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Abstract

Bootstrap Testing for restricted stochastic dominancep&aspecified order between two
distributions is of interest in many areas of economicssfaiper develops a new method for
improving the performance of such tests that employ a mormselection procedure: tilting
the empirical distribution in the moment selection progeduWe propose that the amount
of tilting be chosen to maximize the empirical likelihoodbgct to the restrictions of the null
hypothesis, which are a continuum of unconditional momeeduality conditions. We charac-
terize sets of population distributions on which a modifiest s (i) asymptotically equivalent
to its non-modified version to first-order, and (ii) supetioits non-modified version accord-
ing to large-sample efficiency and deficiency, and normdlikeficiency. We report simulation
results that show the modified versions of leading tests atieaably less conservative than
their non-modified counterparts and have improved powarallyi an empirical example is
discussed to illustrate the proposed method.

JEL Classification: C12;C13;C14
Keywords: Bootstrap Test; Contact Set; Empirical Liketidp Semi-Infinite Program; Re-
stricted Stochastic Dominance; Efficiency; Deficiency; idalized Deficiency.

1 Introduction

Testing for stochastic dominance of one distribution fiorcby another is a frequently encoun-
tered statistical inference topic in many areas of econsnftor example, these tests are used to
compare income distributions (Abadie, 2002, and Barradtonald, 2003), investment strategies
(Linton et al., 2005), mental stress levels in health ecansrfMadden, 2009), water-conserving
irrigation strategies (Harris and Mapp, 1986), and to detee whether collusion occurs in asym-
metric first-price auctions (Aryal and Gabrielli, 2013). hstochastic ordering is ideal for rep-
resenting simple and important information, for examples income distribution in a country
‘changed’ from timet; to timet,, the methodological issues that arise in statistical arfee are
complex. As a consequence, methodological research t@imagtatistical inference has been, and
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Figure 1: The left panel reports the empirical CDFs of weeldy incomes from households ‘at
risk’ of retirement for the years 2001 and 2006 over the irgE[), 2500]. The right panel reports
the difference between these CDFs over the range of playsiserty lines.

continues to be, important. In this paper, we develop a nethodghat improves the performance
of the leading existing methods of statistical inferena®ivning stochastic dominance.

To motivate the topic, we consider a data example based didhsehold, Income and Labour
Dynamics in Australia (HILDA) panel survey for the period804 and 2006. The left panel in
Figure 1 shows that the empirical cumulative distributiondtions (CDFs) of weekly net incomes
in 2001 and 2006 for households ‘at risk’ of retirement (B#rand Brzozowski, 2012). A question
of fundamental importance for its policy implications itfollowing: Does poverty increase at
retirement? Since there is uncertainty regarding the poverty line fmoime, in practice, one
chooses an interval, say, b], and the poverty line is assumed to lie in that interval; ttistical
inferences must be carried out assuming that the povegydinnknown and that it is somewhere
in [a, b]. The foregoing substantive question on comparing the tworimedistributions, is usually
formulated as a test df, : F2001(IL') < Fgooﬁ(l’),vx € [CL, b] againstHl : Not Hy. If FQOOl({L‘) <
Fos(z), Vo € [a,b], we say thatFy (-) stochastically dominatesyg(-), at first-order, over
la,b] (Foster and Shorrocks, 1988). For illustrative purposesy$ choosea,b] = [250, 500]
as the range of incomes of interest. The right panel in Figusbows that the empirical CDFs
corresponding tduo () and Fhge6(+) Cross one another; thus, there is some evidence agéjnst
What we need is a sound statistical method to quantify theeene ofH,, properly.

Testing the aforementioned composite null hypothesis @lehging; the source of the chal-
lenge is that it is characterized by a continuum of inequaldnstraints, which complicates the
evaluation of the asymptotic null distribution of convemtal test statistics (e.g., the one-sided
Kolmogorov-Smirnov). It turns out that bootstrapping canused as an alternative. However,
the simplest bootstrap procedure, namely, the canoniggharametric bootstrap, is not valid in
this test problem. It is invalid because the asymptotic digliributions depend discontinuously on
Fooo1(+) and Fyges(+) through thecontact sef{z € [250,500] : Fagoi(z) = Faes(x)}, the set of
points in the domain of the CDFs where they coincide. Thigtypbootstrap failure was pointed
out by Bickel and Freedman (1981) in a general context, andrévrs (2000) has demonstrated
that it arises in testing problems when a parameter is on ar the boundary of its parameter
space. An approach that restores the validity of the cambnanparametric bootstrap for testing
H, uses an estimate of the contact set in the computation oftbistoap test statistics (e.g., Linton
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et al., 2010). Existing tests that follow this approachreate the contact set using the empirical
CDFs. As there is a continuum of inequality restrictiond thefine H,,, the discontinuous behav-
ior of the asymptotic null distributions is quite elabora®r this reason, an accurate estimator of
the contact set is necessary to ensure good finite-sampdenpies for the tests. In this paper, we
improve the accuracy of the contact set estimators in theste by replacing the empirical CDFs
with estimators that satisfy the restrictions fdf, and show that this modification of those tests
improves their performance.

Next, we introduce some notation to formulate the probleet.-4 and Pz denote the marginal
probability distributions from the bivariate distributic®. Let supp(Pyx) denote the support of
Py, for K = A, B, and let]t,?] be a subset of Interigsupp(P4) U supp(Ps)). We say that
distribution Py stochastically dominatedistribution P4 at orders € Z. , over the intervalt, 7] if

. B\s—1
(- xm)

- (t—XA)s_ll
(s —1)!

Er (s —1)!

[(XP <] (XA <t]| <0, vteltl. (1.1)

A more general version of the testing problem considereleridregoing example for the HILDA
survey data is to test the null hypothesis that the continatimequalities in (1.1) holds.

Since the null hypothesis is composite, bootstrap appratons based on the least favorable
case of the null hypothesis have been studied (e.g., Ab20@2, Barrett and Donald, 2003,
and Horvath et al., 2006). Their approaches develop baptstitical values from the submodel
of the null where the contact set is the interi¢al]. While this approach yields valid testing proce-
dures, it is quite conservative. Addressing this issuegrstvecent papers have proposed bootstrap
tests whose limiting behavior mimics the discontinuity loé¢ toriginal test’s limiting distribution
(e.g., Linton et al., 2010 and Donald and Hsu, 2016). Theaambr of these papers is to use an
estimator of the contact set in the bootstrap procedure;iwyfields tests that are less conservative
and have higher limiting local power than their least fatdegacounterparts.

The usefulness of stochastic dominance tests that emploniaat set estimator rests upon
accurate estimation of that set under the null hypothedie. cbntact set estimators they use, are
obtained without imposing the restrictions of the null hifgsis. The motivation for the method in
our paper is based on our conjecture that the bootstrapaitts null hypothesis would improve
if the contact set used in computing the bootstrap teststitatiwas estimated after imposing the
restrictions in the null hypothesis. In a way, we are clagninat the restrictions of the null hy-
pothesis are additional information available to us, andweald expect to do better by using the
additional information. This type of adjustment is a biabedtstrap technique, suggested by Hall
and Presnell (1999); the stochastic dominance testingditee has not considered this procedure.
In this paper, we show that our conjecture is in the rightaiom and our modification leads to a
significant improvement for tests of stochastic dominance.

The contributions of our paper are summarized as follows:

(a) It develops the constrained empirical likelihood estion (Owen, 2001) of moments, where
the constraints represent the restrictions of the null tygss (i.e., (1.1)), and proposes
the following modification of stochastic dominance testt tlise the contact set approach:
replace the unconstrained estimator of the moments wishettmipirical likelihood estimator
obtained under the null hypothesis;



(b) it proves the validity of the proposed modification foe thinton et al. (2010) and Andrews
and Shi (2017) tests, and that they are less conservatiaghlea non-modified versions in
large-samples; and

(c) forageneral class af '/2-local alternatives and large enough sample sizes, it ksfials the
superiority of the modified tests over their non-modifiedsi@ns in terms of local power, and
the following criteria: efficiency(Pitman, 1948)deficiency(Hodges and Lehmann, 1970)
and,normalized deficiencfAkahira, 1999).

The intuition behind these results is as follows. The preposiodification in (a) reformulates
the bootstrap test statistics of the Linton et al. (2010) Andrews and Shi (2017) tests in a data-
dependent way that incorporates the statistical inforomatbntained in the constraints that char-
acterize the null hypothesis, through a reduction of thaipater space. Consequently, under the
null, the modified bootstrap distribution of the test statim either of these tests is more accurate
than its non-modified counterpart as an estimator of tharaigest statistic’s sampling distribu-
tion, because the constraints imposed in the estimatiomeofdntact set are correct. Under local
alternative sequences, the constraints our method im@wsdalse for each; however, they are
correct in the limit, which enables the modified tests todyetetect.~!/2-local deviations from
the null.

Computing the solution of the constrained empirical likebbd optimization problem is one
of the main technical contributions of this paper. This oyation problem is a semi-infinite
programming problem: for each sample sizehere is a continuum of inequality restrictions on
random variables—one for eacte [t, {]—and a finite-dimensional choice variable. A common
approach for solving semi-infinite programdliscretization(see, e.g., Shapiro, 2009). In such a
method one selects a finite gffd, 7,, C [t, {], and solves the constrained empirical likelihood opti-
mization problem that imposes the constraints at eacly,,. We show that the difference between
the proposed approximate solution and exact solution osémi-infinite problem converges in
probability to zero as the sample size tends to infinity. kemtwe also show that the convergence
is uniform over a collection of distributions and we chaeaie the collections of distributions.

The papers that employ a contact set estimator for bootssaipg (1.1) under the null are Lin-
ton et al. (2010) (LSW, hereafter) and Donald and Hsu (20L6¢ bootstrap test of Andrews and
Shi (2017) also applies for testing (1.1) and, more gengtalthe setup that has many conditional
moment inequalities. Andrews and Shi’'s model coincide$ liat of LSW when specialized
to (1.1), which places no assumptions on the moment funeti@yond the existence of mild mo-
ment conditions. By contrast, Donald and Hsu (2016) redtinesdistributions’ supports to be
closed and bounded intervals, which may be restrictivedonesstudies. Hence, in this paper we
omit a discussion of Donald and Hsu’s test. We adopt thessizdl framework of LSW and defer
a discussion of Andrews and Shi’s testing procedure to AgipdD, for ease of exposition.

We describe collections of population distributions on ethihe LSW and Andrews and Shi
tests are asymptotically equivalent to their correspapdnodified versions, at first-order. How-
ever, they differ in finite-samples. For this reason, we caraphe tests according to the criteria
described in (c) above. The comparisons using deficiencynanahalized deficiency are more
refined than efficiency because they discriminate tests erb#isis of higher-order asymptotics
(e.g., Albers, 1975). In the Supplementary Appendix, $acB illustrates the advantages of our
general approach in terms of deficiency and normalized eéefigiin the context of a simple exam-



ple: testing on a bivariate Gaussian mean. The exampleesreatew avenue for future research
on the comparison of testing procedures for parametersatkefiy moment inequality conditions.

We report Monte Carlo simulation results in Section 6 thapare the LSW and Andrews and
Shi tests with their respective modified versions. Ovethl, simulation results corroborate the
theoretical superior performance of our method, and thatifferences in their relative perfor-
mance may be substantial.

1.1 Related Literature

The literature related to this paper includes numerousrgapeinference with unconditional mo-
ment inequality models, where there is only a finite numbesugh inequalities and the parameter
of interest is finite-dimensional; for example, Andrews &whres (2010), Andrews and Guggen-
berger (2009, 2010), and Canay (2010), among others. Byasginthe parameter of interest in
this paper is infinite-dimensional and there is a continuimeguality restrictions.

The literature on constrained estimation of CDFs subjectdier restrictions is related to this
paper. Several estimators have been proposed in thattliterée.g., Brunk et al., 1966, Lo,
1987, El-Barmi and Mukerjee, 2005, and Davidov and Herm@d2?. The procedure of Brunk
et al. (1966) is closest to the estimation procedure in thpep They developed the empirical like-
lihood estimator of two CDFs subject to a first-order stothatominance constraint, and prove
its pointwise consistency when the constraints hold in theuation. A key assumption in their
method is that the random samples are drawn from statistiodliependent CDFs. By contrast, the
proposed estimation procedure (i) allows for general dépece between the population CDFs,
(ii) applies to stochastic dominance constraints highantthe first-order, and (iii) is uniformly
consistent over a collection of CDFs when the constrainid imathe population.

Accommodating general dependence between the populadés G necessary in many empir-
ical settings; for example, where income distributionscampared over time, as in the illustration
described previously. Stochastic dominance orderingggréhan one arise in practical situations;
for example, when comparing income distributions using @owerty index from the Foster et al.
(1984) class of poverty indices. Each ordering of the CDHzimg a poverty index from that class
is in a one-to-one correspondence with their ranking adagrih a particular restricted stochastic
dominance relation (Foster and Shorrocks, 1988). Furtbexpuniform consistency of the pro-
posed estimator is particularly crucial for the test prable this paper, because the asymptotic
null distribution of conventional test statistics are disttnuous functions of the population CDFs.

The literature on shape-constrained estimation via gjitime empirical distribution, overlaps
with this paper. It focuses on nonparametric density antessgon estimation, for example, Hall
and Huang (2001, 2002), Carroll et al. (2011), and Du et &18 among others, where en-
forcement of the constraints is on a predesignated grid mtpthat the practitioner must choose.
By contrast, the constrained estimation method this pagmgrgses is for distributions and uses a
data-driven grid of points.

There are also tests for restricted stochastic dominaratgutsit a null and alternative of non-
dominance and restricted dominance, respectively; fangka, Berger (1988), Davidson and Duc-
los (2013), and Alvarez-Esteban et al. (2017). By contast,paper and the literature discussed
earlier, have non-dominance as one of the configurationsruthé alternative. Therefore, these
two approaches are not directly comparable, but they do @mment each other.



1.2 Organization of The Paper

We organize the paper as follows. Section 2 introduces titesstal framework of LSW. Sec-
tion 3 introduces the constrained empirical likelihoodimization problem, the data-driven dis-
cretization method and its asymptotic properties, and tbpgsed contact set estimator. Section 4
presents the asymptotic null properties of the proposethcbset estimator and modified LSW
test. Section 5 presents the asymptotic power propertiéggeomodified LSW test. Section 6
reports the results of Monte Carlo simulations. Sectionntiooes the empirical illustration de-
scribed above, and Section 8 concludes.

2 Setup

2.1 Statistical Model, Null Hypothesis and a Property of theMoment Func-
tions

Let P, denote the “true” distribution of the random veckr= [X#, X P]. For ease of exposition,
letG, = {x — g (x;t),t € [t, ]} denote the set of moment functions in (1.1), where

g(X;t):%l 27 < ] —%1 (24 < 1]

Implicit in this notation for the moment functions is the erdf stochastic dominance,c Z,,
which is fixed by the null hypothesis. Givene Z, and the intervalt, ¢], the testing problem of
main interest takes the following form:

Hy: Ep,[g(X;t)] <0Vt € [t,t] versus H, : 3t € [t, ] such thatEp, [g (X;t)] > 0.

Let P denote the set of all potential continuous distributionXothat satisfies the following
assumption.

Assumption 2.1.(i) [£, ] C Interior(supp(P4) U supp(Pg)); (i) supp(P) C R?; (iii) {X;}}, is
i.i.d. P,and (iv)suppep Ep [|XE[HEDVDH] < 4o for K = A, B, and for some > 0.

DefineP, = {P €EP:Eplg(X;t)] <0 Vtelt, ﬂ} . This paper characterizes submodel$gf
that serve as models of the null hypothesis for which the ggegd testing procedure has asymp-
totically exact size and is asymptotically similar. Altlghuthe term ‘size’ and ‘similar’ relating to

a test are quite familiar, it is convenient to recall thedaling asymptotic versions (for e.g., see
Definition 1 of LSW).

Definition 2.1. Suppose thdl C P, is the model of the null hypothesis. (i) A teswvith a nominal
level « is said to have aasymptotically exact sizéthere exists a nonempty subget C 2 such
that:

limsup sup Epm < o, and (2.1)
n—+oo PeQ
limsup sup |EpT —af = 0. (2.2)
n—+oo PeQ)

(i) When a testr satisfies (2.2), we say that the tesasymptotically similaon €'
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At the heart of the desirable properties that emanate framptibposed modification is the
combination of constrained estimation and the inherentmegative covariance structure among
the elements ofg (X;¢) : t € A(P)}, whereA(P) = {t € [t,f] : Ep[g(X;t)] = 0} is the
contact set with respect t8 € P. The non-negative covariance structure is due to the foligwi
property ofg;.

Property 1. For eachs € Z,, the class of functiong, satisfies the following property. For each
x € R? eitherg (x;t) < 0Vt € [t,T] org(x;t) > 0Vt € [t,1].

This property states that the sign of the moment functipis determined solely by its first ar-
gument — the datx. It is a consequence of the moment functions having the fgfrit) =
h(z®B;t) — h(z4;t), whereh(z; t) is weakly monotonically increasing in its second argument f
a givenz € supf Px), K = A, B. This property of the moment functions implies that for any
P eP,Covp(g9(X;t1),9(X;t2)) = Ep[g(X;t1) g (Xsta)] > 0Vt ta € A(P).

2.2 Test Statistic, Asymptotic Theory and LSW Bootstrap Pra@edure

The test statistic LSW use is of the Crameér-von-Mises typehe setting of this paper it is given
by T, = n [} max{Ep, [g(X;1)],0}%dt, whereP, = n~' 3" | dx, is the empirical measure based
on the random samplX; }i,, and £, denotes the expectation und@r. Theorem 1 of LSW

establishes the pointwise-asymptotic null distributié¥p using the Donsker property ¢f, for
eachs € Z, :

(2.3)

o i [Fa e 001 P P
0’ if P < 7)0 - 7)007

wherePy, = {P € Py: fA(P) dt > 0} ,andv(-) is a zero-mean Gaussian procesgof with
covariance kernel'(t;,t2) = Covp (g (X;t1),9(X;t9)), fort,, to € A(P).

The asymptotic null distribution of, depends on the form of contact s&t( /) . Hence, it
exhibits a discontinuity in the underlying probabili/that generates the data. A consequence of
the discontinuity is that it invalidates the use of the cacamonparametric bootstrap implemen-
tation of7,, for testingH,. For this reason, LSW propose a bootstrap testing procetateises a
contact set estimator. Their contact set estimator is ditfige

Ay ={telt.d: Ep g (X:D]| < ra}, (2.4)

where{r,}, -, is a suitably chosen null sequence of positive (possiblyloar) numbers that
satisfies,/nr, — +oo asn — +oo.

The LSW bootstrap procedure follows these steps. Using ke dompute?, and7},. Then
draw a random sample of size {X},};L,, forl = 1,..., B, using resampling with replacement

from P,. Then for each bootstrap sample, compute the bootstraptagistis as follows:

t
A / (max (G, 01) dt, i [, dt =0,
Ty, =<7t (2.5)

/A (max {G,;, 0})* dt, if Ja, dt >0,
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where

n

1 *
Gn,l:%i:1 [ (le; ) E]—:’n [g(th)Hv lzla---vBa
is the bootstrap emplrlcal process am;i as defined in (2.4). After that, compute the approximate
bootstrap p-valu&'z = B~* 3.7 1[T*, > T,]. Finally, rejectH, if T3 < o, wherea € (0,1/2)

is a given nominal Ievel

The modification of the LSW test this paper proposes folldvessteps of their bootstrap proce-
dure, but replaced,, with a different set estimator ok (Py) . As their contact set estimator (2.4)
employs the empirical measufg, which is the unrestricted empirical likelihood estimatét,
this paper proposes to replaée with the constrained empirical likelihood estimator &f that
imposes the restrictions of the null hypothesis.

The benefit of using the proposed modification is that it refdates the LSW bootstrap test
statistics in a data-dependent way that incorporates #tiststal information contained in the con-
straints of the null hypothesis. Under the null, our apphoatposes restrictions that are correct,
which yields a more accurate estimator of the contact setpnmsequence, the bootstrap distribu-
tion under our method is more reliable than the distribudbfﬁg,l as an estimator of the sampling
distribution of 7,,. Under the alternative, the constraints our method imposefatse but enables
the modified test to be better than the LSW test at detectiaigttie alternative hypothesis holds.
The next section introduces the empirical likelihood eation procedure and the contact set esti-
mator based on it.

3 Empirical Likelihood and Contact Set Estimation

Consider the following constrained empirical likelihoggatinization problem:

p= argmaX{Zlog (p): Y _pig (Xist) SOVEE LT, Y pi=1,p > OW}, (3.1)

=1 =1 i=1

wherep = [p1,p2,...,D,] € R™. Given a sample size;, there is a continuum of constraints
being imposed in estimation and there is a finite number ofceheariables. This feature of the
optimization problem classifies it as a (strictly concavesinfinite programming problem (SIP)
with a random constraint set.

For the case = 1, the optimization problem (3.1) is, in fact, a finite programgiproblem:
there is a finite subset of the constraidy_, p;g (X;;t) < 0Vt € [t,t] for which p is also the
solution of the optimization problem that replaces thistcarum of inequality constraints with that
finite subset. However, it is, in general, not possible to &rslich a finite subset of the continuum
of inequality constraints for orders of stochastic domoen> 1.

We propose a data-driven discretization scheme for the &Blgm (3.1). Fors > 1, the
solution of the discretized SIP problem approximates tfes3Holutionp, and in the case of = 1
it is equal top. The discretization scheme uses a finite subset of the camtstya_, p;g (X;;t) <
0Vt e [t,7] whose index set],, = {t(;}}_,, comprises the order statistics pK; ,XiB}?:1 N
(t, 1)U {z,%} , Wheret gy = t andt(y) = . The solution of the discretized SIP problem is defined



as

p = arg max {Zlog (pi);ZpZ—g (X;t) <0Vt e 7;,2])2- =1,p; > OVZ} . (3.2)
i=1 i=1

i=1

As the discretization is data-driven, there is an addifidenger of randomness that must be ac-
counted for in deriving the subsequent large-sample sult

Next, we characterize subsets®fwhere the probability of the eveqp andp exist} tends to
unity exponentially fast and with uniformity. The unifortyin the convergence is so that the same
minimal sample size controls the probability of that evemtdll elements in the particular subset
of P, which is particularly important because the test statisticibits a pointwise discontinuous
limiting behavior.

Definition 3.1. Let f(2#, 2¥) denote the joint density function corresponding to a joistribution
P € P. Foreach; € (0,1) andc; € (0, (f — t)~?) define the sets of probabilities

Pi(c1) = {PEP:P sup g (X;t) <0 ch} and (3.3)
te(t, i)
=P : inf A 2By > _ 3.4
Py (c2) { GP(MﬁgWMmf@,x)_@} (3.4)

In Appendix C.1.1, we show that Part (i) of Assumption 2.1 liepthat P[sup,c;, 7 9(X;t) <
0] > 0 for eachP € P. Therefore, the seP,; (¢;) restrictsP by excluding distributions that are
arbitrarily close to distributions that place zero proltigbon the even{sup,c, 7 g (X;t) < 0}.
The setP, (c2) also restrictsP, but by excluding distributions whose joint densities alateatrily
close to zero on the squafet| x [t,t]. This condition begets the uniform convergence of the
sequencg7,}, -, to the intervalt, 7] in the Hausdorff metric.

The constantsg; andc,, appear in the base of the exponential rate of uniform comveng
of P[pandpexisi to unity; see Section F.1 in Appendix F for more details. Thesticular
numerical values of these constants yield explicit ratesnifiorm convergence. In practice, it is
important to verify that there are values of these constinatisare consistent with,, i.e., there
exists values of; € (0,1) andc, € (0, (£ —t)~2) such that?, € Py (c1) and/orPy € Ps (cz) . In
Appendices C.1.1 and C.1.2 we discuss how to verify thesditions in using statistical tests.

We have the following result.

Theorem 3.1.Let p andp be given by (3.1) and (3.2), respectively. Furthermoregtmhs € Z . ,
¢; € (0,1)andc; € (0, (f—t)72) , letP; (¢;) andP, (c2) be given by (3.3) and (3.4), respectively,
in Definition 3.1. The following statements hold.

1. Lets = 1. For eachr; € (0, 1), lim,, o infpep, () P [P =P] = 1.
2. Lets > 1. Foreachr; € (0,1),c; € (0, (f —¢)~?) and for each > 0,

im  sp P[B—pl>d=0
n—+0o0 PePi(c1)NP2(c2)

where|| - || denotes the Euclidean metric &.
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Proof. See Appendix E.1. O

Part 1 of Theorem 3.1 indicates that for= 1 and large enough, the vector of probabilities
p andp coincide with uniformity over sets of probabilitié® (c). Part 2 of Theorem 3.1 estab-
lishes the uniform convergence of the error betwgeand p to zero over sets of probabilities
Pi(c1) N Po(c2), for anys > 1. The result of Theorem 3.1 is crucial for ensuring good finite-
sample properties for the modified LSW test because the t{pisi@) limiting distribution of the
LSW test statistic under the null hypothesis exhibits vasitorms of discontinuity; see (2.3).

The computational cost g is rather low, even when is large. For brevity, we relegate to
Appendix C.1.3 a discussion of this point and show how to oupithe numerical accuracy of the
optimization problem (3.2).

The contact set estimator this paper proposes is defined as

A= {tet]: 1B, lg 0] < ri}, (3.5)

where P, = S p:0x, andp is given by (3.2). SinceP, is obtained without imposing the
restrictions of the null hypothesis, the resulting estondf; [g (X;-)] of Ep [g(X;-)] does not
necessarily satisfy the restrictions of the null hypothedBy contrast, the definition af, im-
plies £ [g(X;-)] satisfies the constraints (1.1) when= 1, and approximately satisfies these
constraints wher > 1, but with the approximation error disappearing asymptdicevith uni-
formity.

The next section presents the uniform asymptotic null prtiegseof the contact set estimator
A, and the asymptotic size properties of the proposed testimgedure which uses it instead of
A,, in the LSW bootstrap procedure.

4 Asymptotic Null Properties

4.1 Behavior of The Contact Set Estimator

The following definition characterizes subsetsgfon which we establish the uniform asymptotic
properties ofA,, under the null hypothesis.

Definition 4.1. For eachs € Z, ¢; € (0,1), ¢ € (0, (I — t)~?) ande; € (0, +00), let

{P€Py(c1): inf Eplg®(X;t)] >3}, ifs=1

o {P € Py(c1, ) : i&fp) Ep [¢* (X;t)] > 3}, if s> 1,
te

Wherepo(Cl) = 7)0 N Pl (Cl) andP()(Cl, Cg) = P() N 7)1 (Cl) N PQ(CQ).

Definition 4.1 distinguishes the cases= 1 ands > 1 because there is an additional layer
of randomness due to the discretization scheme that affeetasymptotic behavior ak,, when
s > 1 which does not arise in the case- 1. The defining conditiofinf;capy Ep (g% (X;t)] > ¢3
in this Definition restricts?, by excluding probabilities whose variances of the momenttions
that are indexed by the contact set are arbitrarily closeto.4t begets the convergence in proba-
bility to zero of the Lagrange multipliers from the problem(B.2), uniformly overP;(cy, ¢z, ¢3).
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For brevity, we relegate the formal statement and proofisftéchnical intermediate result to Ap-
pendix G. This type of condition is common in models with atérdimensional parameter and a
finite number of moment inequality restrictions for achreyuniform asymptotic validity of pure
and Generalized Empirical Likelihood tests using the dpakaach. See, for example, Condition
(i) of Definition 3.1 in Canay (2010), and Condition (b) ofsBumption GEL in Andrews and
Guggenberger (2009).

We have the following result.

Theorem 4.1. For eachs € Z,, let the contact set estimators, and A, be given by (2.4)
and (3.5), respectively, arfflygy = {P € Py : A(P) # 0} . For eachs € Z,, ¢; € (0,1),¢5 €
(0,(f—1t)7?) andes € (0,+00), let Ps(ci, ez, c3) be given by Definition 4.1, and the following
statements hold.

1. lim, o0 infpepS(cl cores) P [Epn lg

( X;t)] Vt € [t,7]] =
Moreover,{P, # P,} — {Ep g (

; )] vt e [t, t]}

~

3. limy 400 SUP peps (er caes) - [An C A, =0.
4. 11mn—>+oo ianePg(chcg,cg)ﬂPooo P |:An g Ani| > %

5. ¥e > 0, iy, oo infpep P | A, € {t € [17]: |Eplg (Xit)]] < (14 ra}| = 1.
Proof. See Appendix E.2. O

Remark 4.1. Part 1 of Theorem 4.1 is the consequence of the marriage betRmperty 1 of the
moment function and constrained empirical likelihoodrestion introduced in Section 3. This
result is used in the proofs of Parts 2 - 4 of the same theorem.

Remark 4.2. Parts 2 and 3 of Theorem 4.1 imply the LSW bootstrap tesisﬁtaflli”;, described
in (2.5), weakly dominates its modified counterpart stottbally at the first-order, conditional on
the sample[ X}, whenn is large enough. Moreover, this ordering holds strictly loa évent
{A, € A,}. Part 4 of Theorem 4.1 indicates the probability{df, C A, } in large samples, with
unlformlty This result is derived from Lemma G.1 which uses classical Berry-Esseen bound
for s = 1, and the generalized Berry-Esseen bound of Feller (1968hwhe 1. Fors > 1, the
proof does not require the existence of higher-order absohoments of the moment functions,
i.e.,d < 1in Condition (iv) of Assumption 2.1 is feasible.

Remark 4.3. The set{t € [t,7] : |Ep [¢(X;?t)]| < (1 +€)r,} is an enlargement ofA(P) that
shrinks to it as the sample size tends to infinity becauset €)r,}, -, is a null sequence for
eache > 0. Therefore, Parts 2 and 5 of Theorem 4.1 imply that the twoamirget estimators
converge toA(P), uniformly overP;(cy, co, c3). These results of this theorem drive the uniform
asymptotic equivalence of the testing procedures underuhgewhich the next section presents.
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4.2 Asymptotic Size Properties

This section introduces the asymptotic size propertiehefproposed modification of the LSW
test and characterizes the sets of probabilities undeferulthich the proposed test has asymptot-
ically exact size. LSW pay attention to the control of asyotiptrejection probabilities uniform in
P € P. They introduce a regularity condition on the asymptotic §&#an process in (2.3) with
respect ta-enlargements of the contact setr) = {¢ € [t,7] : |Ep [ (X;t)]| < r} . For ease of
exposition, this condition is given by Definition C.1 in Apyix C.2.1 along with a discussion.

The set of probabilities under which the proposed bootdaphas asymptotically exact size
is given by the following definition.

Definition 4.2. (i) For eache > 0, s € Z,, ¢; € (0,1),¢5 € (0, (f —t)7?) ande; € (0, +00), let
P§(c1, 2, c3, €) be the collection of probabilities iR; (¢, c2, c3) under whichw in (2.3) isregular
on B,, in the sense of Definition C.1, for eaeh> 1, where
B, — B (_(1 —€)rn), ff Js(4pm, dt >0, and
[, 1], it [oasom d=0;

(i) Given &, — 0, let Pgy(c1, ca, c3,€,{&,}) be the collection of probabilities i (¢, ca, 3, €)
under which for each > 1/e¢, v in (2.3) isregularon B (n_1/2§n) in the sense of Definition C.1,

/ dt >0 and dt <&,. (4.2)
B((1=€)rn) B((1+€)rn)—B(n=1/2¢,)

Denote byYy = B~'37 1[T7, > T,] the bootstrap p-value that uses the bootstrap test
statistics{7*,}7 , computed as in (2.5) of the LSW procedure, but withreplaced by\,,.

(4.1)

Theorem 4.2.For eachn, let A,, denote the Borel sigma-algebra generated by the randomeamp
{X;}r,.Foreache > 0,s € Z;,c; € (0,1),¢5 € (0, (f—¢)~2) andes € (0, 400), YTy
0 conditional onA4,, uniformly in P5(cy, ca, c3, €).

Proof. See Appendix E.3. O

Theorem 4.2 establishes the asymptotic equivalence of doéstrap p-value§ ' and T,
uniformly over Pj(ci, ¢z, cs,€). For eache > 0, s € Z., ¢; € (0,1),¢; € (0,(—¢)%) and
c3 € (0,400), the LSW test has asymptotically exact size, in the sense Ghien 2.1, uni-
formly over a superset 0%; (c1, ¢z, c3, €); therefore, it also has this property ovef(c, co, 3, €).

Consequently, the proposed test inherits the uniform agytnoroperties of the LSW test over
the setsP;(c1, c2, c3, €). By applying Theorem 2 of LSW in the setup of our paper, thespgrties
are: foreact > 0, s € Zy, ¢; € (0,1),¢2 € (0, (—¢)72) ande; € (0, +00),

(I) lim SUPp— 400 SupPEPOS(c1,cz,cg,e) P[TOO S a] S «, and

(i) Hmsup,,_, o SUP peps, (cr 0056 {€n]) |P[To < a] —a| = 0, for each decreasing sequence
& — 0.

Therefore, Theorem 4.2 implies that these properties hihil ¥, replaced byl ...
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Remark 4.4. The subsets dP, that establish the validity of the testing procedure thisgvaro-
poses (i.e., Definition 4.1) are subsets of their LSW copates. They are sets of probabilities that
can be included in the empirical likelihood framework. Th¢eat to which they are smaller than
their LSW counterparts depends on the specific choices afdhstants:;, ¢, andcs. In general,
the closer these constants are to the lower bounds of theiaths, the subsets @, demarcated
by Definition 4.1 are closer to the LSW counterparts. For edsexposition, Appendix C.2.2
elaborates on this point, and Appendices C.1.2 and C.2cBiskes the choice of the constants in
practice.

5 Asymptotic Power Properties

5.1 Test Consistency

This section establishes consistency of the proposedggstocedure.

Theorem 5.1.Givens € Z., suppose’ € P —P, is such thagffmax {Ep[g(X;t)],0}* dt > 0.
Then,lim,_, o P[Tp < a] = 1.

Proof. See Appendix E.4. O

Therefore, the proposed test is consistent against athaliges. This property is also shared by
the LSW test; see Theorem 3 of their paper. The next sectionsts on the local asymptotic
power property of the proposed test and compares it to the te3¢tV

5.2 Power Against Local Alternatives

This section compares the local asymptotic power functmhthe LSW test and its modified
counterpart, as well as the direct comparison of their Ipoavers at equal sample sizes. This
sort of comparison of the tests requires that we specify afgatobabilities satisfying Part (i) of
Definition 4.2 as the model of the null hypothesis, where itiné bf the local alternatives (in some
topology onP), satisfiedim,, , ., P, € Poo.

To that end, we introduce the following notation. Consideeguence of probabilities under
the alternative hypothesi§pP,}, ., C P — Py, such that

Ep, [9(X;t)] = H(t) +6(t)/v/n ando?, (t) = Ep, [¢* (X;t)] = (Bp, [9 (X 1)),  (5.1)
where the functiong! (¢), 6(¢t) ando?, (t) satisfy the following conditions.

Assumption 5.1. (i) [, dt > 0, whereC = {t € [t,7] : H(t) =0} .

(il) supyepg H(t) < 0. (i) [, max {6(t), 0} dt > 0. () inf,c, g pen 0, () > 0.

Except for Part (iv), Assumption 5.1 is identical to Assuiapts of LSW. Therefore, the sequence
{P.},~, represents local alternatives that converge to the boymaéants?,, at the,/n rate in the

directiond(t). Part (iv) ensures the valid use of the Weak Law of Large Nusibad the Central
Limit Theorem for triangular arrays of row-wise i.i.d. rand variables.
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Givens € Z, , define the collection
H = U {Ps(cr,ca,c3,€) : [c1, 00, c3,€) € (0,1) x (0,(F—1)7) xR, }, (5.2)

whereR? , = (0, +o0) x (0,+00). The setH collects all submodels o, that are characterized
by Part (i) of Definition 4.2. Additionally, for eacht € H, defineP;(£2) as the following set of
local alternatives

Pi(Q2) = {{Pn}n21 C P — Py : conditions (5.1) andAssumption 5.1 hold,

and lim P, € Py N Q} ) (5.3)

n—-+4o00

5.2.1 Behavior of Contact Set Estimator Under Local Alterndives

We first present a result that characterizes the behavidneotontact set estimators under the
collections of local alternative sequences (5.3).

Theorem 5.2.Let s € Z, andH be given by (5.2). For each € H, let P;(£2) be given by (5.3).
Then, for eact2 € H, the following limits hold for eacH P, },., € P{(Q) :

1. limy, oo P [Ep g (X50)] < Ep [9(X;t)] VE € [8,7]] = 1.

2. limy, 1o Py |C C A, C An} -

3. ity yo0 Py | A, C An} —0.

4. lim,_ioo Py [A, C{t € [L7) 1 |Bp, [g (X)) < (1+ e)rn}} — 1 Ve > 0.
Proof. See Appendix E.5. O

The results of Theorem 5.2 are similar to those of Theoreniodt Linder local alternatives. Parts
2 and 3 of Theorem 5.2 imply th@j,f < T; holds with probability tending to unity, conditional on
the data. Thus, when some moment inequality is satisfiedruhdelternative and is sufficiently
far from being an equality, then the proposed procedurectietieis configuration more easily than
the LSW procedure, and therefore, take it into account bivelehg a bootstrap p-value that is
suitable for the case where this moment inequality is owhitte

5.2.2 Comparison of Local Asymptotic Power Functions

Next, we compare the local asymptotic power functions ofLiBé/ test and its modified counter-
part. We have the following corollary to Theorem 5.2.

Corollary 5.1. Let s € Z, and suppose the conditions of Theorem 5.2 hold. Then, fan eac
Qe H,

1. lim,, o0 Py [YOO < a] — lim,, o0 P [YOO < a} V{Pu},or € PIQ).
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2. and large enough,
P, [YOO < a] > P, [‘roo < a} V{P.},o1 € PO, (5.4)

Furthermore, the inequalities in (5.4) are strict for eg€h}, ., € P;(Q) such thaBN €
Z..,forwhich P,[A, € A,] > 0¥n > N.

Proof. See Appendix E.6. O

Part 1 of Corollary 5.1 establishes the equality of the lingitlocal power functions of the
two testing procedures in testing problems where the nutleteare demarcated by Part (i) of
Definition 4.2, and with a corresponding set of local altéusasequences defined by (5.3). In
conjunction with Theorem 4.2, Part 1 of Corollary 5.1 indésathat the testing procedures are
asymptotically equivalent. Part 2 of Corollary 5.1 showes tiodified test has local power no less
than that of the LSW test in large samples, and strictly higheal power along sequences of local
alternatives for which the probability of the proposed emhet estimator being proper subset of
its LSW counterpart, is positive.

The consequence of Part 2 of Corollary 5.1 is that the tegtingedures may differ in large-
samples. This occurs along local alternatives for th?g[ﬁn - An] > 0 holds in large-samples.
Thus, a comparison of the tests that stops at the result ofIR&rCorollary 5.1, is misleading.
The result of Part 2 of Corollary 5.1 implies that a more infative comparison is in terms of the
criteria: efficiency, deficiency, and normalized deficientge ensuing section presents results for
these types of comparisons.

5.2.3 Efficiency, Deficiency, and Normalized Deficiency

This section studies the relative asymptotic performari¢heotests using their minimal required
sample sizes for achieving a predesignated magnitude af pover. For every sample size
define

kp =min{N € Z, : P,[To < a] > P,[Too < a]Vm > N}. (5.5)

i.e. the minimal sample size the LSW test needs to attairl pom@er which is at least as large as its
modified counterpart along these local alternative seqegenihe relative asymptotic performance
of the two testing procedures is based on compatjngith n, when the former exists.

Consider the following collections of local alternativ€svens € Z ., for each() € H, define

P; L (Q) = {{Pn}n21 e P:(Q) : AN € Z, such tha,[A, € A,] > 0 ¥n > N, and
P[To <] /po € (0,1) asn — +oo} ., and (5.6)
Pi_(Q) = {{Pn}n21 € P3(Q) : 3N € Z, such thal,[A, € A,] > 0Vn > N, and
P, [Tw < a] N e € (0,1) @S — +oo} . (5.7)

Local alternatives in these collections must satisfy (5vith strict inequality whem is large
enough. These collections of local alternatives distislyihe cases in which, exists and does
not exist, in large samples.

We have the following result.
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Theorem 5.3.Let s € Z, and suppose the conditions of Theorem 5.2 hold. Furtherntetre,
be defined as in (5.5). Then, for eakhe H,

1. k, exists for large enough andk, > n, V{P,}, ., € P/ (), whereP; (Q) is given
by (5.6). B

2. k, does not exist fon large enoughy { .. },.., € Pi _(Q2), whereP; _() is given by (5.7).
Proof. See Appendix E.7. O

Theorem 5.3 distinguishes the cases whgexists and does not exist, in large samples. In light
of the result in Part 2 of Corollary 5.1, Part 1 of Theorem Bi@c¢ates the local power functions
n Pn[Too < al andn — Pn[“foo < al, whenn is large enough, are increasing towards
a horizontal asymptote at,, € (0,1). This large-sample behavior of the local power functions
implies thatk,, exists and satisfies, > n. By contrast, Part 2 of Theorem 5.3 indicates the
power functions are decreasing towards a horizontal asytepttp., € (0,1), whenn is large
enough. In this contingency,, does not exist in large enough samples, which does not pleclu
the comparison of the local powers. The only deduction isttit@LSW test can never outperform
its modified version according to any measure of relativégperance that use’s,.

Next, we characterize the large sample behavior of effigieteficiency and normalized de-
ficiency of the modified test relative to the LSW test. As aleanentioned, these criteria are
functions ofk,; therefore, for eacli) € H the comparison of the tests are based on the local
alternatives given by | (©2) in (5.6). Finite-sample efficiency and deficiency are defiagd

en = ky/n and d, =k, —n, (5.8)

respectively, and they are related through the followingagigne, = 1 + d,/n, for eachn.
Intuitively, these criteria quantify the ‘price’ of usinge LSW test instead of its modified version,
at sample size.

Historically, the literature has focused on deriving lowetinds on

liminfe, and liminfd,,

n—-4o0o n—-4o0o
that do not depend on the underlying population, becaugecthrapactly summarize useful infor-
mation on the relative asymptotic performance of staisfpcocedures, when these limit infinma
exist. See, for example, Theorem 1 of Hodges and Lehmani®),1®&ich provides a lower bound
on the asymptotic efficiency of Wilcoxon test relative to ttiest for testing against shift of a con-
tinuous distribution. In this paper, we derive lower boufatghese limit infima (when they exist)
that hold for a collection of local alternatives, becausytimdicate how low asymptotic efficiency
and deficiency of the LSW test, relative to its modified vansican actually drop.

More recently, Akahira (1999) provides examples of sta@gtproblems in which asymptotic
efficiency and deficiency fail to discriminate particulaatsdtical procedures. This contingency
occurs when the procedures in those problems satisfy

lim e, =1 and Ilim d, = +oc. (5.9)
n——+o0o n—-+00
See, for example, Albers (1975) for results of this sort wbmpares linear rank tests and para-
metric tests for the symmetry problem. For such situatigikahira (1999) also proposes that one
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compares statistical procedures usipgnormalized deficiency. This criterion arises from the fact
that the limits in (5.9) imply,, has the following expansion

ko = 0+ Lgn + 0(q0), (5.10)

wherel > 0, and{¢,}.>1 is a sequence of positive numbers such that, ., ¢, = +oo and

g» = o(n). From this expansion of,, Akahira suggests using the limiin,, . (d,/g,) = ¢ to
guantify the relative performance of statistical procedurAppendix B demonstrates numerically
that the limits in (5.9) also arise in testing inequalitytresions on a bivariate Gaussian mean,
when comparing appropriate versions of the LSW test andaidified counterpart for that testing
problem. Moreover, we find that, = /n is the appropriate normalizing sequence @ne:

19; see Appendix B for more details. Consequently, it is reaslento expect that asymptotic
efficiency and deficiency will not necessarily separate tB¥\Ltest and its modified version for
every sequence of local alternatives?i, (©2), for eachQ2 € H. Hence, for eac2 € H, we
characterize sub-collections &% , (€2) where the limits (5.9) hold, and compare the tests using
gn-normalized deficiency on these sub-collections.

The conditions of Part 1 of Theorem 5.3 are sufficient for tkistence ofk,,, which is because
they imply thatPn[Yoo <a] < Pn[“fOO < o] holds for large enough. We exploit this relationship
between the local power functions to classify local altéwea according to the different limiting
behaviors ot,, andd,,. The quantity that is key in doing so is

<Pkn T <a] - Py[To. < a])

<Pn[’foo <a] - bn>

Yy = : (5.11)

whereb, is the intercept of the linear function that passes throughpbints
(n, PT. < a]) and <k:n,Pkn T. < a]) .

Itis useful becausé,, = ni, holds whenevet:, exists, and it describes the relative concavity of
the local power functions — P,[To < o] andn — P,[T, < af.
We have the following result.

Corollary 5.2. Let s € Z,, and suppose the conditions of Theorem 5.2 hold. Furthernfore
eachn, let k, be defined as in (5.5) and, by (5.11). Additionally, for eac) € H, let P}, (€2)
be given by (5.6). Then, for ea¢h e H,

1. ¢, > 1 andd, > 0 for largen, and hencelim inf ¢,, > 1 andlim inf d,, > 0, V{Pn}n21 €

n—+o0o n—+o00
Pr ().
2. lrlzgligof en > 1, V{P.},5, € P; (€2) such thaﬂrllr_rgi&f , > 0.

3. lim e, =1,V{P,},., € P; (Q)such thatim sup ¢, = 0.

n—+o0o n—+oo

4. lim e, =1, lim d, =+oc0,and lim (d,/q,) = ¢ > 0wherek, = n+ {q, + o(q,) for
n——+o0 n—+00 n—+00

large enough, vV {P,}, -, € P; () such thatim sup ¢,, = 0 andliminf ny, = 400,
= ) n—-+0oo

n——+o0o
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Proof. See Appendix E.8. O

Overall, the results of Corollary 5.2 provide strong evicefor the superior performance of the
proposed testing procedure over the LSW test. The largelsaand asymptotic bounds in Part 1
of Corollary 5.2 indicate that in large enough sample sibhesnhodified LSW test is superior to
the LSW test according to efficiency and deficiency, for eauence of local alternatives that
satisfies Assumption 5.1 and the conditions of Part 1 of Térads.3. Parts 2 and 3 give conditions
under which the the asymptotic bound on efficiency in Part [Hhwith strictly inequality and
equality, respectively. Part 4 covers the case where astomfficiency and deficiency fail to
separate the tests. It establishes that, in large-samples; /q,. Thus, in this circumstance,
the price for using the LSW test is increasing with the sansje at the ratéq,. This point is
consistent with the fact that when comparing the tests alomgequences of local alternatives, the
testing problems become progressively harder as moreaigers become available.

6 Monte Carlo Experiments

This section reports the results of Monte Carlo experimémis compares the performance of
the LSW and Andrews and Shi (2017) (AS, hereafter) tests thigthr modified counterparts. In
contrast to the LSW test, the AS test uses a one-sided Kolmagdmirnov test statistic in which
the sample moments are Studentized. Furthermore, thegiBind the sample moments that arise
in the construction of their contact set estimator. See AgdpeD for a detailed discussion of the
AS test and how the results in this paper on the comparisavelegi the LSW test and its modified
version carries over to the AS test and the modified AS test.

The experimental setup is the same as the one in Section 5WfWwBo focus on testing for
first-order stochastic dominance. The simulation resoligcate the modified versions of the tests
are noticeably less conservative and have higher powemtpadson to their non-modified coun-
terparts. In each simulation experiment, the nominal lexa fixed at 5%, (t) = 6, v/log(n)/n,
whereé? = E; [9(X;t)]° — (Ep [g(X;t)])? andt € [t,7]. This choice forr, is the Bayesian
Information Criterion (BIC) choice. An alternative choier, = an~'/?loglogn, which LSW
use, is a constant function of [t, ¢], wherea is a given constant. Presently, there isn’t a theoret-
ical reason to prefer one choice over the other. Insteadntireent inequality inference literature
has relied on simulation-based evidence in proposing aelfor this localization parameter. An-
drews and Soares (2010) suggest the BIC choice for use itiggaand we follow their lead. We
sett = 0.05 andt = 0.95. Finally, the number of Monte Carlo replications was set tod®in
each simulation experiment, and the number of bootstrdations was 499.

6.1 Simulation Under H,,

We compare the type | error rate properties of the LSW and A tand their modified versions.
LSW use the following generating process under the null. Ilend U, be U(0, 1) random
variables. Then defin@? = U; and X4 = ¢, (Uy — ao)1 [0 < Uy < 2] + Usl [mg < Uy < 1],
wherecy = (zo —ap)/zo € (0,1) andz, € (0,1). In this setup, the inequalities (1.1) hold for each
s € Z., and we examine the case= 1. The cumulative distribution function (CDF) df 4 has a
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Figure 2: The empirical rejection probabilities under tid.n

“kink" at X+ = z, and the slope of the CDF changes frogrto 1 at the kink point:,. See Figure
2 in LSW for a graphical representation of these CDFs.

In the simulations we took, € {0,0.1,0.2,...,0.9} and¢, € {0.2,0.4,0.6,0.8} . The sample
size wasy = 500. The caser, = 0 corresponds to the least favorable case as the CDKs'aind
X? are equal to the CDF df,. For a givenc, > 0, the contact set gets smaller asincreases;
therefore, the data-generating process (DGP) moves aaaythe least favorable case toward the
interior of the null. For each of these DGPs, the two CDFs@dmon a set of positive Lebesgue
measure.

Figure 2 the empirical rejection frequencies of the testagwith their pointwise 95% confi-
dence intervals. For each valuef the discrepancy between the performances of the LSW and
AS tests and their modified versions are not large wheolose to zero, i.e. the least favorable
case. However, ag, increases i.e. the contact set get smaller, the rejectiolbailities under
the modified tests are statistically closer to the 5% nomadl than the ones based on the LSW
and AS tests. These results suggest the bias of the LSW ands#sSis larger than their modified
versions.

6.2 Simulation Under H;

Let us now focus on the power properties of the two methodmagdirections of non-dominance.
Directions of non-dominance in the alternative hypothésige stochastic dominance conditions
with some positive elements and some elements that areiveeg@bnsider the following config-
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Figure 3: The empirical rejection probabilities under thieraative: directions of non-dominance.

uration of DGPs from LSW. SeX* ~ U[0,1]. Then defineX? = (U — agbi)1[agh; < U <

xo) + (U~ apbe)1[zg < U < 1—aphy] forag € (0,1), whereU ~ U|0, 1]. As ay becomes closer to
zero, the distribution o ? becomes closer to the uniform distribution. The seglplays the role

of the "distance'P, is from H,. Whena, is large, P, is farther fromH,, and whem, = 0, X4
and X7 have the same distribution which meaRsbelongs to the model of the null hypothesis
under the least favorable configuration. For a graphicaictiep of the CDFs ofX4 and X, see
Figure 4 in LSW. We seth,, by, z9) = (0.1,0.5,0.15) anda, € {0,0.05,0.1,0.15,0.2,...,0.45} .
The configurations for which, # 0 correspond to alternative DGPs for which there are some
non-violated inequalities for the case©f 1 in the moments (1.1). We considered the following
sample sizes = 256, 512, 1024, and setX“ and the uniform random variable in the definition of
X to be negatively correlated, with a correlation coefficieit0.5.

Figure 3 reports the simulation results, which present thgiecal rejection frequencies along
with their pointwise 95% confidence intervals. For each damjze and for, sufficiently large,
there is no difference between the tests, which is expeated they are all consistent. For moder-
ate values ofy, the modified versions of the LSW and AS tests have statistioajher power than
their non-modified versions, and the power differences @alatge. For example, when= 256
anda, = 0.15, the difference in powers for the LSW and AS type tests areapmrately 10% and
21%, respectively. And when = 1024 anda, = 0.1, these differences are approximately 25%
and 12%, respectively.

These findings suggest that the modified tests can bettant d®®Ps inf, that are "close" td7,,
when the sample size is moderately large. Overall, the sitiom results show that our method
yields tests that perform better than their non-modifiediosrs.

7 Empirical lllustration

This section continues the discussion of the empiricasitation presented in Section 1. As an
important and substantial change in income can occur aeneéint, a central question for both
academic researchers and policy makers is whether poventgases at retirement. Recall that
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Hy : Faoos(t) < Faon(£) Vt € 250, 500] Ho : Faon(t) = Faooa(t) Vt € [250, 500]
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Figure 4: The left panel reports; [¢(X,-)] and E; [9(X,-)], and the values of the localization
parameter, () for the test problem (7.1). The right panel reports the sauatities but for the
test problem (7.2).

the left panel in Figure 1 depicts the empirical CDFs of wegeldt incomes (in 2001 Australian
dollars) from the HILDA panel survey for the years 2001 an@&@or households ‘at risk’ of
retiring. The data consists of n = 1351 pairs on householthoetmes.

In this illustration, the range of poverty lines is the imar[250, 500]. Thus, we focus on the
following first-order restricted stochastic dominance pesblems,

Hy: F2006(t) < FQOOl(t) vVt € [250,500] vs. Hi: NOtHo, and (71)
Hy: FQOOl(t) < FQOOG(t) vVt € [250,500] vs. H; : NotH,. (72)

In terms of the notation of this paper, the test problem (€dtfyesponds to the setup in which
populationsX“ and X are X2%! and X %% respectivelyt = 250, ¢ = 500, ands = 1. For the
test problem (7.2), the setup is the same as that for the fquroblem except that the roles &f*
and X Z are now reversed. We apply the LSW and AS tests along witl thedlified versions to
these test problems.

Figure 4 reports the sample-analog and constrained eraldikelihood estimates of the differ-
ences between CDFs for the two test problems. We,getas in the Monte Carlo experiments. As
can be seen in the left panel of Figure 4, the e\{ein,t - An} occurs. Thus, we expect the boot-
strap p-values of the modified tests to be stochasticallylenthan their respective non-modified
counterparts, conditional on the data, for the test prolfiléd). In contrast to test problem (7.1),
the right panel in Figure 4 indicates that this event doenotir for the test problem (7.2). Con-
sequently, the bootstrap statistics of the modified vessag not necessarily stochastically larger
than there respective modified counterparts, conditionahe data.

Table 1 reports the bootstrap p-values for the tests. Théruof bootstrap simulations was set
to B = 999, where the same random numbers were used in the implementdtibe tests, so as
to properly compare the outputs from the modified and non#ieaodests. With the nominal level
set toa = 0.05, all of the tests do not reject, in (7.1), while all of them, except the LSW test,
rejectH, in (7.2). Therefore, all of the tests, except the LSW teslidate poverty—as measured by
theheadcount ratie decreased from 2001 to 2006 in Australia for householdssktof retiring.
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Table 1: Bootstrap P-values

Procedure Test problem (7.1) Test problem (7}2)
AS 0.0761 0.01
Modified AS 0.0731 0.004
LSW 0.2142 0.0551
Modified LSW 0.1972 0.0470

8 Conclusion

While the main body of our paper focuses exclusively on th@li8st, the method we propose
extends to the testing framework of AS. Appendix D outlirfesse results for the AS test.

The modification this paper presents easily extends to theapa@entification setup in which
testing is on a finite-dimensional parameter defined by aefimitmber of unconditional moment
inequality conditions; for example, as in the general fraomix of Andrews and Soares (2010).
Within their setup, the surgical modification we proposemifies to solving a finite program:
constrained empirical likelihood subject to a finite numbemequality constraints. A detailed
theoretical analysis of this modification of their proceslgoes beyond the intended scope of
this paper. However, in Appendix B.5, we illustrate usingrape numerical example that our
proposed modification can improve the finite-sample progerinder the null hypothesis of such
tests, which points to the potential usefulness of our nethather moment inequality testing
problems.

The constrained empirical likelihood estimation methodglwe developed for restricted stoch-
astic dominance restrictions extends to other types ofesbapstraints that can be imposed through
tilting the empirical distribution function. Examples diape constraints that our methodology
extends to are monotonicity and modality of a density fuorc{e.g., Hall and Huang, 2001, 2002),
and convexity (or concavity) of a regression function (eldu et al., 2013). The key is that the
shape constraints are linear in the probabilitigs, . . , p,,.
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A Outline

This Appendix provides supplementary material to this papés organized as follows.
e Appendix B presents a motivating simple example of the nethis paper proposes.
e Appendix C covers further discussions of points raised enghper.

e Appendix D presents (i) the framework of Andrews and Shi @Qbut in the context of
testing for restricted stochastic dominance; (ii) the rfiodiion of Andrews and Shi’s test
based on this paper’s proposal; and (iii) the comparisonradréws and Shi’s test and its
modification under the null and local alternatives.

e Appendix E presents the proofs the results in the paper: reheo3.1, 4.1,
4.2,5.1,5.2, and Corollaries 5.1, 5.2.

e Appendix F presents technical lemmas used in the proof obigme 3.1.
e Appendix G presents technical lemmas used in the proofs ebfgms 4.1 and 4.2.

e Appendix H presents technical lemmas used in the proofs ebldms 5.1 and 5.2.

B lllustrative Example

This section illustrates the advantages of our generaloagprin the context of testing on a bi-
variate Gaussian mean. The hypothesis testing problemeagample of what Silvapulle and Sen
(2011) refer to as a Type B testing problem in Section 3.2 @it thook.

B.1 Statistical Model, Testing Problem, and Test Statistic

Let X = [X1, X5] ~ N(u, ), wherep = [uq, po] and2 is the2 x 2 correlation matrix with
correlation coefficienp. Denote by M the statistical model consisting of the set of all Gaussian
distributionsP of X that satisfy the following assumption.

Assumption B.1. (i) {X;}}, i.i.d. P, (i) x € R? and (iii) py = 1/2.

We setp, as positive to mimic the inherent correlational structueeaeen the moment functions
in (1.1) that are indexed by the contact set, which we distuSgction 3.
The hypothesis testing problem of interest in this exanmple i

Hy: pp <0anduy <0 versus H, : eitheru; > 0oru, > 0or both (B.1)
The model of the null hypothesis is definedey = {P € M : p; <0,j =1,2}.
Consider the test statisti, = max {\/nfi1, v/nji2}, Wherej; = n=t > " X, for j = 1,2.

Let £, q,(-,-) denote the cumulative distribution function (CDF) &1, €2), where(, is the
correlation matrix withp = po. The CDF ofT,, is F s, o, (u, u), for u € R.
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The pointwise-asymptotic null distribution @f, is non-degenerate provided the contact set,
A(P) = {j € {1,2} : u; = 0}, is nonempty:

Foq,(u,u) ifpg=pus=0

) if =0 <0
lim F 00 (1) = () SR Vu € R, (B.2)
n—-+00 ’ D (u) if iy <0, e =0,
1, If M1, 2 < 07

where0 € R? denotes the zero vector ardel-) is the CDF of N (0, 1). Hence,T;, exhibits a
discontinuity in its asymptotic null distribution as a fdion of the underlying distribution?, with
respect to the topology of weak convergence. This type ahasytic behavior motivates the use
of generalized moment selection (GMS) testing procedures.

B.2 Testing Procedures

This section introduces a GMS testing procedure that is ei@pease of the procedure Andrews
and Soares (2010) introduce, and its modified version thaased on the proposal of this paper.
The former test is defined & = 1[7,, > ¢, wherel][-] is the indicator function, and is the
GMS critical value. This critical value depends on a locatiian parameter through the GMS
function. This parameter is a sequer{eg}, of positive numbers such that ¢), — 0 and (ii)
V/nr, — +00, asn — +oo. The GMS function is the vectas = [¢;, ©»] whose components are

defined as follows
. 0 if || <rn .
SOJ — . |AJ| ] — 1’ 2
+oo if || >,
The GMS critical value is defined as

s inf{u e R: Foq, (u+ ¢1,u+ p2) > 1 —a}, if p#[+oo,+0]
inf {u e R: Foq, (u,u) >1—a}, otherwise,

whereq is the given nominal level.
The modified version of,, is 7,, = 1[T,, > ¢], where the critical valué is defined in exactly
the same way a& except that the constrained maximum likelihood estimataor,o

1 n
[L:argmax{——Z(Xi—,u)'Q_l (Xi—u);ueRz_}, (B.3)
2 i=1
replaces the estimatgr in the GMS functionp. The constraints in the definition ¢f are the
restrictions of the null hypothesis in (B.1). Using the KstmtKuhn-Tucker conditions for the
constrained optimization problem in (B.3), it is a strafghivard task to deduce that

A

i, fio] if fi1, fi2 <0
fir — pofl2, 0] if fiy <0, /12 >0
0, itz — pojta] i fiy >0, /1 <0
0,0] if fi, fi2 > 0.

[
fi = [fir, fio) = { (B.4)
[

We omit the statement of these first-order conditions fovibye
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B.3 Relative Performance of Tests Under The Null and/n Local Alterna-
tives

Setting the nominal level = 0.05 and the localization parameter = /log(n)/n, the following
numerical results establish the test’s exact sizes aregjppately equal to 0.05 for sample sizes
n = 100,101, 102, ..., 10000. The left panel in Figure 5 reports exact sizes of the testg;wdre
defined asuppc , Ep7, @andsuppcy, Ep7,. They were computed using numerical integration
and optimization packages in Matlab.

Exact Size Difference in Exact Sizes

x10~"

0.0503

tau tilde

0.0503

0.0502

0.0502

0.0502

0.0501

10* 10° 10"

10° 10°
Sample Size (log scale) Sample Size (log scale)

Figure 5: The first panel reports the exact sizes of the tesiad7,,. The second panel reports the
differencesuppe vy, EpTn — SUPpert, £pTn-

The right panel in Figure 5 reports the difference

sup EpT, — sup EpT,.
PeMg PeMy
Overall, the exact sizes of the tests are approximatelylequidne nominal level and they are
within 0.0003 of each other. Hence, it is reasonable to coefiee tests’ rejection probabilities
along local alternatives for sample size$> 100 without adjusting them.
Consider local alternatives?, }, ¢ M — M, whereP, satisfies the hypothesis

H,: pn=-01 and s, =2/v/n, Vn. (B.5)

Figure 6 reports the local powers of the tests/#dos 100,101,102, ...,7000. These numerical
results indicate that the local powers satisfy
lim Ep7,= lim Ep7,=1—®(c—2)~0.6388,
n—-+400 n—-+4o00
wherec = ®71(1 — «) is the common probability limit of and¢, andEp, 7, < Ep, 7, Vn.

In consequence, the equality of the limiting local powerctions does not reflect the large-
sample situation. In this case, the standard practice i®mapare the tests using the criteria:
asymptotic efficiency and deficiency. Furthermore, wheisehaiteria fail to separate the tests,
normalized deficiency suitably compares them. In this nicakexample, asymptotic efficiency
and deficiency ofr, relative to7,,, do not separate the tests as they are equal to unityasad
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Local Power Difference in Local Powers
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Figure 6: The left panel plots the local powets, 7,, and Ep 7,,. The right panel plots the differ-
encebp 7, — Ep, 7,.

Table 2: Relative Performance Criteria
Efficiency Deficiency /n-Normalized Deficiency

Finite-sample kn/n d,=k,—n dn/\/n
Asymptotic n1—1>r—|I—100 (kn/n) n1—1>r—|I—100 d, ngToo(dn //n)

respectively. We show/n-normalized deficiency of,, relative to7,,, separates the tests. These
criteria are functions ok,, = min{N € Z, : Ep 7, > Ep,7,Vm > N}, which is the minimal
sample sizer,, needs to attain the local power that is at least as large dsd¢hepower of7,, at
sample sizew. Table 2 defines these criteria. A valte,/n) > 1 or d, > 0 indicates that,,

is superior tor,,, because,, requires more observations thario achieve at least the same local
power of7,,.

Figure 7 reports the numerical values of the criteria dbscriTable 2. The leftmost panel
indicatesk,,/n > 1 ¥n > 100, and that it is decreasing to unity with the sample size. Tese
asymptotic efficiency does not reflect the relative behawiothe tests’ local powers in large-
samples, suggesting that it is insensitive to small powigeréinces in moderate and large sample
sizes. The middle panel
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Figure 7: The panels, from left to right, plot the efficiengy/n, deficiencyd,,, and normalized
deficiencyd,, /+/n of 7,, with respect ta,,, respectively.

indicates that/, > 0 Vn and diverges tot-oo, albeit slowly. The rightmost panel reports the
v/n-normalized deficiency criterion, indicating tHah,, . (d,,/+/n) ~ 19.

The conclusion from using normalized deficiency is the feilgy. In large sample sizes, the
number of additional observation needed to compensatehéoramount by whichep 7,. falls
short of Ep, 7,, is approximatelyl9,/n. Note that such a result is typically much stronger than
the mere assertion thaf, /n tends to 1 as — +o0. This result is not unusual because the local
alternatives (B.5) become progressively more difficultetedt as more observations are available.
Results of this sort exist in the statistics literature;, dee example, Albers (1975) for results
similar to our numerical findings, but in the context of thensgetry problem.

Now consider local alternativgs’,}, < M — M, whereP, satisfies the hypothesis

H,: pun =—2/v/n and jo, =2/v/n, V¥n=100,101,...,50000. (B.6)

Figure 8 reports the numerical results. They show7, > FEp 7, for all the values of» under
consideration, and that the local powers are decreasirgtiétsample size; therefore k,, does
not exist. This result does not preclude the comparison ethle tests. The only deduction is
that7,, can never outperforri, according to any measure of relative performance thatijsder
example, the criteria described in Table 2.

B.4 Synthesis

The marriage of constrained estimation and Condition gfifssumption B.1 (i.e., positive cor-
relation) produces the relative asymptotic behavior oftésés?,, and7,, described in the previous
sections. From the characterizationjofgiven by (B.4), this marriage yields

ﬁj < /lj for J=12 (B7)
with probability one under any? € M. Hence, there are sample realizations that satisfy
{i1j, < —rn < fij, <0} N{0 < fiy, <7t}

under the null and local alternatives of the form (B.5). Thesalizations imply¢ < ¢ occurs
because the modified GMS function omits and retains the dioan; and j,, respectively, to
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Figure 8: The left panel plots the local powets, 7,, and Ep 7,,. The right panel plots the differ-
encebp 7, — Ep, 7,.

computer, whereasp retains both dimensions to computelhus, whery:; < 0 holds (under the
null or alternative),, detects this configuration more easily thgnbecausg:; is a more reliable
estimator thari;, and therefore, takes it into account by delivering a critigdue that is suitable
for the case where this moment inequality is omitted.

The results of this section carry over to the more complataetup of restricted stochastic
dominance when combining constrained empirical likelth@stimation with the non-negative
correlational structure of the moment functions indexedh®y contact set. That setup is more
complicated because the statistical model is nonparawreetid there is a continuum of moment
inequality restrictions that characterize the null hygsik. Consequently, the discontinuity in the
asymptotic null distribution of conventional test statistis more complex than (B.2), and can
have a profound effect on the relative performance of théonet al. (2010) and Andrews and Shi
(2017) tests and their respective modified versions.

B.5 Negative Correlation: p < 0.

This section illustrates the finite-sample behavior of tb&td,7, and7,, under Hy, when the
correlation coefficient in Assumption B.1 is negative. Nttat negative correlations between
estimators of the moments in stochastic dominance conttrdp not arise; see Property 1 in
Section 2. However, negative correlations can arise inrdghpes of moment inequality models
(e.g., Andrews and Soares, 2010). Thus, the purpose ofdbima is to point at the potential of
the proposed modification to better control the type | erabe in finite-samples in comparison to
its plain-vanilla counterpart in such models.

Figure 9 depicts the exact sizes of the téstand7,, whenp = —0.9, where the nominal level
is a = 0.05. The exact size of, is 0.05 for sample sizes > 100, while its counterpart for,,
declines very slowly to the nominal level. In consequenke,testr,, over-rejects undef, for
n > 100. While the magnitude of the over-rejection by is not large, this may not be the case
when there is a larger number of inequality constraintstifemmore, the test, does not require a
size-correction. These features of the illustration remder method as potentially useful in other
moment inequality models as it circumvents the use of simeection tuning-parameters because
it can better control the Type | error rate in finite-samples.
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Figure 9: The first panel reports the exact sizes of the tesiad7,,. The second panel reports the
differencesuppe v, EpTn — SUPpery, £pTn-

C Further Discussion

C.1 Section3
C.1.1 Definition 3.1

Definition 3.1 specifies two subsets ®f, which areP; (¢;) and P, (c3). Focusing firstly on
P (c1) , we describe the eveRtup,, 7 g (X;t) < 0} . Itis given by

X4 <t, XB>1t!, if s=1,
sup g (X;t) <0, = {A B _} A A B . (C.1)
telt) {XA<t, XB>Tu{XA<t, XA < XB<E}, ifs>2

Hence, this event is a tail event, and Part (i) of Assumptidnraplies

P |sup g(X;t) <0| >0VP e P.

te(t,t]

Consequently, the sé®, (¢;) excludes distributions that place probability less thaon the re-
spective tail events in (C.1) when= 1, and whens > 1.

The sets of the forrP, (c;) also restrictP. They are subsets over which the convergence of the
grid 7, to the intervallz, 7], is uniform. These subsets exclude distributions whose ftensities
are arbitrary close to zero on the bjext| x [, t]. This condition is essential for controlling the size
of the derivative of the quantile function, with uniformitgpecifically, we express the elements of
the grid in terms of/(0, 1) random variables using the Mean Value Theorem, and therceci|s
of the marginal densities d? arise in it. This representation of the grid allows us to trsetheory
of maximal uniform spacings (e.g. Devroye, 1982) to essibthe uniform convergence of the
grid to the intervalt, . For ease of exposition, these intermediate technicalteeatg relegated
to Appendix F.
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C.1.2 \Verifying The Conditions of P, (¢;) and P, (c2).

The conditions of Definition 3.1 are, in fact, verifiable iraptice by means of statistical testing.
In the case of?; (1), givenc; € (0, 1) the testing problem is

H()IPO

telLi] telt,]

sup g (X;t) < 0] >, versus H;: P,

sup g (X;t) < 0] <. (C.2)

A t-test based on the statisticy . | 1 [suptew g (X;;t) < 0] and a least favorable critical value,
yields a valid testing procedure, in which the critical \v@akan be derived using, for example, the
canonical bootstrap in a standard way.

In the case o, (cz) , givenc, € (0, (£ — t)~?), the testing problem is

Hy : inf f(z*,2%) > ¢, versus Hj : inf fa?,2P) < ¢y,

(x4 aB)elt,t] x [tt] (x4 aB)elt,t] x [t1]

where f(z4, z7) is the joint density whose probability measureHs This testing problem is a
test on an intersection bound for the joint dengify#, #7). Hence, the estimation and inference
procedures Chernozhukov et al. (2013) introduce applyisaéisting problem.

C.1.3 Computational Aspects

The data-driven discretization scheme, introduced iniGe@, is a sequence of finite program-
ming optimization problems. The optimization problemsia scheme can be easily implemented
using standard numerical computing packages and builptimization routines (e.g., fmincon
in Matlab), even whem is large. That's because the constraints in (3.2) are liimetire choice
variablesp,, . .., p,. Furthermore, these problems are strictly concave; thexefois sufficient to
compute only a local optimum when searching for the glob&hapm (which is unique).

Property 1 implies the solutiof, given by (3.2), satisfies the following property

By, l9(Xi1)] < Bp, [9(X;1)] Ve L1, (€3)

when it exists. Therefore, the inequalities (C.3) can beduseincrease the numerical accu-
racy and speed of computation in the optimization probler®)(By replacing the constraints
Yo pig (Xy5t) <0Vt e T, with the following:

sz (Xit) <0 VieT,n{tetd:Ep [¢(X;t)] >0} and (C.4)
sz (Xist) < Bp [9(Xst)] VeeT,n{tetq: Ep lg(X;t)] <0}, (C.5)

The reason is that this replacement shrinks the domain giriblgabilitiesp, . . ., p, over which
the optimization routine searches for the solutipn . . , p,,.
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C.2 Section4
C.2.1 Regularity On The Asymptotic Gaussian Process

LSW pay attention to the control of asymptotic rejectionkabilities uniform inP € P. For this
reason, they introduce a regularity condition on the asgtigpGaussian processin (2.3) which
is given by Definition 2 of their paper. In the context of thegent work, this condition is the
following.

Definition C.1. A Gaussian processis regularon A C [t, ] if for any « € (0, 1/2], there exists
€ > 0 depending only om such that

P U max {v(), 0V dt < z} <1-a (C.6)
A

and for anyc > 0,

limsup sup P { < n} =0. (C.7)

0  PePo

/ max {v(t),0}* dt — ¢
A

Condition (C.6) is a weak requirement. It restricts the pallameter space by excluding prob-
abilities for which the bootstrap p-value has a large magst @b zero that exceeds. To under-
stand this condition, note that the bootstrap empiricatgss in the definition of the bootstrap
statisticT; converges to the Gaussian process the/n rate; therefore, the behavior of the se-
quence{r, },, implies the asymptotic behavior Gt; (conditional upon the data) is equivalent to
[, max {v(t),0}* dt, whereA, = {t € [t.1] : |Ep[g(X;t)]| < r,}. Condition (C.7) requires
all pointsc > 0 to be points at which the distribution of

/ max {v(t),0}” dt
A

is continuous, uniformly irP,.

C.2.2 Proposed and LSW Null Parameter Spaces

The sets of probabilities on which the proposed test has pitivally correct size are defined in
Part (i) of Definition 4.2. And the sets of probabilities onialthe proposed test is asymptotically
similar on the boundary of the null hypothesis are definedairt () of Definition 4.2. These sets
are subsets of their LSW counterparts that can be includédteiempirical likelihood framework
described in Sections 3, 4.1 and 4.2. The sets of probasiiiticluded in the LSW framework that
yield asymptotically correct size are: for eachk 0

Po(e) ={P € Py : vin (2.3)isregularonB,, Vn > 1},

where B,, is defined in (4.1), in Part (i) of Definition 4.2. And the sefspoobabilities in their
framework that yield asymptotic similarity are: for eack 0 and decreasing sequenge— 0,

Po (e, {€2}) ={P € Py(e) : vin (2.3)isregularonB(n~"2%¢,),
and(4.2) holdsVn > 1/¢}.
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A natural question to raise at this point is by how much theo§gtrobabilities in Parts (i) and
(ii) of Definition 4.2 are more restrictive than their LSW cdarparts. That is, given> 0 and a
decreasing sequengg — 0, how large are the set differences

Po(€) — Py(c1,ca,c3,¢) and Po(e,{&.}) — Pgylca, ca,cs,€,{&n}), (C.8)

wherec; € (0,1), ¢ € (0,(t — ¢)~%) andc; € (0,400). The answer to this question depends
on the values of the constantsfor j = 1,2, 3. It is easily seen that these set differences (C.8)
tend to the empty set as — 0 for j = 1,2, 3. In consequence, the sets of probabilities that are
relevant to our framework can be made arbitrarily close ¢&irthSW counterparts by setting, c;
andc; arbitrarily close to zero. Otherwise, for values of the ¢ants close to the upper bounds of
their domains, the set differences (C.8) can be non-néxdgigin practice, the appropriate values
for these constants can be determined via statistical #ygfendices C.1.2 and C.2.3 elaborate on
this point.

C.2.3 \Verifying The Regularity Condition in Definitions 4.1

The first step in setting up the model of the null hypothesiingd in Part (i) of Definition 4.2,
is to set values for; € (0,1), ¢, € (0,(t —t)™2) andcs € (0,+c0), SO as to designate sets
of probabilitiesP;(c;),j = 1,2, 3, respectively. Appendix C.1.2 establishes that the coorsti
that define the sets of probabiliti&(c;),j = 1,2 are, in fact, verifiable in practice by means
of statistical testing. In this section, we discuss how &t fer the condition that defines the set

7)3(03).
Givencs € (0, +00), consider the testing problem
Hy: inf Ep, [¢>(X;t)] > rsus H;: inf FEp, [¢* (X; : :
0 it Er [9* (X;t)] > ¢3 versus H, et Ery (97 (X;1)] <3 (C.9)

It is also testing problem on an intersection bound, buttertariances of the moment functions
indexed by the contact sé&t (F) . It should be noted that the methods Chernozhukov et al. (2013
introduce must be appropriately adjusted for this intdisedound testing problem because the
set over which the infimum is being taken depend$2pnwhich is a case that their work does not
cover. Such a modification of their testing procedures isydwer, beyond the intended scope of
this paper.

D The Framework of Andrews and Shi (2017)

This section specializes the framework of Andrews and )i {2 to the case of restricted stochas-
tic dominance described in Section 2. For each Z ., their statistical model coincides with
when the envelope and scale functions in their model arafsggbas

M (x) = s max {\§|, |f|}s_1 (\xB\s_l + |xA|S_1) and (D.1)
op(0)=1 for PeP, (D.2)

respectively.

A distinguishing feature of their testing procedure is ttiadir test statistic and it bootstrap
version employ Studentization. Specifically, they are fioms of Studentized empirical processes.
The next section details their testing procedure.
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D.1 Bootstrap Testing Procedure

We outline the steps of the bootstrap procedure Andrews an2817) (AS, hereafter) propose.
The Monte Carlo experiments implement their test in Secéidor testing restricted stochastic
dominance. They propose a Kolmogorov-Smirnov and CrarogrMises test statistics for in-
ference on possibly infinite number of conditional momeegumality conditions. Recall that the
setting of this paper considers a continuum of unconditior@nent inequality conditions, which
the AS procedure covers as a special case. In this settiagy3htest statistics are identical, and

given by
T, = sup (max {\/ﬁ (1 zn:g (Xmﬁ)) /&(t),O}) ,  Where (D.3)
te(t,t

2 (X, t) — [ Zg X“t] . (D.4)

Next we describe the steps for computing the AS bootstrap GiiSal value in the setting of
this paper. The critical value is obtained through the feitgy steps.

1. Computep,, (t) for t € [, t], wherep,, (1) is defined as follows. Let

&t) = k' (% > (X t)) 16(0), (D.5)

wherex,, = (0.3log(n))"/*. Define
2, (1) =6(t)B,1[6.(t) < —1] and B, = (0.4log(n)/loglog(n))"/?. (D.6)

2. Generate3 bootstrap sample@X;,l}:_L:l for{ =1,....B using the ECDF on the data.

3. For each bootstrap sample, compdtg! , ¢ (le; t), and6?(t) just ass?(t) is computed
but with the bootstrap sample in place of the original sample

4. Foreach bootstrap sample, compute the bootstrap téstistﬁ;l asT,, is computed in (D.3)

but with \/n (£ 3" | g (X;;t)) replaced by
V(A g (Xest) — 130 g (Xist) — %, (1) and with? (1) replaced bys?(1).

5. Take the bootstrap GMS critical valag;_, to be thel — o + n sample quantile of the
bootstrap test statisti(%r Ll=1,. } plusn, wheren = 1075,

n

For a given nominal level € (0, 1/2), the AS test reject#,, if T, > cn1—o- Denote their test by
7A'AS = 1[Tn > Cn,l—a]-
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D.2 Model of The Null Hypothesis

This section describes the subset$Ppfon which74° satisfies (2.1) in Definition 2.1. Define the
scaled covariance kernel function

Covp (9 (X;t1),9(X;t2))
VVARp (g (X; 1)) VAR (g (X t3))

hop(t1,t2) = th,ta € [L, 1], (D.7)

and consider the set of covariance kernels that correspoRglgiven by
C= {hgp(‘, ) :Pe P()} . (D8)
On the set define the uniform metric

d (h§>,h;2>) — sup

t1,t2€[t,1]

WY () =, B (t, 1) (D.9)

According to Theorem 5.1 of AS, the subsetsRfon which745 satisfies (2.1) are of the form
{P € P() : hgp - Ccpt}, (D].O)
whereC,,; is a compact subset 6fwith respect to the uniform metri(-, -). That is, givers € Z .,

lim sup sup Epit¥ < a, (D.11)
n—+00 Pe{PePy:hapECept},

for every compact subsét,; of C.

D.3 Proposed Modification of Andrews and Shi’'s Bootstrap Proedure

The proposed modification this paper suggests alters theest$¢) procedure by replacing the
sample-analog estimator of the moments in (D.5) with thestramed empirical likelihood es-
timator described in Section 3. Lét,(¢) be constructed in the same way @&s(¢), but with

S pig (Xi;t) in place of: >™" | g (X;;t) . Then, the contact set estimator in the AS procedure
and its modified version are given by

ARS =Lt e [t,1]:3,(t) =0} and AN ={tect,1:.(t) =0}, (D.12)

respectively.
Property 1 of the moment functions implies that

[t,7] — AAS C [t,7] — AAS (D.13)

holds numerically wheib exists and is characterisable by Lagrange multipliersctvis equiva-
lent to AAS C AAS. These set inclusions imply

Bult) =P, (t) fort e APS, (D.14)
Gu(t) >, (t) forte ARS — AAS and (D.15)
Bult) =P, (t) fort e [t, 7] — ALS, (D.16)
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whenp exists and is characterisable in terms of Lagrange mui/tispIiThus, conditional upon the
sample, the inequalities (D.14) - (D.16) yield , > T ., whereT];  is computed in exactly the
same way ag ), but with ,(-) in place of, (-). Moreover, ifAAS C AAS and AAS +£ §), then
T, > T, holds with positive probability conditional on the samplie consequence, we expect
that results analogous to those in the paper regarding tiéteSt and its modification would also

hold for the AS test.

D.4 Asymptotic Equivalence Under The Null Hypothesis

Appendix D.2 describes subsets7f on which the AS test is asymptotically lewel These sub-

sets differ from the subsets on which the LSW test is asynuatity level o. Hence, we must

characterize subsets Bf on which the AS test and its modification are asymptoticailyiealent.
Intuitively, we specify subsets @?, on which the AS procedure is asymptotically valid that

are relevant for the empirical likelihood framework thisppa introduces. For each € Z_,

¢ €(0,1),¢0 € (0,(—1¢)7%), cs3 € (0, +00) andC,,: compact subset df, these subsets are

7)69(01, Ca, C3accpt) = {P € 730 : h2P c Ccpt} N 7)3(017 Co, 03)7 (D17)

whereP(cq, 2, c3) is given by Definition 3.1.
The characterization (D.17) follows from an applicatiorPobposition G.1 in Appendix G.3 to

Ealt) = 1,V (Zﬁz’g (Xi;t)> /(1) (D.18)
=1
= 6u(t) + 1V (Z(@- -2 <Xz-;t>> /5t (D.19)
=1
appearing in the GMS functiop,(t). It yields
E.(t) = (1) + Op (k1) uniformly in Pg(c1, ca, 3, Copr), (D.20)
= &,(t) + op(1) uniformly in Pg(c1, ca, ¢3, Copt)- (D.21)

The large-sample behavior (D.21) implies that with probigitiending to unity,A//,jS andA’,jS tend
to A(Fy) asn — +oo, uniformly in P (¢, c2, ¢z, Cept)-

D.5 Relative Behavior Under Local Alternatives

Givens € Zy, c; € (0,1),c2 € (0,(F—1)"?), ¢5 € (0,400) andC,, compact subset af,
let P§(c1, ca, c3, Cepe) be the model of the null hypothesis. Consider a sequencecaf &terna-
tives{P,},., C P — P, such thalim,,_, ., P, € 9P§(c1, c2, c3,Cept), WhereoP(c1, ca, c3, Cept)
denotes the boundary of the null model.

Denote the modified AS test by*°. It was shown in Appendix D.3 that the bootstrap critical
value from#4% is never larger than that froi*®, for any P € P whenn is large enough. Because
the test statistics in these tests are identical, the argexi their bootstrap critical values implies
that

Ep "% > Ep,#"%, (D.22)
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holds, for large enough. Moreover, in light of the discussion in Appendix D.3, thigquality in
their local powers holds strictly whenever

P, |A?S C AAS and AAS £ 0| > 0, (D.23)

for large enoughn.

In consequence, results analogous to Theorem 5.3 and @yr&ll2 for the LSW test and
its modified version hold for comparison of betweet’ and74°. A remarkable point is that
additional regularity conditions of\?, }, .., are not required for these results, which is in contrast
to the comparison of the LSW test and its modified version fgseimption5.1), which is due to
the set inclusiom\AS ¢ AAS holding for large enough.

E Proofs of Results

E.1 Theorem 3.1

Proof. The proof proceeds by the direct method. The following randets are used in the proof:

HO(X) = {p €Hy: ipig (X;t) <0 Vte [Lf]} ; (E.1)
i=1

Hy(X) = {PEHnZZn:PiQ(Xz‘§t)§U VtG'E}7 (E.2)
i=1

’Hn:{peRn:ipizl,piZOW} and (E.3)
i=1

H,i:{pE]R":zn:pizl,pi>OW}. (E.4)
i=1

Part 1. This part of the proof covers the case of first-order stanhdsminance i.es = 1. The
moment functions in this case are therefore of the follovorgn:

g(Xpt) =1[XP <t] -1[X<t] telti]. (E.5)

As the difference betweeH? (X) and#°(X) is that the former constraint set is based on a subset
of the inequality constraints that define the latter comstiset, it follows thatH°(X) C #H?(X)
holds regardless of the underlying probability. To coneltite proof, we need to show the reverse
setinclusion, and then apply Lemma F.6 to establish#4X ) is asymptotically non-empty, with
uniformity.

Now we will show that the evert’ (X) C H°(X) occurs regardless of the underlying proba-
bility. We have that't € [¢,¢] — 7, 3j € {1,2,..., N} such that

L)y <t <tgq1)- (E.6)
Because the moment functions are of the form (E.5) for éachi, . . . , n, it follows that
9(Xist) = g(Xist() Vt e[t t] =T (E.7)
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HenceVp € HY(X)

D pig(Xit) =) pig(Xist) <0 te [t —To (E.8)
=1

i=1

Furthermorep € H(X) implies>"" | g(X;;¢) < 0 Vt € T,. Putting these two parts together
yieldsVp € H2(X) thatd " | pig(Xi;t) <0 Vi€ [t,1].

So we just proved that? (X) C H°(X) holds, which now in conjunction with the set inclusion
HO(X) C HY(X), impliesH?(X) = H°(X). Lemma F.5 establishes that when the extrema of the
SIP and its discretized counterpart exist, then the salg&is are both singletons equalpt@and
p, respectively. The constraint set equality we just proveplies the equalityp = p. Therefore,
to conclude the proof, we need to show that giver (0, 1), p exists and is the unique solution of
the SIP problem with probability approaching unity, unifdy over the set of probabilitieB; (¢, ).
Lemma F.6 establishes this result:

1= lim inf P[H'X)NH;,#0] < lim inf P[pexistsandisuniqje (E.9)

n—+00 PePi(c1) n—+00 P€P1(c1)

becausgH°(X) N HS # 0} C {p exists and is unigue, where#? denotes the interior of the
n — 1 simplex?#,,. This concludes the proof for this part of the theorem.

Part 2. We first present a sketch of the proof because the main stepage the intermediate
technical results presented in Appendix F.

Sketch of Proof The proof proceeds using the direct method. We derive arruppund
on ||p — p|| which converges to zero in probability, with uniformity eveet of probabilities
Pi(c1) () P2(c2). The derivations in the proof are based on the the occurrefitbe @vent

{p exists and is uniqye

That is, on this event, we construct the upper bound|pn- p||. The result then follows di-
rectly since Lemma F.6 in Appendix F.2 establishes thatefathe; € (0, 1), the probability of
{p exists and is unigueconverges to unity with uniformity over the set of probai®s P; (c;).
The proof proceeds in 4 steps, where the details of Stepsntl, 3 @re based on the contents in
Appendices F.2, F.5 and F.6, respectively.

Step 1 On the event thatp exists and is unique, Part 2 of Lemma F.5 in Appendix F.2 implies
the occurrence of the evefip exists and is unique, because the set inclusiéif (X) C H%(X),
holds.

Step 2 By Lemma F.9 in Appendix F.5, we can construct a probabigtorp in #°(X) NH?
thatis nearby tg. The consequence of this step is that by the triangular ifi#gua can conclude

Pay
2n3/2 :

B—Dl <IP->pl+I[B-Dbl where [p-p| < (E.10)
Step 3 Sincep € H°(X) NH, there exists a large enough> 0 such that|p — p|| < e. Then
Lemma F.10 in Appendix F.6 establishes, via a quadratic tfr@endition in a neighborhood of

p, that
h(B)—h(®B) _h®)—h®) ") ")

5 _ 52 < — E.11
P —p|° < e e + e , (E.11)
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whereK, = 1/(2¢? +10) andh (p) = — Y., log (p;) . Then noting that (p) — 4 (p) < 0 holds
asH’(X) C H2(X), it follows that

o - h(p)—h(p
Ip— B> < —(p)K ) (E.12)
0
Step 4 Combining the inequalities in (E.10) and (E.12), yields
o [R®) —R®)] | P
—pll < | ——F—" . .
15— bl < [ K + 5373 (E.13)

In consequence, to prove the result of this part of the thmepwee need to show that the two parts
on the right side of (E.13) converge to zero in probabilitighvwaniformity over sets of probabilities
Pi(c1) () P2(c2). Observe that by the inequalityg(1 +y) <y Vy > —1

h(i) — Zlog<1+p’ p’) sz b (E.14)

=1

Then using the construction of the probability vector intRaof Lemma F.9 i.ep; > p)/2 and
1D — pi] < ’% Vi, and the Cauchy-Schwartz inequality for sums yields

P — i 2
SO P o Bl < 2N — Bl < 1/, (E.15)
=1 Pi
Hence, from the inequality (E.13) it follows that
6 — Bl < (Kon) ™% + 0%, (E.16)

becausg;) <1
Therefore, the steps described above yields the followwegteinclusion

{p exists and is uniqueC {

B~ Bll < (Kon) ™/ 4072} (E17)

Hence, given; € (0,1) andc; € <O, g ) Lemmas F.5 and F.6 establish

1= 1 inf P [p exists and is unigue E.18

n—1>r-|{loo P€17>nl (c1) [p qq ( )

< lim inf P [ 5 — Bl < (Kogn) /2 +n_3/2] , E.19
SV pll < (Kon) (E.19)

which implies the desired result and concludes the proof. O

E.2 Theorem4.1

Proof. Part 1. The proof proceeds by the direct method. Lemma G.2 imphasthep, can be
characterized in terms of Lagrange multipliers as in (G.8\ijhout loss of generality, let

A(B) =t ta, -t} (E.20)
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Therefore, the probabilities (G.31) can be expressed as

-1
, 1 <N
pi=- (1 + ) hg(X;; @)) . (E.21)
j=1
Therefore,
Ep [9(Xit)] = Ep [0 == 5 > fuwg(Xit) g (Xit), (E.22)

’

wheref, > 0Vt' € A(P,). Finally, givent’, Property 1 implies the desired result because

g9(x;t") g (x;t) =0 V(t,x) € [t 7] x supp(P). (E.23)

On the even{Pn #+ Pn} , the Lagrange multipliers cannot all be equal to zero. Thanrha F.1
implies that there exist&; such thay (X;;t') g (X;;t) > 0 V¢, which concludes the proof.
Part 2. First, we prove the probability of the eve{ﬂin - An} (in A,) converges to unity in

probability uniformly overP; (c1, ca, ¢3), as the sample size tends to infinity. The proof follows the
direct method and makes use of the result in part 1 of thehleisrem.

Lett € A, then{—r, < E; [9(X,t)]} occurs. Consequently, part 1 of the theorem implies
the probability of the even{—r,, < E» [¢(X, )]}, converges to unity in probability, uniformly
over Py(cy, c2), as the sample size tends to infinity. Now we show the prolighifi the event
{r. > Ep [9(X,t)]}, for eacht € A, tends to unity with uniformity.

Noting that fort € A,,,

Ep [9(X,1)] = Ep, [g(X,t)] = Ep, [9(X, )] + Ep, [9(X,1)]
< Ep, l9(X, )] = Ep, [9(X, )] + 70
= Op(n™*) +r, uniformly over Pg(cy, ca, c3), (E.24)

where (E.24) follows by Proposition G.1. Next we show thatphobability of the event
{Ep, [9(X,1)] € [r, Op(n™"?) + 1)}

is uniformly asymptotically negligible.
Consider the following probability’[E [ (X, t)] € [r,, Op(n™'/?) 4 r,)], which is equal to

P [V (Ep, [9(X.0)] = Ep g (X,0)]) + ViEp [g (X,1)] € [Vir,, Op(1) + vir,)] . (E.25)
Fort € A(P), this probability is equal to
P [vVnEp, [9(X.t)] € [Vnr,, Op(1) + v/nry)]

and the Uniform Central Limit Theorem establishes thatE, [g(X,t)] = O,(1), uniformly
overPg(cy, co, c3). Becausa/nr, — +oo, it follows that

sup P [VnEp [9(X,t)] € [Vnr,, Op(1) + v/nry)] — 0. (E.26)

PeP§(c1,c2,c3)
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Therefore, ift € A(P), theninf peps (cy,co.ce) P [Ep, 19 (X, 1)] < 70] — 1.
Now we focus on the last case undéy, which is whent ¢ A(P). In this caseFEp [g (X, 1)] <
0 and we have that

VnEp [9(X,t)] =V (Ep, [9(X,t)] = Ep g (X,t)]) + VnEp[g(X,1)] (E.27)
Op(1) +vnEp[g(X,t)] uniformly over Pg(cy,ca,c3). (E.28)

Note that,/nEr [g (X, )] diverges to-oo, /nEy [g(X,t)] also diverges te-oo, but uniformly
overPs(ci, c2, c3). Combining this result with the fact thgtnr,, — +oo, implies that the probabil-
ity (E.25) tends to zero with uniformity. Therefor@f peps c, o) P [Ep, [9 (X, )] < 1] — 1,
which concludes the proof of this part of the theorem.

Now we turn our focus to the ever{tA (P) C An} . Lett € A(P) and consider the event

{—rn < Ep [9(X,t)] <r,}. Byadding and subtracting the ted, [g (X, t)]fromE; [g(X,t)],
this event is equal to the event

{=rn < Ep, lg(X. )] = Ep [g(X, )] + Ep, [9(X, )] <mn}.

Now we can apply Proposition G.1 to the differercg [g (X, )] — Ep [g9(X, )] to deduce that
this event is also equal to the event

{—Vnr, < Op(1) +VnEy, [9(X, )] < vVara}, (E.29)

uniformly overP;(ci, ¢z, c3). Ast € A (P), we have that/nE; [g(X,t)] = Op(1) uniformly
overP;(cy, ca, c3), by the Uniform Central Limit Theorem. Therefore, the evdhQ) is equal to

{—v/ir, < 0p(1) < Viira} (E-30)

whose probability tends to unity uniformly ové&(ci, 2, c3), because,/nr, — +oc. This con-
cludes part 2.
Part 3. The proof proceeds by the direct method. We have that

{An C An} - {An C A, andP, # Pn}
- {Ht € A By [9(X,8)] <10 < Bp, [g(X, t)]}
= {3t € A By, [9 (X, 6)] = Ep, [9 (X,8)] < 7 — Ep, [9(X, 0] <0}
- {Elt € A, 0p (N7Y2) <1 — Op (n™Y2) — Ep g (X,1)] < 0}
={3t € A,;0p (1) < Vir, — 0p (1) = VEp g (X,8)] < 0},
for anyt € [t, ¢], uniformly overPg(cy, co, c3) by Proposition G.1. Since for anye [¢, 7],

Vnry = Op (1) = VnEp[g(X, )]

diverges to+oo asn — +oo, uniformly overPg(cy, cs, c3), it implies that the event of it being
non-positive tends to zero, with uniformity; i.e.,

im  sup P [Elt € A Op (1) < Vi — Op (1) — VaEr g (X,8)] < 0] = 0.

N=+00 pePs(c1,c2,¢3)
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This concludes the proof since, for eahe Pj(cy, c2, c3), the above set inclusions imply that

holds for eachn.
Part 4. The proof proceeds by the direct method. First note thewieolig decomposition of the

event{An C An} :

{Acca={rzniN{3eA,

Noting that{Vt e Ay
of (E.31) is

Ep lg(X:t)]] > rn} N {An c An} . (E.31)

Ep [g9(X; t)H < rn} = {An C An} , the probability of the complement

P [{Pn = Pn} U {Vt e A, By lg(X;t)] > —rn} U {An z AnH )
which equals
Pl =R|+P[A,cA]+P[A gA]-P[A = A -P[A, C A,

and simplifies taP [Pn = Pn] + P [An % An] . Then,

lim inf P [An - An} =1-— lim sup P [Pn = Pn]
n—r+00 PEP§(c1,c2,c3) (1 Pooo N=+00 pePs(c1,c2,¢3) ) Pooo
— lim sup P [An Z An}

=400 pePs(ci,ea,e3) ) Pooo

>

N —

because Lemma G.1 establishes thaf, . o SUP peps ey e3.05) A Pooo F [Pn = Pn} < 1/2, and by
Part 2 of Theorem 4.1

lim sup P [An Z An] < lim sup P [An Z An] =0.

n—+00 PEPS (01702,03) ﬂ Pooo n—+00 PEPS (01702,03)
Part 5. The proof follows identical steps to those in the secondl gfethe proof of Claim 1, in
LSW on page 200. O

E.3 Theorem 4.2

Proof. The proof proceeds by the direct method. As the test statssthe same, it is sufficient to
show that the proposed and LSW bootstrap test statisticsgraptotically equal with uniformity.
Let

T (t) = (maX{%Z l9 (X75t) — Ep, [9(X;1)]] ,0}> : (E.32)
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then consider the following,

f[Lﬂ—An ’}/:L (t) dt if fAn dt > 0, fAn dt =0

Ja oa, vn@)ydt it [ dt>0, [z dt>0

whereS denotes the symmetric difference operator on sets. We have

suPere T (1) Ju7-4, At 0f [5, dt>0, [y dt=0

(
T;J _ T:;l S Esupte[tﬂ ’7; (t)) f[tﬂ—An dt if fA'n dt = 0, fAn dt >0 (E34)
0

supyereg Vi (1)) Ja,ea, dt 0[5 dt>0, [y dt>0,
if [ dt=0,[; dt=0.

To prove the result we need to prove thaiip,c, 3 7;, (1)) is Op(1) conditional onA,, uni-
formly in P§(cq, 2, 3, €). and then apply Theorem 4.1 to the integrals in (E.34). Siheeset of
moment functions{x — g(x,t),¢ € [t,7]} is uniform Donsker with respect t85(c, ca, 3, €),
Lemma A.2 of LSW implies that it is also bootstrap uniform Bker. Therefore, applying
Lemma A.1 (uniform continuous mapping theorem) of LSW(mptew i (t)) yields the de-
sired result.

Parts 3 and 2 of Theorem 4.1 imply thix andA,, are consistent estimatorsAf( P) uniformly
in P5(cy, ca,c3), 8SPE(c1, Cay c3,€) C P(cy, ca,c3). Noting thatP € P§(cq, ca, 3, €) implies that
Jap) dt > 0, for largen, we must haved,, # 0, A, # ( with probability tending to one,
uniformly in Pg(cy, ca, c3, €). Applying Part 2 of Theorem 4.1 to this case in (E.34) impleso
A, = A, — A, with probability approaching unity uniformly i®:(c;, ¢z, cs, €). Consequently,
by Parts 2 and 3 of Theorem 4.1

sup 7 (t) / dt =5 0 (E.35)
telt,] AneA,
conditional onA,, uniformly in P§(cq, ca, 3, €). Therefore,T;,l — T',;l 2, 0 conditional onA,
uniformly in P§(cq, ¢z, cs, €). This concludes the proof. O

E.4 Theorem5.1

Proof. The proof proceeds by the direct method. Because TheoremL3W shows the test
statistic

T, = n/t max {Ep [g(X;1)],0}” dt, (E.36)

diverges to infinity under the alternative, to prove the abresult we only need to show that the
bootstrap test statistic 8p(1) (conditional onA,,) underH;. These two conditions imply that the
bootstrap p-valu€ z converges to zero in probability undgy, .
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Corollary F.1 and Part 2 of Lemma F.5 implies the existena® @amqueness of the solution
from the constrained empirical likelihood problefhn,to be an event with probability converging
to unity. Hence, the contact sdt, exists with probability converging to unity. Since the betcap
test statistid™* is bounded above by

/tt (max {% Z [9(X55t) — Ep g (X;)]] 0}) dt, (E.37)

which converges in distribution (conditional of),) to the distribution of

t
/ (masx {v(t), 0})? dt
t
it follows that7* = Op(1) conditional onA,,. This concludes the proof. O

E.5 Theorem5.2

Proof. Part 1. The proof follows steps identical to those in Part 1 of Tleeo#.1 except that we
are taking limits under the local alternatives, which isdzhen Lemma H.4. We omit the details
for brevity.

Part 2. The proof proceeds by the direct method. We first focus onipgo

lim P, [C - An] = 1. Lemma H.4 implies that the random skt exists for large enough,

n—-+0o0o

with probability approaching unity under the local altéives. Considet € [¢, ¢] such thatd (t) =

0 and the even{ —r,, < E [¢(X;t)] <r,}. Upon adding and subtracting [¢ (X, )] and
Ep, lg(X,t)]to By [g(X;t)], and multiplying through/n/a,,(t) on all sides of the inequalities
in this event, it is equal to

(E.38)

Al | B 5 '< \/ﬁrn}7

o) o) " on(t)| = o)

where

A(t) = v (Bp, [9(Xit)] - Ep, [9(X,1)])  and

B(t) = vn (Ep, [9(X;t)] - Ep, [9(X,1)]) .

Now we derive the large sample behaviors of each of the elenirethe event given by (E.38),
then combine them to deduce the main result. Noting that,

vy utlzpz (Xist) g (Xist), (E.39)

teEA(P,) =1

we can follow steps identical to those in Proposition G.lddute that
sz th Xzat) OPn<1)
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under the local alternatives, and we omit them for brevitycdnsequence, Part 5 of Lemma H.4
implies the right side of (E.39) i©p,(1). We also have that

lim VT

n—+oco O, (t)

— 400
becauser, (-) is uniformly bounded by Part(iv) of Assumption 5.1 and Asgtion 2.1, and be-
causdim,, ., v/nr, = +oo. Furthermore, and

B(t)
on(t)

by the Lindeberg-Feller Central Limit Theorem for 11D triguiar arrays. Finally, becausé) is a
uniformly bounded function by Part (iii) of Assumption 5itlfollows that

=0Op,(1) asn — +oo

lim P, [C C An} — 1.

n—-4o0o

Next we focus on provinglirf = [An C An} = 1. Parts 1 and 2 of Lemma H.4 implies that
n—-+0oo

asymptotically the set egtimatérn exist with probability approaching unity under the locdeal
natives. Suppose that A, then by Part 4 of Lemma H.4lim P, [Ep [9(X;t)] > —r,] = 1.
n—+o0o n

Thus, to prove the result we need to show tHah P, [Ep lg(X;t)] <] =1.
n—+00 n
We will show that lim P, [Ej [g(X;t)] > r,] = 0. Noting that

Ep [9(X;t)] = Ep [9(X;t)] = Ep, [g(X;t)] + Ep, [g(X;1)], and (E.40)
Vi (Ep g(X;t)] — Ep, [9(X;t)]) /op,(t) = Op,(1) (E.41)

by the Lindeberg-Feller Central Limit Theorem for trianguarrays of row-wise 11D random vari-
ables, it follows thatim,, .o P, [Ep, [g(X;t)] > r,] equals

lim Pn Opn(1)+ \/ﬁ

oo op,(t)

Ep, lg(X;t)] = Vnra/op, (t)| - (E.42)

As /nr,/op,(t) — +oo, for t € C, the termy/nEp, [g (X;t)] /op,(t) = I(t)/op,(t), IS uni-
formly bounded with uniformity oven; hence, the limit (E.42) is equal to zero. Furthermore, for
t € [t, ] — C, the term

VnEp, [9(X;1)] Jop,(t) = (VRH(t) +6(t))/op, (t) = —o0 (E.43)

asH(t) < 0 and becausé(t)/op,(t) is uniformly bounded im andt¢ by the conditions of As-
sumption 5.1. Therefore, the limit (E.42) is equal to zenosiocht since the divergence teocc
in (E.43) is at rate,/n whereas the divergence ¢fnr, /op, (t) to +oc is slower than,/n. This
concludes the proof.

Part 3. The proof proceeds by the direct method and follows stegstical to those in Part 3
of Theorem 4.1, except that the limits are taken under theeseze of local alternatives. We have
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that

—
l>>
+ﬂ

&)

A and P, #P}

N

3t € Ay By [g(X,t)] <71 < Ep g (Xﬂf)]}

{Anc

{

{Ht € A Ep [9(X,0)] = Ep [g(X,8)] <o — Ep [g(X,1)] < o}
{3t € 85 0p, (172) <= Op, (172) = B, [ (X, 1)] < 0}

= {3t € 8,00, (1) < Var, — O, (1) = V/iEp, [g(X, )] <0},
for anyt € [t, ], under the sequence of local alternatives by PropositionFbit € C, we have

vnr, —Op, (1) —/nEp, [g(X,t)] = v/nr, — Op, (1) — (t) = +00 (E.44)

asn — +oo, because/nr,, — +oo asn — +oo andd(t) is finite. Similarly, fort € [¢,t] — C,
we have

Vnr, = Op, (1) = VnEp, [g(X,1)] = V/nr, — Op, (1) = VnH(t) = 6(t) — +o0  (E.45)

asn — +oo, because/nr, — +oo and—+/nH(t) — +oo asn — +oo andd(t) is finite.
In consequence, the event (E.44) tends to the empty set timelsequence of local alternatives,
which implies that
lim P, [An - An} =
n—-+4o00
and concludes the proof.
Part 4. The proof proceeds by the direct method. Given 0 and¢ € A,,, observe that

|Ep, lg (X;0)]] =|Ep, g Xt)] Ep, [9(X;0)] + Ep, lg (X't)H

< [Ep, g (X5t)] = Bp, [ (X58)]| + | Ep, [9 (X: 1))
< |Ep, [g(X;1)] - Epn[ (X; )] + 7
< sup ‘Ep g(XJﬁ)] 5 L9 X5 0)]| + 7w

telt,t]
by the triangular inequality and the definition Af,. Hence, to conclude the proof, we need to
establish that

lim P,

n—-+00

sup | Ep, [g(X;1)] — Ep, [9(X;1)]| < em] =1, (E.46)

te(t,t]
holds under the conditions of the theorem. In fact, the eicgdiprocess

Vi [Ep, [g(X;t)] = Ep [9(X;1)]] (E.47)
is tight under the sequence of local alternatives, which implies tha

lim P,

n—-4o0o

sup Vn |Ep, [9(X;t)] — Ep g (X;t)]] > e\/ﬁrn] =0, (E.48)

te[L,f]

holds. This limit result implies the limit (E.46) since it tee limit of the probabilities of the
complementary event under the sequence of local alteasatithis concludes the proof. O
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E.6 Corollary 5.1

Proof. The proof proceeds by the direct method. Since the testttatiare the same, it suffices
to compare the bootstrap p-values of the test8 as +oc. They are

/.

T. =P [T; > Tn] and Y. = P* [T; > Tn} , (E.49)

which are conditional o4,,. By Theorem 5.2, the bootstrap test statisﬁ;;sandf; converge in
distribution conditional ond,, to [ max {v(t),0}* dt and [y max {1(t),0}* dt, respectively,
under the sequence of local alternatives. Furthermorepréhe5.2 implies that asymptotically

/ max {v(t),0} dt < / max {v(t),0}” dt (E.50)
Ay Ay

holds with probability tending to unity under the sequenti®cal alternatives. So that

/. A~

T = P* {  max {v(t),0}° > Tn} < P* {  max {v(t),0}* > Tn} =T (E.51)
A, An

holds asymptotically, conditional oA,,, which implies the following relationship between the
rejection event{TOO <a} C 4T < a} holds conditional on4,,, with probability tending to
unity under the sequence of local alternatives. In consszpje

lim P, [TOO < oz] > lim P, [TOO < a} .

n—-+4o00 n—-4o0o

Furthermore, Part 4 of Theorem 5.2 implies that the conetadstimators\,, andA,, converge to
the setC’; therefore, we must have the equality

lim P, [Tm < a] < lim P, [Too < a} .

n—s—+oo T n—+oo

Finally, on the e/ven{A’An - An}, the inequalities (E.50) and (E.51) hold strictly. As fogarn
the probability?,[A,, C A,] > 0, these inequalities hold strictly with positive probalyilitvhich
implies that

P, [({Tm < a} - {Too < a}) N {A’n C A”H > 0. (E.52)

O

E.7 Theorem5.3
Proof. The proof proceeds by the direct method. k&t Z,, e > 0, ¢; € (0,1), 2 € (0, (t_—lt)Q)
andc; € (0, +00), be given, and suppose thah,, . P, € lim P, € Py ﬂPg(cl, C2, C3, €).

n—-4o0o

Part 1. By Part 2 of Corollary 5.1, the conditioR, [An - An} > ( for largen, implies

that P, [Too < oz} > P, [Too < a] holds for largen. In conjunction with this implication, the
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condition P, [Too < a] M P € (0,1) asn — +oo, further impliesP, [Too < a] ' pe @S
n — +oo. In consequence,

Poo > P, [Too < a] > P, [Too < a] for large n. (E.53)

From the convergence @, | T, < a

| S

[ oo t0 po @SN — +o0, by settingy,, = poo — P, [YOO < a} ,
N, € Z, such thap, — P, [ o < a] <7, Vm > N, . Substituting outy, yields
P, [”roo < a} > P, [Too < a} Vm > N, . (E.54)
Hence,
{N €7, : P, [Too < a} > P, [Tw < a} Vm > N} £ 0, (E.55)

asN,, is an element of it. Moreover, the set in (E.55) is boundedhftzelow by the integer 1;
therefore, the infimum

K = inf {N €7, : P, [Too < a} > p, [Tw < a} Vim > N} , (E.56)

exists. Consequently,, is equal to the smallest integer that is greater ttjarT his ends the proof
for this part of the theorem.

Part 2. By Part 2 of Corollary 5.1, the conditioR, [An - An} > 0 for largen, implies
that P, [Too < oz} > P, [Too < a] holds for largen. In conjunction with this implication, the

condition P, [Tw < oz] N Po € (0,1) @asn — +oo, further impliesp, [Too < a] \{ Poo @S
n — +o00. In consequence,

P, [Too < a] > P, [Too < a] > ps  forlarge n. (E.57)
From the convergence @, [’foo < a} t0 po @SN — 400, by setting
Yo = Pn [Too < oz] — Poos

N, € Z. such thatP,, [Too < oz} — Poo <7Vn Vm > N, . Substituting outy, yields

P, [Yoo < a} <P, [Too < a} Vm > N,,. (E.58)

Hence,
{N €Z.:P, [TOO < a} > P, [YOO < a} Vm > N} =0, (E.59)
which implies that:,, does not exist. This concludes the proof. 0J
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E.8 Corollary 5.2

Proof. Part 1. The proof proceeds by the direct method. Giyer H and{F,},>1 € P; (),
under the conditions of the Corollary, whens large enough, Part 1 of Theorem 5.3 establishes
the existence of,,, and thereforep, , [Yoo < a] exists. The strictinequality;, > n, holds, since

P, [YOO < a} < P, [TOO < a] . hencege, = k,/n > 1 andd, = k, —n > 0, whenn is large
enough. In consequende'agninf(en) > 1 andliminfdn > 0, for each{P,},>1 € P; (). As
2 € H was arbitrary, the above manipulations hold for eQch H, and concludes the proof.

Part 2. The proof proceeds by the direct method. Giver H and{P,}.>1 € P; (€2) such
thatlim inf,, ¥, > 0. The proof makes use of the following linear functionrofc R that
passes through the poirts, P, [T < o) and(k,, P, [T < al):

Y = b, + T [?m = a] d_ i [YOO = a] m, (E.60)

where atn = n, Y = P, [YOO < a] cand atm = k,, Y = P, [TOO < a} . These two points
define the intercept, as either

P, [YOO < a} —p, [‘roo < a}

b, = P, [YOO < a} - - n, or (E.61)
by = P, [‘roo < a} (e [TOO - a} d_ P" [YOO - a] k. (E.62)
Solving ford,, in equation (E.61) yields
P, [Too < a} ~p, [Too < a}
d, = n=1,n. (E.63)

P, [*roo < a} —b,

Noting thate,, = 1+d,, /n, we have that,, = 1+,,. In consequencéi,m}rnf(en) > 1+limlnf Uy,
n—-+0oo n——+0oo

which is greater than one by hypothesis. As= H was arbitrary, the above manipulations hold
for each() € H with local alternatives irP; , (€2) that satisfylim Jirnf 1, > 0. This concludes the
) n—-+o0o

proof.
Part 3. The proof follows steps identical to those Rart 2 to deduce that, = 1 + ,,

except that now we apply limit supremum ¢Q and use the conditiotim inf ¢),, = 0. That is,

n——+o0o

limsup(e,) < 1+limsup, = 1. As Part 1 of this corollary establishdén inf(e, ) > 1 for each

n——+o0o n——+o0o n—+00

{Pu}n>1 € PP (92), it follows that

1 =limsupe, = liminfe, =liminfe, = lim e,, (E.64)
n——+o0o n—-+0o0o n—-+0o0o n—-+0o00
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for each{P,},>1 € P; () that satisfieSir_Qinf Y, = 0. Finally, the above manipulation holds

for any(2 € H, which concludes the proof.
Part 4. Given() € H, the proof follows steps identical to those Rart 3 to establish that
lim,, . e, = 1. To establish thatim,, ., .. d,, = +00, we use the extra condition

lim inf ne), = +o00
n—-+o0o

on the sequences’, },>1 € P;, (£2). Noting that we established in the proof@ért 2, we have
d, = ni,, whenn is large enough. So this extra condition impligs inf,, ., ., d,, = +00, which,

in turn, implieslim,, . d, = +o0. In consequence, on such sequent€s},>1, k, admits
the following expansionk, = n + (g, + o(q,), whenn is large enough, wherg, = o(n),

lim,, 1o g = +00 and? > 0. The result follows from re-writing the expansion as

dn/qn = €+ o(1). (E.65)

This concludes the proof. O

F Intermediate Technical Results for Theorem 3.1

This section presents intermediate technical resultsatteatised in the proofs of Theorem 3.1.

F.1 Consequences of Definition 3.1

Define the sets

Iy ={ie{l,...,n}:g(X;t) <0Vt € [t1]}, (F.1)
LF={ie{l,...,n}:g(X;t) >0Vt €[t,f]} and (F.2)
L ={(,K)€e{l,....,n} x {A, B} : X[ € [t,7]}. (F.3)

The results of this subsection concern the large-samplavi@hof the likelihoods of the events
{I7 # 0}, {7 # 0} and{I, # 0} with uniformity over probabilities irP; (c;) andP(c,). Fur-
thermore, we will show that probabilities #,(c,) have marginal densities bounded from below
by ¢, over the intervalt, t].

We first focus on the eveRt,, # ()} .

Lemma F.1. Givenc; € (0, 1) and recall thaf; (¢) is defined in (3.3). Then
lim inf P[I; #0] =1L

n—+o00 PePi(c1)

Proof. The proof proceeds by the direct method. We observe that

inf P [ =1- P\ - =10]. F.4
Peanl(q) [n %m PeS;llI()cl) [n Q)] 4

We show that the probability of the complement{af, # 0} converges to zero uniformly in
Pi1(c1). The complement of this event is

{1, =0} = {foreach i3t € [t,7]; g (X;;t) > 0}.
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By the bivariate random sampling assumption{d& }"_, , we have that

sup P[I; =0] = sup (P
)

sup g (Xy;t) > OD (F.5)

PePi(c1) PePi(c1 tet,t
= sup [1—P|supg(Xy;t) <0 (F.6)
PePi(c1) telt,t]
<(1-—¢)"—=0 (F.7)
asn — +oo, sincec; € (0,1). O

Next, we focus on the eveqf,, # 0} .

Lemma F.2. Givenc, € <0 #> and recall thaP;(c,) is defined in (3.4). Then

Gk

lim inf P, #0]=1.

n—+o00 PEPs(c2)

Proof. The proof proceeds by the direct method. We will make useefdmt densityf (4, z7)
of probability P € P,(c,) in the proof. We observe that

inf P, #0=1— sup P[L,=0. (F.8)
PePs(c2) PePa(c2)

We show that the probability of the complement{af- = ()} converges to zero uniformly in
Ps(c2). The complement of this event is

{I, =0} ={V(i,K) e {1,....n} x {A,B} : X} ¢ [t,1]} .

By the bivariate random sampling assumption{d& }"_, , we have that

sup P[I,=0]= sup (P [XZ-A,XZ-B ¢ [t, ﬂ))n (F.9)
PePo (62) PePo (02)

= sup (1-P| () {xFeln} (F.10)

PGPQ(CQ) K=A,B
= sup (1 —/ f(z?, 2P) dxAde) (F.11)

PePa(c2) [t,t]x[t.1]

<(1—c(f—1)*)" =0 (F.12)
asn — 400, sincec, € (0, @) . M

Now we focus on the eveRt;" # ()} .

Lemma F.3. Givenc, € <0 #> and recall thaP;(c,) is defined in (3.4). Then

T (t-1)?

lim inf P[LF#0] =1

n—+00 PePs(c2)
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Proof. The proof proceeds by the direct method. Giyien| ands € Z. , observe that given by

{X4<t, X8 >1} if s =1
su X:t)<0p = 7 7 _ _ " (F13
{te[ﬁ]g( ) } {{XA<§,XB>t}U{XA<§,XA<XB§t}, if s > 2. (F13)

This representation of the everﬁtuptew g(X;t) < 0} is useful for proving the result of the
lemma since it implies the following event inclusion

{Xieltf] x [t.8} < {1 #0}. (F.14)
We observe that by Property 1 of the moment functions
P #0]=1-P[L} =] (F.15)
=1-P[I; #0] (F.16)
=1-1I", (1-P[g(Xi;t) >0Vt € [t,7]]) (F.17)
>1-1I", (1- P[X; € [t.f] x [t,7]) (F.18)
>1 -1, (1 — ey (- ;)2) (F.19)
=1-(1-a-19%) =1 (F.20)

asn — +o00. Since the lower bound — <1 — e (T — z)Q)H does not depend oR € Py (c,), the
above manipulation implies that

lim inf P[LF#0] >1, (F.21)

n—-+00 PEPs(c2)
which is the desired result. O

The last result concern a lower bound on the marginal dessifi probabilities irP,(c;).
Lemma F.4. Givenc; € (0, ﬁ} . Then marginal densities corresponding to probabiliftes
Ps(c7) are bounded from below by (¢ — ¢) on the intervalt, ¢].

Proof. The proof proceeds by the direct method. [fét#, »¥) denote a joint density correspond-
ing to someP € Py(cy). Then the marginal distribution fdB is defined as

= / h f(z?, 2B) da? (F.22)

with a similar definition for the marginal density df. Then

min fp(2”) = min / f(z (F.23)

zBelt ] zBelt ]

> min_ /f( A B da? + mm/ f(?, 2P) dat (F.24)
R—[t,]]

(:L’AJ?B)E[E,t] X [Lﬂ t SCBE t T
> (I —t). (F.25)

sincemin, s, 7 fR_tz] f(z?, 2P)dz?* > 0 andP € Py(c;). An identical argument applies to the
marginal density ofA. We omit it for brevity. 0J
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F.2 Existence and Unigueness @ and p

Recall thatH,, = {p;,i=1,...,n;> . pi=1,p; >0,Vi=1,...,n}, and denote the interior
of this set by#, . Additionally, recall the feasible sets

HO(X) = {p e H,: ipig (X;t) <0 Vtelt, f]} and (F.26)

i=1

HO(X) = {pEH Zpl (Xi;t) <0 VteT} (F.27)

LemmaF5. 1. Onthe even{H%(X) N HS # 0}, the random set

argmax{Zlog(pi i pi >0, sz—l sz (X;;t) <0 Vtelt t]}

=1
is nonempty and a singleton.

2. Onthe even{H? (X) NH? # 0}, the random set

argmaX{Zlog pi); pi > 0, sz—l Zpl (X;;t) <0 VtET}

is nonempty and a singleton.

Proof. Part 1. The proof proceeds by verifying the conditions of Weiexrs$’ Theorem. The
objective function is strictly concave in the probabilitieThe constraint se{’(X), is certainly
bounded. Itis the infinite intersection of closed half-gawhich are convex), and since convexity
and closedness are preserved under an arbitrary numbeedgeantions, it is closed and convex.
Thus, we are done whenevAFP (X) NH2 +# (.

Part 2. The proof follows identical steps as in part 1 of this lemmecept that we replace
H°(X) with H?(X) and observe that the latter set is defined by a finite intéseof closed half-
planes (which are convex), and since convexity and clossdaee preserved under an arbitrary
number of intersections, it is closed and convex. O

The next couple of results indicate that for large enoughe constraint sets are non-empty
with probability approaching unity, with uniformity. Theent is shown to occur by constructing
a strictly positive probability vector that satisfies theduoality constraints.

Lemma F.6. Givenc; € (0, 1) and recall thaf; (¢,) is defined in (3.3). Then

lim inf P[H'X)NH, #0] =1.

n—+o00 PEPi(c1)

Proof. The proof proceeds by the direct method.
For largen and uniformly inP;(c;), Lemma F.1 implies that the event

Je{l,2,....,n} g(X;,t) <0 Vte]t,] (F.28)
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occurs with probability approaching 1. Therefore, withtngs of generality, suppose that this
event holds only foi = 1. Then it follows that

Vie{2,3,...,n}: sup g (X;,t) >0. (F.29)

tet ]
A probability vectorp in H°(X) N X, mustsatisfyp; >0Vi=1,....,n, >  p;=1and
Xz; t —
sz (X;t) <0 Ve[l < 1>p > Zp, (M) Vtelt,f]  (F.30)
P -9 (Xy;t)
Therefore, a sufficient condition for the mequalltles |rB(B is
- g(Xst) ) 9(Xst) -
sup Y pi | o | < max | sup ————c pi (F.31)
telt 1) Zz:; <—9 (Xi5t) 2<i<n \ yepy —9 (Xi5t) ZZ;
SUPep ) 9 (X3 1)
< ; < 1. F.32
ggi” (mfte [t7] — g(Xy;t) Z:: ( )

It should be noted thatf,., 7 —g (X1;t) > 0 follows directly from (F.28). On the event

su Xt
s ( ptetjg( ) ) e 0,1],
2<i<n \infyc g —g (Xi;1)

any positive probability vector satisfies the inequali{fie80). Otherwise, on the event
( SuPtetE]g(XiQt) )
max > 1,
2<i<n \inf,c g —g (X45)
the inequality (F.31) is equivalent to

NAXoe s sup; (. 7 9(Xist) MAXe - sup; (7 9(Xist)
2<i<n inf e, 7 —9(X15t) aX2<i<n inf, e, 5 —9(X15t)

Thus, for anyp; such that
su a9 (Xt !
1 — ( max Pie[tq) g( ) <p <1,
2<i<n \infyep 5 —g (Xa51)

there is a set of possible choices forps, . . ., p, suchthap, > 0Vi=1,....,n,and}_" , p; = 1.
This concludes the proof. O

Zn:Pi< ! - ..><:>1— ! - ,_><p1. (F.33)

SinceH’(X) C H?(X) holds for each:, we have the following result.
Corollary F.1. Givene; € (0, 1) and recall thaP, (¢;) is defined in (3.3). Then
lim inf P [HO(X)NH, #0] =1.

n=+00 PEPy (c1)

Proof. We observe thaP [H9(X) NHS, # 0] > P [HY(X) NHS # 0] holds for alln, which im-
plies that

f PIH ° > inf P[HYX ° F.34
pnf P HAX)OH A 0] 2 inf P [HX) N3, A 0) (F-34)
holds for each. Finally, taking limits asn — +oo on both sides of the above inequality and
applying Lemma F.6 to the right side of the above inequatiitglies the desired result. O
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F.3 Convergence 01{7;}”21: A Maximal Spacings Approach

Recall tha{7,.},,.., comprises the order statistics from the set comprises ter statistics from
the sample

XA x L Neo UL (F.35)

wheret ) = t andty) = t. Letdy [T, [t t]] denote the Hausdorff distance between the grid
7, and the intervalt, t|. This section presents a convergence result for this distémat holds
uniformly over sets of probabilities of the form (3.4).

We have the following result

Lemma F.7. For everye > 0 andc, € (0, _(Z_lt)2) 7

lim sup P[dy [T, [t,1]] >€¢ =0, and (F.36)

=100 pePy(cy)

logn

dp [Tn, [, 8] = Op ( -

) uniformly in = P € Py(c2), (F.37)

whereP,(c,) is defined in (3.4).

Proof. The proof proceeds using the direct method. For large n wiahability approaching unity,

Lemma F.2 implies that the griff, = {t(j)}j.vzo will contain at least one element from the bivariate
random sample. Observe that

K K
di [T, [67)] < max (tg4n) — 1) < max max (X{,) — X() (F.38)
< D, max (X{ - X(), (F-39)
K—ap)=0N

K

N
—1 and{Xg)}j:1 are the elements dft;, } that belong to popula-

whereX ([ =t, X\« ) =

tion K for K=AB.

Next, express the spacingégﬂ) — X{j) in terms of spacings from Unifor(fi, 1) random
variables using the CDF (-). Noting thatU(fj.) = Fx (X{j%) for j = 0,..., N, the spacings
can be expressed as

Ft (UE,) - Fe (U)
G+n) ~x (YO
X = X = UK., UG+ — Uw) (F.40)
(j+1) (4)
K K
Vi = Y) (F.41)

e (g 00

wherea € [0, 1] and the second equality follows from an application of theaM¥alue Theorem to
the marginal quantile functiofi,*(-), and fx(-) is the marginal PDF. FaP € P,(c,) Lemma F.4
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shows that the marginal densities on the intefta| are bounded from below by (¢ —t). Because

NK

K N : . _
{X(j)}j:1 are the elements c{ft(j) }j:O , they can only take values in the interyalt|. Hence,

— UK

UK — UK Uk
(5+1) (9) (4) (F42)

(3+1)

= t—t
fic (F (aUf oy + (1 - Ug)) — = 1)
— X[ is bounded from above bg%:gm

So that the spacm@’
In consequence,

_max (X - XxE) < (eE-1) max (Uh,y -UL) K=AB,  (F43)

(j+1)

IA

(2(f=1) " max (Ul —Uf) K =AB. (F.44)

i=1,...,
WhereUK Fy ( (ZK)) fori =1,...,n. Thatis, the maximal spacings
max (X(.) = X() K =AB,

are bounded above by a constant times the maximal spacingoflam sample from Unifor(n, 1).
Combining these results yields

dy [T, [6,7)] < (e2(F—1) ™ max (Ul - UE). (F.45)

where the right side of this inequality depends on the theetyithg probability P € Py(cs)
only through the dependence structure between the madjstabutions. Now we can apply the
Theorem from Devroye (1982) on maximal uniform spacingsddute that

logn — logloglogn — log 2

P | max (Ugi = Ugh) < .

for eachK = A, B. This result and the manipulation above imply that

infinitely often} =1 (F.46)

sup P ldy |To,[t,t]| > €| < sup P > ‘ > € (F.47)
PePa(ca) [ [ } } PePa(ca) K§B C2 (t - t)

<et E > (F.48)
K=A,B ca(t — 1)
2 1 — loglogl — log 2
< ogn — logloglogn — log 7 (F.49)
co(t —t)e n

where we used Markov’s inequality to obtain (F.48) with estpéion taken with respect to the
joint distribution of a random sample of sizefrom Uniform(0, 1), which does not depend on
K = A, B. Finally, taking limits on both sides of (F.49) as— +oc yields the desired result.
Furthermore, (F.45) and (F.46) imply

dH [7;7 [LEH = OP (1Oin

) uniformly in = P € Py(ca).
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F.4 Upper Bound On Lower Level Problem: s > 1

Recall thatp is the solution of discretized constrained empirical litkebd problem. Fos > 1,

and for eaclr; € (0,1) ande, € (0, T ) this section presents an upper bound for the value

n

max > pig (Xi:t) (F.50)

teltt]

that holds with probability approaching unity uniformlyenprobabilitiesP € P;(c1) (| P2(c2).
The bound is given by

v = (o) (5) e ooy

s—1 n
, (T A\s—1—4 A —
_max{ < / )[Zpi(t—Xi) 1[X7 <T] ,1}. (F.52)
(=1 i=1
The result is the following.
LemmaF.8. Lets > 1, and for eache; € (0,1) andc, € <0, @)
li inf g (Xist) <gn| = 1. F.53
n—1>I-i1:loo PeP (6111)10 Pa(c2) {2[?}?( Z pig ) q ( )

Proof. The proof proceeds by the direct method. We will first show

lim inf
n—+oo PePy (61) r] Pa (02)

2¢), max;_o, N (t(j-i-l) - t(j))
0 (Xiit = =1, F.54
;gégjzp )< (s 1)l (54

whereq/, is defined in (F.52). Then, using steps identical to thos@énproof of Lemma F.7, we
can (i) bound the maximal spacmgaax (t(j+1) — t(;)) from above by

.....

.....

WhereU{j{) = Fg <X(~’j)> VjandK = A, B, and (ii) apply the Theorem in Devroye (1982) to this
bound to obtain the desired result.
On the even{H?(X) N H¢ # 0}, Part 1 of Lemma F.5 shows that the extremgiraxists and
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is unique. Givent € [t,t] — 7, 3j such that ;) <t < t(;;1). Then, for such &

(X, 1) < Lo —XP)TXP <tgn]  (to) - XN TLXS <))

o) o) (F-55)
tgen = X)L [XP <t
ot L )
s—1
C(te = X)TL[XS <)) (F.56)
(s —1)!
s—1
-1\ -~ s—1— -
< (77 XX <7 (e 1)
/=1
+1[tg) < X <t (toey — 1) +9 (Xistgen) - (F.57)
where we made use of the Binomial Theorem to expéind ) — X/*)°™" and (t;) — XA)*™'
in (F.56), and thaft(;+1) — t(;))"" < (t+1) — t(;)) holds withn large, and with uniformity, be-

cause the maximal spacings tend to zero in probablllty dibee, multiplying byp; and summing
overi, we obtain the following bound opy"""_; ;¢ (X;; t) that holdsvt € [t,t] — 7T, :

a " th+n) —t
Zﬁig (X;5t) < Zﬁig (Xi§t(j+1)) (]J:_ 1),0 ZPZ t(g <X < t(j+1)]
i1 1

s—1
n— t( s—1 ; (T s—1—¢ -
* j+s—1 : { ( ( )Zpi(t—X{“) 1[X,-A§t]} (F.58)
=1 i=1
2q,,
<G8 (e —16) (F.59)

because max Zpl (Xiit) < 0andr, pil [ty) < XA <t(in] < 1. So what we have

.....

shown is the event inclusion

/

(00 ;£ 0) € {2 (tgen 1) | (F.60)

and Corollary F.1 implies the limit (F.54), because

— 0 o
< lim inf P [Hy(X)NH, #0].

n—+oo PePy (61) r] Pa (02)

Now by using steps identical to those in the proof of Lemmanehave

Jmax (tg) — 1) < (et - 1)~ max (Ugyyy = UG) - (F.61)

-----
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And an application of the Theorem of Devroye (1982) to the imakuniform spacings

max (U(H—l Ul) K=AD»B,

i=1,...,

yields

logn — logloglogn — log2 .
P max (UK, — U) < 28— 08 08080~ 08 |.o.] —1.
i=1,...n n

Combining this result with the inequality (F.61) and thergvaclusion (F.60) yields the set inclu-
sion

{HY(X)NH, #0} C {maXZpl (X;;t) < C]n}, (F.62)

te(t,f]

whereg, is given by (F.51). Finally, an application of Corollary Fyiklds the desired result. [

F.5 Construction ofp: s > 1

This subsection presents a result that establishes thibifggf a particular construction of a
probability vectorp € H°(X) from p. As the vectorp is not necessarily a member&f (X), the
construction is such thgitis nearby tg5 and will be essential in proving Part 2 Theorem 3.1 using
Lemma F.10. The construction uses an approach similar tmthamma 3 in Still (2001), but is
different since we make use of Property 1 of the moment fonsti

Following Still (2001), consider the constructign= p + pg,d, whered € R" andp > 0, and
q» is defined in (F.51) in the previous subsection. Naturally,nged to impose restrictions on the
vectord andp that enurep € H(X)NH;,. Letd andd satisfy0 < § < pyand0 < § < 1—p),
wherep) = mln pZ andp,) =  max pZ Consider the following set of vectors:

..........

D, (4,%) = {d ER":D d; =0, e,(d) > 0,8 < pj; < Sw} : (F.63)

wheree, (d) = — sup Z d;g (X;;t) .
tett] ,—1
The following result has two parts. The first part shows that feasible to construct a vector

p € HX) N He for any choice of§ and 4 that satisfies the conditiors < § < p() and

0 < 0 < 1 — Pw. The second part shows that with additional conditionsiandd, we can
constructp € H°(X) N H2 which is close to the vectqs in a particular way so that we can use it
Steps 2 and 4 of the proof for Part 2 of Theorem 3.1.

Lemma F.9. Suppose that the evefif ” # 0} occurs wherd is given by (F.1). Furthermore,
let § andd satisfy0 < § < gy and0 < § < 1 — p,. Also let the setD, (4,4) be defined as
in (F.63). Then the following statements hold.

1. Foreachd € D, (¢,6) andp > ( . B=1D+pg.d € HO(X) NHS.
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2. Suppose thal € D,, (3,0) . If p > 5,8 > Py + Py +0 — 1 andd = py/2, then

€n

pay—90 . Pa
paa i) < =i = pgud] < 5. (F.64)

Proof. The proof proceeds by the direct method.
Part 1. Firstly note that from the proofs of Lemmas F.5 and F.6 weshtére following event
inclusions:

{I, #0} C {H (X)NH; # 0} C {p exists and is uniqye (F.65)

Suppose thadl € D,,. The conditiony " , d; = 0 implies that)_"" , p; = 1. Now we will show
that any value ofp > ﬁ yields >  pig (Xi;t) < 0Vt € [t,t]. Using Property 1 of the
moment functions thé; can be chosen so that they obey the following sign restristio

if g (X;,t) > t
<0, ifg( Z,t)_UVtG[L? (F.66)

S. ndi = .
'9n(d) {>o, it g (X,,1) < 0t € [t,1].

These sign restrictions ahyield

i=1

Now sinces > 1 implies that the moment functions are continuous in thexndeiablet, the

compactness of the intervigl 7] and the sign restrictions imply that(d) = — sup ¢ (X;;¢) > 0.
te[tt]

In consequencét € [t, ]

Zﬁig (Xist) = Zﬁz’g (Xist) + pan Z dig (Xy;t) (F.68)
i=1 i=1 i=1

wheresup,c(, 5 > iy ig (Xi; t) < g, follows from Lemma F.8. Thus,

1
Gn — pen(d)gn <0 <= p (@ (F.70)
Furthermore, observe that
0 —pi . 0 — Py _ ,
P>V = d;>=vi and =2 <0Vi < §<pg) (F.71)
Pqn Pqn

T I _
S0Py and 2P S 0 = T < 1Py, (FT2)
Pl Pl

Hence, the conditions above witho > 0 yieldsp = p + pgnd € HO(X) N H2. Sinced €
D, (8,4) was arbitrary, the result holds for all € D, (,6), which concludes this part of the

proof.
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Part 2. The proof proceeds by the direct method. Consider a vetterD,, (4, 4) for which

p > ﬁ, § > Pay + Pmy + 6 — Landd = pq)/2. If the vector also satisfigsy, |d;| < p‘%{é Vi

then

)

Pay—9  Day .
P |di| < 5 =g U

(F.73)

So by squaring both sides (F.73), then summing ovand applying the square-root yields to both
sides the desired result. This concludes the proof. O

The result of Lemma F.9 establishes that one can indeedrochatprobability vectop defined
above whenevef I = ()} occurs. This arises from the event inclusions in (F.65) dmsequence,
the probability of constructing is determined by the probability of the eveHd, # (0} . The next
result establishes that the probability of being able tstmetp as in Lemma F.9 tends to unity ,
with uniformity.

Corollary F.2. Lets > 1, and letV,, denote the eventvd € D, (4,4) any value ofp > ﬁ
yieldsp = p + pg,d € H(X), where0 < § < pqy and0 < & < 1 — pg,. Then, for each

c1 € (0,1)andc, € (0, @)

lim it P[] =1 (F.74)
n—+o00 PePi(c1) n Pa(c2)

Proof. Using the event inclusions in (F.65), Lemmas F.1 and F.6 adl@ry F.1

1= lim inf Pl #0| < lim inf Pl #10
n—+00 PePi(c1) |: " % ] - n—+o00 PePi(c1) () Pa(c2) |: " # ]
< lim inf PHO(X)NHS £
T n—r+o0 PePy(c1) ) Pa(c2) [ n(X) n? }
< lim inf P [p exists and is unigue
- TL—1>+OO PEPl(Clll}n Pa(c2) [p qq
< lim inf PV,],

n—+o00 PEP1i(c1) () P2(c2)

which concludes the proof. O

F.6 Quadratic Growth Condition of Objective Function At p: s > 1

This subsection presents a quadratic growth condition emkjective function arising in the SIP
problem for the case > 1. The proof of the result in this subsection uses the Karushaku
Tucker conditions for the minimization formulation of th&PSroblem. It should be noted that
the objective function in the SIP problem can be reformulae as to write it as a minimization
problem. In this reformulation, the objective function isen by — > """ log (p;) .

As the moment functions in this case are continuous in thexinvariable for each probability
vector, we embed the constraints into the functional sgacg, t]) , whereC (¢, ]) denotes the
space of continuous functions: [, ] — R with sup-norm. The spacg ([t, 7]) is a Banach space
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and its dual is the space of finite signed measure(s{goﬁ, B) , WhereB is the Borel sigma algebra
of [t, 7], with scalar product of. € C ([t,7])" andy € C ([¢,7]) given by the integral

/[t A1) du) (F.75)

thus, the SIP problem has the following Lagrangian function

Zlog pz +)\ (1 _sz> _n/‘quz szt) d:u( ) (F76)
ttl =1

where) € R is the multiplier on the equality constraint.
The Karush-Kuhn-Tucker conditions are

—i:)\—i—n/ g (Xit) du(t) 1=1,2,....n (F.77)
2 [t.7]

Zpl (X;:t) <0 Vtelt], Zp2_1 (F.78)

supp(u) € A (B), (F.79)

whereA (p) = {t € [t,7] : >, pig (X;;t) = 0} and the vector of probabilitiep denotes the

solution of the SIP problem. As the equality constraint oa gmobability vector is linear in
that vector, this fact in conjunction with Lemma F.6 impligst theStrong Slater Condition
of Mordukhovich and Nghia (2013) holds with probability ¢témg unity, with uniformity over
sets of probabilities of the forr®;(¢;). In consequence, there exists a (positive) Borel measure
wed ([z, ﬂ)* that solve the Karush-Kuhn-Tucker conditions (F.77) - 9Falong withp.

We have the following result.

Lemma F.10. For each; € (0, 1) recall thatP;(c,) is defined in (3.3). Let4,, denote the event
that there exists a neighborhoodmfU, and a constank’, > 0 such that

h(p) —h(B) > Kolp - BII* VpeUnH(X), (F.80)
where|| - || is the Euclidean norm and(p) = — >, log (p;) . Then

lim inf PJ[A,] =1 (F.81)

n—+00 PePi(c1)

Proof. The proof proceeds by the direct method. Giver (0, 1), we observe that by Lemma F.6
and Part 1 of Lemma F.5, the extremgyirexists and is unique with probability tending to unity,
uniformly over probabilities irP; (¢;). Thus, we can apply a second-order Taylor expansion to
h (p) in a neighborhood op. That is,

h(p) ~ h(B) = d"Vh () + d"V?h (p)d, (F82)

whereVh(-) andV?h(-) are the gradient and Hessian of a functionp = ap + (1 — a)p with
a €[0,1],andd” = p — p.
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Now we will show thad” V4 (p) > 0 using the Karush-Kuhn-Tucker conditions (F.77) - (F.79)

Observe that
(F.83)

d"Vh(p

Zp pl__zn:u:—n/ sz th dﬂ)
— i—1  Di AlP) =1

. pig (Xi;t) du(t) > 0 because the Lagrange mul-

Forp € H%(X), we must have-n [, o >
tiplier measure is non-negative. Henty € H°(X) that is in a neighborhood g3, it follows

that
h(p) ~ 1 (B) > 5d"V%h (p)d. (F.84)

Now we will construct the neighborhodd and the constank’y. Lete > 0; we will show that

one can consider the neighborhood
U={p:eR":|p—pl <e}. (F.85)
Observe thap € U since||p — p||*> = (1 — a)?||p — p|| < €2. Furthermore, note that for each

1=1,...,n
P = (pi — B+ 5i)° = (b — B:)> + 7 + 25: (bi — Bi) (F.86)
< 4P +2(1 — a)p; (i — ps) (F.87)
<€+ 5. (F.88)
In consequence,
1 I ~d? 130 & |p-pl’
—d"Vih(p)d=S) L >_==Lt o . F.89
5 VR (P) 24 T2 @45 2+ 10 (F.89)
Therefore, for any > 0, we have that
(F.90)

~ 12
he) - h(3) 2 PIPL vp e vnux)

which means that we can seldct = 1/(2¢% + 10). For this reason, we have the event inclusion

{H'X)NH, #0} C A, (F.91)
which implies that
1= 1li inf P [H"(X °
< lim inf PJA,].
n—+o00 PePy(c1)
O

This concludes the proof.
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G Intermediate Technical Results for Theorems 4.1 and 4.2

This section presents intermediate technical resultsatetused in the proofs of Theorems 4.1
and 4.2. Subsection G.1 presents a technical result thatossequence of Definition 4.1. Sec-
tion G.2 uses the results of the previous sections to detbfarge-sample properties of the La-
grange multipliers undefl,, under collections of probabilities satisfying DefinitioriL4 Finally,
Section G.3 establishes the uniform consistency of theqeeg empirical likelihood estimator of
the moments from the discretized problem, under

Remark G.1. For eachs € Z,, the moment functiongx — ¢ (x;t) ¢ € [t,7]} is suitably mea-
surable and Vapnik-Chervonenkis with envelope function

smax {[t], [7]}77 (1XPP 4 | XA (G.1)

In consequence, Condition (iv) in Assumption 2.1 impliestttinis set of moment functions are
Glivenko-Cantelli and Donsker, both uniformly if € P. These properties of the set of mo-
ment functions are established by invoking Theorems 2:18d12a8.2 in van der Vaart and Wellner
(1996), and they drive the uniform asymptotic results inghesent work.

G.1 A Technical Lemma for Part 4 of Theorem 4.1
Lemma G.1. Let A (Pn> ={teT,:Ep [g(X;t)] =0}.Foreachs € Z,, ¢; € (0,1),¢; €
<0, ﬁ) andc; € (0, +00),

, . 1
lim sup plp — pn] <> and (G.2)
N=+00 pePs(c1,c2,¢3) M Pooo 2
, 1
lim inf P [A (Pn) (0] > =, G.3
n—+00 PEPS(c1,c2,¢3) () Pooo 7 T2 ( :

whereP;(cy, 2, c3) is defined in Definition 4.1 and
Pooo = {P € Py : A(P) # 0}.

Proof. The proof proceeds by the direct method. First we prove (&&)s = 1 and®(-) denote
the CDF of the standard normal distribution. Then for each

P [Pn - ﬁn} — P[Ep [g(X;1)] <OVt ET,] (G.4)
= P [Ep [g(X;1)] <0Vt € [t,1]] (G.5)
< P[Ep [g(X;t)] <0Vt e A(P)] (G.6)
< P[Ep [9(X;t)] <0t € A(P)] (G.7)
= P [VnEp [9(X;t)] /Ep [¢* (X;t)] <0t € A(P)] (G.8)
<|P|vn B, g (X 1) < 0;t' € A(P)| — ®(0)| + @(0). (G.9)
Ep[g* (X;1)]




We can apply the Berry-Esseen Theorem to the random vafalfl€;; ¢')}"" | because’ € A(P)
and the moment functions (with= 1) are uniformly bounded i.e. their range is a subset of the
interval[—2, 2]. That s,

b Xt Es X;t
VnEp [g(X;t)] <o| - 0(0) < sup|P VnEp [g(X;t)] <u| —ow| (©10)
Ep[g? (X;1)] ueR Ep[g? (X;1)]
T Vi(Eelg (X))
Cp23
< 572 (G.12)
where( is an absolute constant. Hence,
, . Cp23 1
lim sup P [Pn - Pn] < lim — 4+ 0(0) = D(0) = 5. (G.13)
n—+00 PeP§(c1,c2,¢3) () Pooo n—+co \/503 2

For the case > 1, we follow steps identical to those above for 1, exceptthat by LemmaF.7,
the steps hold for large as7,, converges with uniformity (ovePs(c,)) to [¢, ] at the ratdog n/n,
which is faster than th¢/n-rate. Furthermore, the random variablggX;;¢)};_, fort € A(P)
are no longer uniformly bounded and have a third moment whens — 1 in Condition (iv) of
Assumption 2.1. However, if imposing> s — 1 on the parameter spaggis undesirable, then
we can use a generalized Berry-Esseen Theorem due to B&R8) Theorem 1 of Feller (1968)
does not require the existence of third moments for the nandriables{g (X;;¢)}", . Using the
envelope function (G.1), we set the following primitivegire notation of his paper

o =n"¢ -7, = —n'/*Vk=1,...,n, where e>6(s—1), (G.14)
c=n sup Ep Z | X KBl [—nl/e < XF < nl/e} (G.15)
PePg(c1,¢2,¢3) N Pooo | K=A,B
V=n sup Ep | > [XKPEDLXK| > nl/e] (G.16)
PeP§(c1,c2,¢3) (N Pooo | K=A.,B
to deduce that
nk s Xt 4
sup | P Vb, L9 )]gu —d(u)| <6 %%—— ) (G.17)
ueR Ep g% (X; )] n3/2d3%  nes
Hence,
sup Ep Z | X KBl [—nl/e < XF < nl/e}
c PePg(c1,¢2,¢3) N Pooo K—AB
32,32 ’ 3/2 (G.18)
n3/2cy Ve,
2 3(s—1)/e
< ”73/2 (G.19)
Vncs
_3/2 3(s—1) 1
<2c;""'n e T2—=0 as n— +oo, (G.20)
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and

o B T ]
b PEP§(c1,c2,¢3) N Pooo K=A,B
v , G.21
ncs €3 ( )
sup Ep UXK|2(S—1)1 UXK| > nl/eH
< Z PP —0 as n — +oo, (G.22)
K=AB @

sincesuppep Ep [|XX|?¢~V] < +oo for K = A, B by Condition (iv) of Assumption 2.1. This
proves the limit (G.2).

Now we prove the limit (G.3). Because of the event inclus{oﬂn <Pn> = @} - {Pn = Pn} ,
it follows that

lim sup P [A (Pn) = @] < lim sup P [Pn = ﬁn}
=00 pePg (c1,e2,¢3) N Pooo nHe0 pePg(er,ea,e) N Pooo
1
< )
- 2
which implies
_ ‘ , 1
lim inf P [A (Pn> + @} > —.
n—+00 PeP(c1,¢2,¢3) N Pooo 2

G.2 Properties of Lagrange Multipliers under H,

This subsection presents the properties of the Lagranggptiens underH, arising in the dis-
cretized constrained empirical likelihood problem intnodd in Section 3. This optimization prob-
lem has the following Lagrangian function:

L= Zlog Di +)\<1—ZP2>—TLZMZP2 (X3 t), (G.23)

teTN =1

where) € R is the multiplier on the equality constrailt’_, p; = 1, andu, > 0fort € 7, are
the multipliers on the inequality constraints. The Kar#&in-Tucker (KKT) conditions are

1

—:)\+nZutg(Xi;t) 1=1,2,...,n (G.24)
pi teTn
sz (Xi;1) <0 VteT, sz—l (G.25)
=1

,uthZ (X;t)=0 VteT, (G.26)
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In classical optimization theory, the existencef\cﬂnd;lt for ¢t € 7, that solve KKT conditions
along withp results from a constraint qualification. This paper usesMhagasarian-Fromovitz
constraint qualification. In the setting of this paper, thangasarian-Fromovitz constraint qualifi-
cation is the following event

S, = {ad cR": idi —0 and idig (Xit) < 0VEte A (Pn)} where (G.27)

=1 i=1
A(Pn) - {tem : ;pig(Xi;t) :o}. (G.28)

The following result establishes the existence of the Liageamultipliers with probability ap-
proaching unity, with uniformity over the set of probahég of the formpP; (c;).

Lemma G.2 (Existence) Givenc; € (0, 1), suppose thab, € Py(cy, c2). Then

sup PI[S,] =1 as n— +oo. (G.29)
PG'P1(01)

Proof. The proof proceeds by using the direct method. Giwea (0, 1), for large enough and
uniformly in P (¢;) Corollary F.1 and Part 2 of F.6 imply thatexists and is unique. To prove the
desired result, we will show the probability of the evéhtconverges to one, uniformly iR (¢;).

Noting that the moment functions satisfy Property 1, coaside following construction for the
deR": > "  d; =0, and the sign restrictions

<0, ifg(Xit)>0VteT,

. (G.30)
>0, ifg(X;t)<0VteT,,

sign(d;) = {

Lemma F.1 implies the occurrence of the evéait: g (X;,t) < 0Vt € T,} with probability ap-
proaching one, uniformly ifP; (c;). Therefore, the above construction is asymptotically telasi
Such vectorsl trivially satisfy the conditions of the Mangasarian-Frontp constraint qualifica-
tion. This concludes the proof since the above implies ti@ptobability of the everf,, converges
to one uniformly inPy(cy). O

In fact, using the KKT conditions, one can easily show that n,

1 1
Di = — y 1=1,2,...,n, (G.31)
n <1 + D tenp, Feg (X t))

’ ’

Where{/fbt =0,Vt € Tnw) — A(Pn)} and {,[Lt >0,Vt € A(Pn)} . The Mangasarian-Fromovitz
constraint qualification implies that there exists a comgat of multipliers on the binding con-
straints that satisfy the KKT conditions. We denote thisodetultipliers by

A, (Pn) - {gt t € A(P,) that satisfy(G.24) — (G.26)}. (G.32)
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Next, we focus on the large-sample properties of the migtiplin A, (Pn) , under H,. Let
w € Z, U{+oc}, and define the Banach spaces, as indexed by

l}ﬂ: {a:(al,ag,...,aw)ERwIZ|CLj| <+OO}, (633)

j=1

normed bylall, = S0, |a|-

Lemma G.3 (Asymptotic Bound for Lagrange Multipliers)

Let A (Pn) be given by (G.28) and,, — }A(PR)} Foreachs € Z,, ¢ € (0,1),¢5 € (o, ﬁ)
andc; € (0, +00),

Ll oo infpep e P A (B) S AP)] = 1.

2. Denote the vector of Lagrange multipliers on the constsabinding constraints byi and

thel, Al - ThenVe > 0
lim sup P | sup ||g]lp, >€| =0, and (G.34)
n——+0o0o PEP(‘)S(Cl,CQ,Cg) I»ZEAn(Pn) n
sup ||/"||lin =Op (n_1/2) (G.35)
IJ«EAn<P,n>

uniformly in P§(cy, ca, c3).
Proof.
1. We show this result using proof by contrapositive, thaivis show that for large,
t¢ A(P) = t¢ AP,

Givenc; € (0,1), for large enough and uniformly inP, () P1(c1) Corollary F.1 and Part
2 of F.6 imply thatp exists and is unique. Consider ahye [t,¢]. For large enough,
Property 1 and the non-negativity of the Lagrange multiplimplies that

sz (Xi5t) < Zg Xiit) = Zg Xiit) = Ep, [9(X;1)] + Ep, [9(X;1)] (G.36)
Now, fort ¢ A(P), it follows thatEp [¢(X;t)] < 0. By the Central Limit Theorem,
_Zg th (X t)] O ( _1/2)

uniformly in Py () P1(c1). Thus, for sufficiently large, equation (G.36) simplifies to

sz (Xist) <

This shows that ¢ A( ) with probability approaching unity, uniformly over prohktes
in Po ﬂ 731 (Cl)
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2. On the event{A(Pn) = @}, the Lagrange multiplies that solve the KKT conditions is
a singleton equal to the zero vector i.4., (P ) = 0 € [}, . Therefore, on the event

{ (B,) # (Z)} ( ) is not equal td. In consequence.

P| sup |[Ally, >e| =P | sup |lally >eAL)#0]. (G.37)
fighn (Pn) €A (Pn)

Thus, our approach in the proof will be to construct an uppemiol OMSUP e, (5,) i

on the evenE{A( ) 7 (Z)} that iso,(1) uniformly in
Pi(ci, e, 03).

Recall that the cardinality of the sAt(Pn) isw, < N. Without loss of generality, let
A(B) = {t1,ts, ..., 1o, }. (G.38)
Therefore, the probabilities (G.31) can be expressed as
1 on -
j=1

For any choice of; € A(P,), we have

1 - 9(Xi: t))
pig(Xi; tj) - =0 (G.40)
Z Z 1"‘23 1 F59(Xist5)

To express the system of equations described by (G.40) tonsed form, define the vector

g = [g0(Xith), 9(Xista), -, g(Xisto)]” (G.41)

Now, as all the elements qifare non-negative, thg norm is simply the sum of all elements
of fi, i.e. ||, = >~ 1. This means we can express the vegtan the form

0, 0cRy"

Under this construction, thg" element ofd is

g, — M
’ 23;1 ﬂj

This implies thatz;f’;l §; = 1. The system of equations defined by (G.40) fortailA(Pn)
can be written in the following form

1 gi (1< gi
Sl NP A, R () WL, - G.42
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Define the quantlty/, (1) Tg;. Using the manlpulat|0@+—y =1- 1+Y
(1)T'g; = gl in equation (G.42) gives

1 gl
0T | = 1= =2 —
(e (- E5)) -
T)
0T - | = T gig K
Zg) 0 ( 11,
n 4= ! 1+Y
.67 —Zgz>—||li||l}m9T< ff;,)e (G.43)

We denote the sample analogue estimate of the covariance wlaheasurement functions
over the set of alt € A(P,) by

A(Pn Z glgz

DefineY,,,, = max|Y;|. Note that

Yinae = max Y _ i 19 (Xist))| (G.44)
j=1
<> i max |g (Xy;1;)] (G.45)
j=1
, -\ S— s—1
= 1Al smax {2, {1} max [ X7 (G.46)
K=A,B

where we used the envelope function (G.1) to bound the mofoections, uniformly in
teltt.

Let X, = s max {|¢], [} > K p,p MAX; | XX|°"", and consider

il (67S55,0) = llilln, | 67 %ZggT ) 0)
ally, (67 1: ffé)e) (1 + Yonge)
gl |67 %M ffin) 0) (1+ X111,
il (67S55,0) < 67 (% igZ) (1 + X 2], (G.47)
i=1
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where the last line results from substituting the expresgiven in (G.43). Rearranging
(G.47) gives

. X n
T T max
07, 60 —6 (T ZgZ)

Al
i=1

1 & , ,
<67 (5 ; g,-> Vi e A, (Pn> . (G.48)

since the derivation above holds for egéhe A, <Pn) . We consider the components of

(G.48) to find the required asymptotic bound @||. From part (i) of this lemma, for
large n we have\(P,) C A(P). This means for large, we have that for alt € A(F,),
Ep[g9(X;t;)] = 0. As aresult,

0T (% Zgz> - iej (% Zg(Xi;tj) — Ep [Q(X;tj)]>
" (%i&) < iej

1 n
< max - E 9(Xist;) — Ep[g(X;t;)]
i=1

% ZQ(XZG t;) — Ep[g(X;t;)]

J

(G.49)

te(t, ]

< sup %Zg (Xi;t) — Ep g (X;t)]

The last line follows from the fact thazfgl ¢, = 1 by construction. The upper bound
given by equation (G.49) isp(1) uniformly in P. This follows from the moment functions

being uniformly Glivenko-Cantelli: it is a Vapnik-Chervenkis class with square-integrable
envelope function (G.1), uniformly i?. Therefore, this upper bound is alsp(1) uniformly

inPg(cy, ca, C3).

Now we focus on the large-sample behavior of the t&n "' X,,.. 27, g). We will
show that it is als@p (1) uniformly in P§(cy, ¢z, c3). We have

0T (% Z gz) S Xmam Zn ej
=1 j=1

1 n
< Xnaz — Xit:)— F Xt
= m]aX n;?]( J) P la( J)]

% ZQ(XZ-; t;) — Ep [9(X;t;)]

. (G.50)

1 n
S Xma:c sup E Zg (Xza t) - EP [g (X7 t)]
i=1

te(t,t]

Next, apply Lemma 11.2 of Owen (2001) and Theorem 2.8.2 ofdearVaart and Wellner
(1996) to X .. and

n

sup |+ Y 9(Xit) - Eplg (X;t)]

)
teftd] |7 i1
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respectively, to deduce that,,., = o(n'/?) and

sup 1 > 9(Xist) — Epg(X;t)]| = Op(n~""?) uniformly in P.

teltd | o

Therefore, the right side of (G.50)in'/2)Op(n~1/2) = op(1), uniformly in P. In conse-
quencef” (n ' Xonae >, i) = op(1) uniformly in Pg(cy, s, c3).

’

Now, for sufficiently largen, Part (i) of this lemma tells us that(P,) c A(P), with proba-
bility approaching unity uniformly oveP, (| P1(c1). Whether or notA(P) # () the follow-
ing manipulation holds. Becaug&(c;, c2,c3) C Po[)Pi(c1), Definition 4.1 implies that
OTZA(]%L)O > ¢3 > 0 holds with probability tending to unity uniformly ové®;(c;, cs, c3).
Using this result and the bound from equation (G.49), we eamite (G.48) as

op(1)

G op(l)
lille, < 20

Vi € A, (Pn) . uniformlyin Pi(ci,co,c3).  (G.51)
Consequently,

; op(1
sup HNHl&,n < p(l)

————~—— uniformlyin  P§(cq, 2, c3). (G.52)
/iEAn(lf’n) 03+Op( ) o\C1,C2,C3

Therefore,supﬂeAn(Pn> |2l = op(1) uniformly in Pg(c1, ca, c3). Finally, to show that
SUP e, (5, 4], = Op(n='/2) uniformly in P3(c1, ¢z, ¢3), first note that the expression
on the right side of (G.48) has this property. So that

—1/2
sup [|@f]n < Op(n” ") uniformly in = Pg(cq, ¢z, c3), (G.53)
fichn () "~ e +op(l)
which implies
1 . .
n  sup pn < ———=— uniformly in C1,C2,C3). .
Vi lilly, < —2"W uniformiyin P (e, e, o) (6.54)
fen, (Pn) "~ 3 +op(l)

Hence,/n SUD e, (5, |[&2]|, , @ positive random variable, is bounded from above by an-
other variable that i® (1), uniformly in P§(cy, 2, ¢3). Therefore, we must have that

vn sup |4l = Op(1) uniformlyin  Pg(ci, ca, c3).
€A (Pn)

G.3 Relationship Betweent; [¢ (X, )] and £ [g (X, )]

The following result implies that the estimatby, [g (X, -)] is a uniformly consistent estimator of
Ep, [g (X, )] underH,.
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Proposition G.1. For eachs € Z,, ¢; € (0,1),¢, € <O ) andc; € (0, +00),

(e

sup ‘E g(X,t)] = Ep [g (X, )] = Op(n~"%) uniformly over P;(ci,ca,c5). (G.55)

te(t,t]
Proof. The proof follows the direct method. Consider the followdggivation:

|Ep, o (X,0)] — Ep, [g(X.0)]| = Ep, [g(X.0)] — Eg, g (X,1)] (G.56)

:Zgg<Xht sz Xut
i=1
= (5 - ) atxan

i=1
:Z_<1_ N >Q(Xz‘,t)
i_1 L+ 2;’:1 f19(Xi5t5)
19 (Xi, 1) Zjvzl f1;9(Xis t5)
i 1+ Zjvzl f1;9(Xi; ;)

n N
= 0ig (Xi, ) Y fijg(Xist;). (G.57)
i=1 Jj=1

Now using the envelope function (G.1), we can obtain th@feithg upper bound on the term (G.57):
n 2
s max {|t],[71}"7" sup ||/z||lgm2pz-( > \Xfr‘1> , (G.58)

AEAL(Pn) i=1 K=A,B

whereA,, (Pn> is the set of Lagrange multipliers @X}(Pn) definedin (G.32). Part2 of Lemma G.3
establishes

sup || 2l[i, = Op(n~"%) uniformly over Pg(cy, ca, c3). (G.59)
€A (Pr)

Thus, to deduce the desired result, we need to show that

2
Zpl< > Xﬂ“) — Op(1) uniformly over P3(cy, ca, c3). (G.60)

K=A,B

. . Y;
Foreach =1,...,n, we will apply the expan3|0@+—y v o0

1 N o
i =— |1 1,9(X55 5 ;
p o ( +Z/~LJ9( ]))

j=1
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whereY; = Zj.vzl [1;9(X;; t;), to deduce that the left side of (G.60) equals
n 2 n N . 2
lz( S }X,K‘S‘1> _lz< 21 9 (X 1) ) ( 3 ‘XK}H) (G6D)
"3 \k=aB nig 1+ Z;V=1 119( X5 t5) K=A,B

Next, apply Jensen’s inequality to the second term in (Gtébptain the following upper bound
on (G.61)

>2 Zj ,Uj% S (g (X, ) (ZK:A,B }XZK}S_1>2) (G.62)

1+ Zj /“LJ% 22;19 (Xivtj)

(3 e

2
By Condition (iv) of Assumption 2.1, the terf """ | (ZK:AB }XZ.K\S_1> converges in prob-

2
ability to Ep (ZK:AB \Xﬂs_1> . uniformly in P € P, which implies that it converges uni-

formly in P € Pg(cy,ca,c3) aSPi(cr, ca,c3) € P; therefore, this term i€©)p(1) uniformly in
P € Pj(cy,c2,c3). Next, we show that the second term in (G.62pjg1) uniformly in P €
P§(c1, ca, c3), Which implies that it iSOp (1) uniformly in P € Pg(cy, 2, ¢3).

The modulus of the second term in (G.62) is bounded above by

. n s—1)2
P e, (1) 181, maxi g (X, t)| 4 30 (e a [ XK

‘1 + Zj ,Uj% Z?:l g (X,-, tj)

(G.63)

We tackle the numerator and denominator of (G.63) sepgratsing the envelope function (G.1),
the numerator is bounded above by

GEA, (Pn) K=A,B i=1 \K=A,B

2
211 (s—1) . - K|s—1 l “ K s—1
smax { |t], £} sup |||y, ( Z mZaX|XZ- | ) nZ( Z | X ) . (G.64)

By Condition (iv) of Assumption 2.1, an application of Lemra.2 of Owen (2001) and Part 2
of Lemma G.3 imply that

sup || al[rs,, ( > max\XiK\S_l> = op(1) uniformly in P € Pg(cy, ca, c3).
/.lEAn(Pn) K=A,B v

Furthermore: 3"\ (34— 4 5 \XZK\S_IF = Op(1) uniformly in P € Pg(cy, ¢z, c3), Which im-

plies that the term (G.64) is»(1) uniformly in P € P§(cy, ca, c3).
Next, we tackle the denominator. We will show tha ;= >0 g (X, t;) = op(1) uniformly
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in P € P§(c1, co, c3). Observe for large enoughand uniformly inP € P§(cy, 2, c3) that

RN .
o> gXut)| < swp [y, s [Ep [9(X,1)]] (G.65)
j N HEA(Pr) teA(Pn)

= Op(n™"?) sup |Ep [g(X,1)] (G.66)

tea(P,)
< Op(n™'?) sup |Ep [g(X,0)]] (G.67)

teA(P)

= Op(n ™ YHO0p(n?) = Op(n™) = 0p(1) (G.68)
by Lemma G.3 and the Uniform Central Limit Theorem. This dades the proof. O

H Technical Lemmas for Theorems 5.1 and 5.2

H.1 Theorem5.1

This subsection presents two technical lemmas that areldeeproving Theorem 5.1. They are a
consequence of the Conditi(fh[supte[m g (Xy;t) < O} > (0 being true. The first lemma is similar
to Lemma F.1, but we now do not constrdirto satisfyH.

Lemma H.1. Suppose’, € P and letl, be given by (F.1). Then
lim P [I; #0] =1.

n— o0

Proof. The proof follows similar steps as those in the proof of Lentata We show that the
probability of the complement dff;; # (0} converges to zero. This set s

{1, =0} = {foreach i3t € [¢t,7]; g (X;;t) > 0}.

By the bivariate random sampling assumption{d& }"_, , we have that

) (H.1)

sup g (Xy;t) < O]) — 0 (H.2)

Py [, =0] = (Po tsél[ltpﬂg(Xl;t) >0

:(1_p0

n — +oo by Condition (i) of Assumption 2.1. O

tet,t]

The second lemma concerns the existence and uniqueness adribtrained empirical likeli-
hood probability vectop. Recall that

Hn: {plv'L:l)7nazpz:1,pzzo,v121,,TL}

1=1
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and that its interior ig{; . Additionally, recall that the constraint is

HO(X) = {pe’H Zpl (Xi:t) <0 VteT}

As with the previous result, we do not constraihto satisfyH.

Lemma H.2. Supposé’, € P. Then
lim Py [HO(X)NH # 0] = 1.

n—oo

Proof. For largen, Lemma H.1 implies that the event
He{l,2,....n} g(X;,t) <0 VteT, (H.3)

occurs with probability approaching 1, sin€g C [¢, ] for eachn. The rest of the proof proceeds
using steps similar to those in the proof of Lemma F.5; tleeegfwe omit them for brevity. [

H.2 Theorems5.2

This section presents technical lemmas for the local powalyais of the tests. It relies on the
WLLN and Lindeberg-Feller Central limit Theorem for triaxigr arrays of row-wise 11D random
variables. These large sample results can be found in &e2ticof Billingsley (1995). In the
context of the paper, we have the triangular array

{{Xi,j,i:1,...,n},n:1,2,...}, (H4)

where for eacln {X, ;,7 = 1,...,n} is bivariate random sample for}, that satisfies Assump-
tion 5.1.

First, we introduce a technical lemma that shows the largalste in a sample of size in
the triangular arrays of row-wise IID random variables aatrgrow to infinite as fast ag/n. We
establish this result, though, in the context of the paper.

Lemma H.3. Suppose that Assumption 5.1 holds. Then

maxi<i<n EK:A,B ‘X2n|
vn

Proof. The proof proceeds by the direct method. We will show that

= Opn(l).

maxi<i<n — Xin s
Ve >0, lim P, 1<isn 2k | Xin ge] — 1, (H.5)
n—4o00 \/ﬁ
which implies the desired result.
Under Assumption 5.1 an@, we have that
2 2

sup Ep, | Y | Xiult| <supEp | Y X < oo, (H.6)
n K—A,B pep K—A,B
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holds. Then, for every > 0 Markov’s inequality implies that

n 2
lim Y P (Z |Xi,j|s—1> > ne| < +oo. (H.7)

n—-+00
7j=1 K=A,B

As >0 Pil(Xk—ap|XijI"1)? > ne] is a convergent series of non-negative terms, it follows
that

2
. s—1 _
nl_l)Ifoo P, ( Z | Xl ) >ne| =0, (H.8)

K=A,B

holds. In consequence, the limit of the complementary dribiias satisfies

_ ){'Z n s—1
lim P, EK_A’B‘ o < e] =1, (H.9)
n——+o0o \/ﬁ
which implies that
maxi<i<n — in 51
lim P, tsisn 2 s | Xl < el =1, (H.10)
n——+o00 \/ﬁ

holds. The limit (H.10) implies the desired resulteas 0 was arbitrary and because the square-
root function on the positive reals is a monotonic functien there is a one-to-one correspondence
between,/e ande. O

Next, we briefly mention a few intermediate useful resultgarding constrained estimation
under the local alternatives.

Lemma H.4. Suppose that the conditions of Theorem 5.2 hold. Then
1. lim, s, Py [I; # 0] = 1, wherel; is defined in (F.1).
2. limy,_y 400 Py [HO(X) NHS # 0] = 1.
3. lim, 100 P, [Sn] = 1, whereS,, is the event defined in (G.27).
4. limysi00 Py [Ep [9(X;8)] < Ep [g(X5t)] VE € [t,8] = 1.
5. vVnsupsen, (p,) I, = Op,(1).

Proof. Under the conditions of Theorem 5.2, the steps for provingsphato 4 of this lemma are
identical to their counterparts in Appendix G, but with pabbity computations under the local
alternatives; therefore, we omit them for brevity.

We now focus on proving part 5 of this lemma. We will first shdnait

lim P, [A(Pn) - c] —1 holds, where C' = {t € [t,7] : H(t) = 0}.

n—-+4o00
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The proof will follow steps similar to those of pat (i) of Lenans.3. Proceeding by contraposition,
we need to show that

tdC = t¢ A(P) (H.11)

for largen with probability approaching unity, under the local aliives. Part 4 of this lemma
implies

Ep lg(Xit)] < Ep [g(X51)] = Ep [g(X;1)] = Ep, [9 (X58)] + Ep, [9(X58)]. (H.12)

Now, considert ¢ C. This implies thatim,,, .. Ep, [¢ (X;t)] = H(t) < 0. By the WLLN for
triangular arrays,

By, lg(X;1)] — Ep, g (X: )] = on, (1). (H.13)

It should be noted that the application of the WLLN for triaay arrays is valid since the set
of moment functions* is uniformly bounded form above by the square-integrablelepe func-
tion (G.1) under the local alternatives. Thus for suffidigtargen, the inequality (H.12) simplifies
to

Ep [g(X;t)] < H(t) <0 as n— +oo. (H.14)
This shows that ¢ A(Pn) for largen with probability approaching unity under the local alterna
tives.
Using the notation of Lemma G.3, and following identicalpstéo those up to the inequal-
ity (G.48), we have that

filli, (075,60 - 0" (XL Zg) <o (1 > gz-) Ve, (f),  (H15)

" n =1 n =1

where
o 71151 K |s—1

Xomaw = smax {[t], [[]}"7 > max [XF [ (H.16)

K=AB ~— ~
g = [9(Xith), 9(Xista), ..., 9(Xistu)]" (H.17)
A(B) = {t1,ts, ...ty } (H.18)

and@ € Ry with [|0][;, = 1. Noting that

o" (% )3 gz-) =3, (% > 9(Xity) = B, lo(X: mJ) FY 0060/ (H19)

< sup |Ep, g (X;0)] — En, [g(X:0)]| + sup 6(t)/v/ = op,(1)  (H.20)

teft ] tet,q]
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by the Uniform WLLN for triangular arrays of random variablinat are row-wise 11D and that

60" (MZ ) iﬁ ( m“ng(Xi;tj)—Epn [Q(X;tj)]>

i=1

Wn,

+2_05(8(t5)/ V)

Xm(l.’E
< Xpnaz SUp |Ep [g(X;t)] — Ep, [9(X;0)]| + sup 0(t)
telt, ] vn telLl]

X
= =2 \/nsup |Ep [g(X;t)] — Ep, [g(X;t
e s B g (X:0)] = B, o (X: )

Xm(le
o 2o
= op,(1)Op,(1) + 0p, (1) = 0p,(1)

by Lemma H.3 and Theorem 2.8.9 in van der Vaart and Wellne®g)L9.e., uniform CLT), we
sup || [z

have that
I
6" <E Z’i:l gi)
L (H.21)

e () o500 ()]

since Property 1 and part 1 of this lemma implies that, , , . P, [OTane > 0} =1.
Hence,

I
\/EOT (5 Ei:l gz)
Vinoosup [y, < — X '
e (Bn) [oT 3,0 — 67 <% D i gi)}

To conclude the proof, all we need to do is to show that the matoeon the right side of the
inequality (H.22) isOp, (1). Noting the inequality (H.20) above, we have that

(H.22)

( Zgz> < +/n sup ‘E X;t)] — Ep, [g (X,t)” + sup 4(t), (H.23)

telt,d) te[t.7)

wherey/nsupc |Ep [9(X;t)] — Ep, [g(X;t)]| = Op,(1) by Theorem 2.8.9
in van der Vaart and WeIIner (1996), andp,.;,7 0(t) is finite by Part (i) of Assumption 5.1,
which implies the desired result. Therefore,

vn o sup |4l = Op, (1),

ﬁeAn(Pn)
which concludes the proof. O
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The next result is the counterpart of Proposition G.1 unbdersiequence of local alternatives
demarcated by Assumption 5.1.

Proposition H.1. Suppose that Assumption 5.1 holds. Then For ea€l¥ ,
sup |Ep, [g(X,1)] = Ep, [g(X,8)]| = Op, (n7"/?). (H.24)

te(t,]

Proof. The proof follows steps identical to those in the proof ofgaisition G.1 except that the
limits are taken under the sequence of local alternativestly; we can follow the same steps to
deduce thatup,., 3 | Ep, [9 (X, )] — Ep [g (X, 1)]] is bounded above by

n 2
s?max {[t], [7}*°7" sup ||ll||z;n225i< > »Xff*) : (H.25)

€A (Pr) i=1 K=AB

Then Part 5 of Lemma H.4 implies thﬁtp;zeAn(Pn)
we need to show that

fill, = Op,(n~'/?), holds, which implies

Zﬁz( > }XZ-K}S_1> = Op, (1), (H.26)

K=A,B

holds, in order to conclude the proof.

To show that (H.26) holds, we can implement the same decatigo®r this term and apply
Jensen’s inequality as in the proof of Proposition G.1 toaskimat it is bounded above by the
expression (G.62), which we repeat here for convenience:

t it X (9060 (s 117))
) B L300 o Doy 9 (X )

Condition (iv) of Assumption 2.1 implies that

%Z( > \Xﬁ*) = Op, (1),

i=1 \K=A,B

(H.27)

DB

i=1 \K=A,B

Then we can tackle the denominator and numerator of the deeom in (H.27) separately. For
the numerator, we follow the same steps as in PropositiorbG.se Lemma H.3 and Part 5 of
Lemma H.4 instead of Lemma 11.2 of Owen (2001) and Part 2 ofrhar®.3, respectively, to
deduce that it i®p, (1), under the sequence of local alternatives. For the denoarjregain, we
follow the same steps as in Proposition G.1 except that wWaceghe contact sek(P) with the
setC' and use Part 5 of Lemma H.4. and the Theorem 2.8.9 of van det &ad Wellner (1996)
instead of Part 2 of Lemma G.3 and the Uniform Central Limiedtem, respectively, to deduce

that
1
D sy 220 (Xinty) = o (1),
J 1=
under the sequence of local alternatives. This concludepribof. O
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