t), (H.23)

where
√
n supt∈[t,t]

∣

∣EP̂n
[g (X; t)]− EPn [g (X; t)]

∣

∣ = OPn(1) by Theorem 2.8.9
in van der Vaart and Wellner (1996), andsupt∈[t,t] δ(t) is finite by Part (iii) of Assumption 5.1,
which implies the desired result. Therefore,

√
n sup

µ́∈Λn(Ṕn)
||µ́||l1ωn

= OPn(1),

which concludes the proof.
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The next result is the counterpart of Proposition G.1 under the sequence of local alternatives
demarcated by Assumption 5.1.

Proposition H.1. Suppose that Assumption 5.1 holds. Then For eachs ∈ Z+,

sup
t∈[t,t]

∣

∣EP̂n
[g (X, t)]− EṔn

[g (X, t)]
∣

∣ = OPn(n
−1/2). (H.24)

Proof. The proof follows steps identical to those in the proof of Proposition G.1 except that the
limits are taken under the sequence of local alternatives. Firstly, we can follow the same steps to
deduce thatsupt∈[t,t]

∣

∣EP̂n
[g (X, t)]− EṔn

[g (X, t)]
∣

∣ is bounded above by

s2max
{

|t|, |t|
}2(s−1)

sup
µ́∈Λn(Ṕn)

||µ́||l1ωn

n
∑

i=1

ṕi

(

∑

K=A,B

∣

∣XK
i

∣

∣

s−1

)2

, (H.25)

Then Part 5 of Lemma H.4 implies thatsup
µ́∈Λn(Ṕn) ||µ́||l1ωn

= OPn(n
−1/2), holds, which implies

we need to show that

n
∑

i=1

ṕi

(

∑

K=A,B

∣

∣XK
i

∣

∣

s−1

)2

= OPn(1), (H.26)

holds, in order to conclude the proof.
To show that (H.26) holds, we can implement the same decomposition for this term and apply

Jensen’s inequality as in the proof of Proposition G.1 to show that it is bounded above by the
expression (G.62), which we repeat here for convenience:

1

n

n
∑

i=1

(

∑

K=A,B

∣

∣XK
i

∣

∣

s−1

)2

−

∑

j µ́j
1
n

∑n
i=1

(

g (Xi, tj)
(

∑

K=A,B

∣

∣XK
i

∣

∣

s−1
)2
)

1 +
∑

j µ́j
1
n

∑n
i=1 g (Xi, tj)

. (H.27)

Condition (iv) of Assumption 2.1 implies that

1

n

n
∑

i=1

(

∑

K=A,B

∣

∣XK
i

∣

∣

s−1

)2

= OPn(1).

Then we can tackle the denominator and numerator of the second term in (H.27) separately. For
the numerator, we follow the same steps as in Proposition G.1but use Lemma H.3 and Part 5 of
Lemma H.4 instead of Lemma 11.2 of Owen (2001) and Part 2 of Lemma G.3, respectively, to
deduce that it isoPn(1), under the sequence of local alternatives. For the denominator, again, we
follow the same steps as in Proposition G.1 except that we replace the contact set∆(P ) with the
setC and use Part 5 of Lemma H.4. and the Theorem 2.8.9 of van der Vaart and Wellner (1996)
instead of Part 2 of Lemma G.3 and the Uniform Central Limit Theorem, respectively, to deduce
that

∑

j

µ́j
1

n

n
∑

i=1

g (Xi, tj) = oPn(1),

under the sequence of local alternatives. This concludes the proof.
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