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Abstract

This paper proposes a method of bootstrap testing for restricted stochastic dominance be-

tween two income distributions. The proposed testing procedure retains the bootstrap test

procedure of Linton et al. (2010) (LSW), but reformulates their bootstrap test statistics using

an estimator of the contact set based on the method of constrained empirical likelihood that

imposes the restrictions of the null hypothesis. This papercharacterizes the set of probabilities

in the null hypothesis so that the proposed test has asymptotically correct level, and the subsets

of this set on which its asymptotic size is exactly equal to the nominal level. The testing proce-

dure of this paper is less conservative than the one LSW propose. Furthermore, it is consistent

and has asymptotic local power no less than the LSW test underregularity conditions. We

report simulation results that show the proposed test is noticeably less conservative than the

test of LSW and has improved power. Finally, the methods are illustrated in an assessment of

consumption poverty in Australia for the periods 2001 and 2006.
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Note 1. An earlier version of this paper was circulated as the unpublished manuscript Lok and

Tabri (2015). That paper proposed (1) a contact set estimation procedure based on the method of

empirical likelihood, and (2) a modification of the bootstrap testing procedure LSW develop which

replaces their contact estimator with the proposed contactset estimator. However, that manuscript

did not fully and formally analyze the asymptotic properties of these procedures, because it was

intended to be a short paper that demonstrates, via Monte Carlo simulations, the potential benefits

of the modified testing procedure. The present work, under the same title, rigorously establishes

the asymptotic properties of the proposed contact set estimator and the bootstrap test based on it,

includes a more extensive set of Monte Carlo simulation experiments and an empirical illustration.

It is thus intended to subsume the 2015 manuscript.
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1 Introduction

Stochastic dominance orderings of income distributions are fundamental in poverty and income

studies. Since the 1980’s, these orderings were used to establish whether poverty or social welfare

is greater in one income distribution than in another for general classes of poverty indices and for

ranges of possible poverty lines (e.g. Atkinson, 1987 and Foster and Shorrocks, 1988).

In practice, population income distributions are in general not observable, and so comparisons

must be based on statistical tests that make use of distributions estimated from samples. Bootstrap

tests that posit a null ofunrestricted stochastic dominance of a given order appeared over the last

two decades (e.g. Barrett and Donald, 2003, Horváth et al., 2006, and Linton et al., 2010), and

all of them apply to testing forrestricted stochastic dominance orderings1. Linton et al. (2010)

(LSW, hereafter) proposed a bootstrap testing procedure that is asymptotically similar over a large

set of distributions in the boundary of the null hypothesis.They allow for the case of dependent

populations and show that their test is asymptotically valid uniformly over the distributions in the

null hypothesis under certain regularity conditions. To obtain these properties of their test, LSW

introduce consistent estimation of the "contact set", which is the subset of the domain on which the

dominance functions coincide. This set is of great importance because it enters the asymptotic null

distributions of conventional test statistics (e.g. one-sided Cramér-von-Mises and Kolmogorov-

Smirnov test statistics). LSW construct bootstrap test statistics that adapt to the contact set using

a consistent contact set estimator, whose use is similar to the generalized moment selection pro-

cedure in Andrews and Soares (2010) and Chernozhukov et al. (2013) who develop inference

procedures for a finite-dimensional parameter. In contrast, the object of interest in the present pa-

1Stochastic dominance orderings can either be unrestrictedor restricted, as to whether the comparison of the
distributions is carried out over the entire range of the union of their supports or only over some predesignated restricted
range of it. The saliency of this distinction in poverty and income studies arises for a normative reason, being that
unrestricted stochastic dominance orderings do not imposesufficient limits on the ranges over which certain ethical
principles must be obeyed. Said differently, these orderings discriminate between the living standards of everyone
below a survival poverty line when in fact this should not matter because everyone under that threshold should certainly
be deemed to be in very difficult circumstances. In consequence, these orderings do not give equal ethical weight
to all those who are below a survival poverty line. By contrast, the rankings of income distributions based on the
restricted stochastic dominance orderings eliminates theconcern with the precise living standards of the most deprived.
See Bourguignon and Fields (1997) for more on this point.
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per is infinite dimensional. Although LSW has significantly advanced the inference literature on

stochastic dominance orderings, simulation-based evidence suggests that it is conservative on con-

figurations in the boundary of the null hypothesis outside ofthe least favorable case. The present

paper builds on the contribution of LSW by introducing a bootstrap test for restricted stochastic

dominance that is asymptotically less conservative than their test on these configurations in the

null hypothesis.

The bootstrap test this paper proposes retains the LSW testing procedure but replaces their

contact set estimator with one based on a constrained estimator of the dominance functions. The

contact set estimator this paper introduces uses the constrained empirical likelihood estimator of

the dominance functions, where the constraints represent the restrictions of the null hypothesis2.

By contrast, the LSW contact set estimator uses the sample analogue estimator of the dominance

functions. Therefore, our empirical likelihood estimation procedure defines a "constrained" es-

timator of the contact set. In effect, the test we propose is amodification of the LSW test that

reformulates the LSW bootstrap test statistics in a data-dependent way that incorporates the sta-

tistical information contained in the constraints of the null hypothesis. We characterize the set of

probabilities in the null hypothesis so that the proposed test has asymptotically correct level, and

the subsets of this set on which its asymptotic size is exactly equal to the nominal level.

The bootstrap test this paper proposes has a couple of advantages. First, it is asymptotically less

conservative than the LSW test on configurations in the boundary of the null hypothesis outside of

the least favorable case. This property is a consequence of the proposed contact set estimator being

asymptotically a subset of its LSW counterpart under such population configurations. For popu-

lation configurations in the least favorable case, the two contact set estimators are asymptotically

equal. Accordingly, the LSW bootstrap test statistic is asymptotically no smaller than its modified

counterpart, under the null. Second, we provide sufficient conditions under which the proposed

test is asymptotically more powerful than the LSW test against fixed alternatives, and vice-versa.

The proposed test is shown to be consistent against all alternatives, which is also a property that

2See Owen (2001) and the references therein for the method of empirical likelihood.
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the LSW test shares. Furthermore, we adopt the framework of LSW to compare the asymptotic

local power properties of the tests, who consider Pitman local alternative sequences. We find the

local limiting power function of the proposed test is greater than or equal to its LSW counterpart,

regardless of the Pitman local alternative directions.

These desirable properties, however, come at the expense ofintroducing an additional tuning

parameter, and the use of a slightly more restrictive parameter space than the one LSW employ.

The tuning parameter is a grid that approximates the predesignated range in the domain of the

dominance functions. The grid indexes the points in this domain on which we wish to impose the

restrictions of the null in the constrained empirical likelihood estimation problem. This estimation

problem is easy to implement in practice using standard computing packages. The parameter space

in this paper is a subset of the one that LSW employ because twoconditions in addition to the ones

LSW impose, define it. The first condition is sufficient for theexistence and uniqueness of the

solution in the constrained empirical likelihood estimation problem, and the existence of Lagrange

multipliers via Karush-Kuhn-Tucker conditions. The second condition imposes a zero lower bound

on the supports of the income distributions, which is not restrictive as incomes are non-negative.

To explore the finite-sample properties of the tests, we report Monte Carlo simulation results

that compare the tests. The simulations use the experimental designs in Section 5 of LSW, which

are for fixed data-generating processes. The simulation results show the proposed test has better

Type I error properties. The data-generating processes under the alternative are in the directions of

dominance and non-dominance, which allows us to gauge the differences in the powers of the tests

that our theoretical findings suggest. Overall, the simulation results suggest that the proposed test

weakly dominates the LSW test, and that there can be substantial differences in their performance.

Tests based on the procedure Barrett and Donald (2003) introduce also apply to testing for

restricted stochastic dominance. They proposed a consistent bootstrap test for the case of indepen-

dent populations, where the bootstrap critical value is computed using a bootstrap data-generating

process in the least favorable case of the null hypothesis. Similar works in this area include, for ex-

ample, Horváth et al. (2006). In general, these types of testing procedures are too conservative, and
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have asymptotically exact size equal to the nominal level when the dominance functions are equal

almost everywhere. Tests for restricted stochastic dominance are not new. Davidson and Duclos

(2013) and Davidson (2009) propose asymptotic and bootstrap tests that posit instead a null of

non-dominance. By contrast, our paper and the literature discussed earlier, have non-dominance

as one of the configurations under the alternative. Therefore, these two approaches are not directly

comparable, but they certainly do complement each other.

The rest of this paper is organized as follows. Section 2 defines the null hypothesis of restricted

stochastic dominance, introduces the test statistic LSW utilize, their definition of a test having

asymptotically exact size, and their bootstrap testing procedure. Section 3 introduces the the pro-

posed contact set estimator and its asymptotic properties under the null. Section 4 presents the

asymptotic properties of the proposed testing procedure. Section 5 presents a further discussion on

the differences between the LSW test and the one this paper proposes. Section 6 reports the find-

ings of Monte Carlo simulation experiments. Section 7 illustrates the LSW and proposed inference

procedures using with an application to Australian consumption data. Finally, Section 8 concludes

and Section 9 collates the acknowledgements of the individuals and institutions who provided help

during the research.

2 Setup

This section introduces the testing problem this paper focuses on, the test statistic and its pointwise-

asymptotic null distribution. Furthermore, it presents the LSW contact set estimator and bootstrap

testing procedure.

2.1 The Null Hypothesis

Consider two populations,A andB, with respective distribution functionsPA andPB, and suppose

that there is a joint distribution function,P, with marginal distributionsPA andPB. It is important

to account for the statistical dependence between the two populations in many applications, such
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as the comparison of distributions over time, or before and after an economic policy or event.

DistributionB is said to dominate distributionA, stochastically at orders ∈ Z+ and over the range

[t, t] ⊂ supp(PA) ∪ supp(PB) , if

EP

[

(

t−XB
)s−1

(s− 1)!
1
[

XB ≤ t
]

−
(

t−XA
)s−1

(s− 1)!
1
[

XA ≤ t
]

]

≤ 0 ∀t ∈ [t, t], (2.1)

whereX = [XA, XB] is a random vector whose distribution isP, and supp(PK) is the support of

PK , K = A,B. The unrestricted stochastic dominance orderings are defined as above, but with

the equality:[t, t] = supp(PA) ∪ supp(PB) .

Let P0 denote the "true" distribution ofX. For ease of exposition, let
{

x 7→ g (x; t) , t ∈ [t, t]
}

denote the set of moment functions in (2.1). Implicit in thisnotation for the moment functions is

the order of stochastic dominance, which is fixed by the null hypothesis. Givens ∈ Z+ and[t, t],

we wish to test thatP0 satisfies the moment inequalities (2.1). That is, the null hypothesis of main

interest takes the following form:

H0 : EP0 [g (X; t)] ≤ 0 ∀t ∈ [t, t], (2.2)

H1 : ∃t ∈ [t, t] such thatEP0 [g (X; t)] > 0. (2.3)

The statistical model this paper considers is denoted byP. It is the set of all potential continuous

distributions ofX that satisfies the following assumption.

Assumption 1. (i) P
[

supt∈[t,t] g (X; t) < 0
]

> 0; (ii) supp(P ) ⊆ R2
+; (iii) {Xi}ni=1 is a random

sample fromP, and (iv) for someδ > 0, sup
P∈P

EP

[

|XK|2((s−1)∨1)+δ
]

< +∞ for K = A,B.

DefineP0 =
{

P ∈ P : EP [g (X; t)] ≤ 0 ∀t ∈ [t, t]
}

. This paper characterizes submodels ofP0

that serve as models of the null hypothesis for which the proposed testing procedure hasasymptot-

ically exact size and isasymptotically similar in the sense of Definition 1 of LSW. We repeat this

definition here for convenience.

7



Definition 1. Suppose thatΩ is the model of the null hypothesis. (i) A testϕα with a nominal level

α is said to have anasymptotically exact size if there exists a nonempty subsetΩ′ ⊂ Ω such that:

lim sup
n→+∞

sup
P∈Ω

EPϕα ≤ α, and (2.4)

lim sup
n→+∞

sup
P∈Ω′

|EPϕα − α| = 0. (2.5)

(ii) When a testϕα satisfies (2.5), we say that the test isasymptotically similar onΩ′.

Remark 2.1. LSW allows forXA andXB to depend on unknown parameters that are finite or

infinite dimensional. This accommodation, albeit useful incertain applications, is not applicable

to the comparison of income distributions. Conditional stochastic dominance orderings would be

the appropriate approach to accommodate the effect of covariates on the comparison of income

distributions, which is beyond the scope of this paper.

Remark 2.2. An important consequence of Condition (ii) is that for eachs ∈ Z+, the set of

moment functions
{

x 7→ g (x; t) , t ∈ [t, t]
}

is uniformly bounded. This property of the set of

moment functions along with the fact that it is suitably measurable and Vapnik-Chervonenkis,

drives the uniform asymptotic results in the present work.

2.2 Test Statistic and Asymptotic Theory

LSW use a Cramér-von-Mises type test statistic in a bootstrap testing procedure forH0. In the

setting of this paper it is given by

T̂n = n

∫ t

t

max
{

EP̂n
[g (X; t)] , 0

}2
dt, (2.6)

whereP̂n = 1
n

∑n
i=1 δXi

is the empirical measure based on the random sample{Xi}ni=1 , andEP̂n

denotes the expectation underP̂n. The asymptotic null distribution of̂Tn depends on the form of
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the contact set

∆(P ) =
{

t ∈ [t, t] : EP [g (X; t)] = 0
}

, (2.7)

for P ∈ P0, and follows from the Donsker property of the class of moment functionsF with

respect toP0 for eachs ∈ Z+ and[t, t]. LetP00 =
{

P ∈ P0 :
∫

∆(P )
dt > 0

}

. Then the pointwise

asymptotic null distribution of̂Tn is given by

T̂n
d−→















∫

∆(P )
max {ν(t), 0}2 dt, if P ∈ P00,

0, if P ∈ P0 − P00,

(2.8)

whereν(·) is a zero-mean Gaussian process on[t, t] with a covariance kernel given by

C(t1, t2) = CovP (g (X; t1) , g (X; t2)) . (2.9)

The limiting null distribution ofT̂n exhibits a discontinuity in the underlying probabilityP that

generates the data. The consequence of this large sample behavior of the test statistic is that it

invalidates the use of the canonical bootstrap for testingH0 (e.g. see Andrews, 2000). For this

reason, LSW propose a bootstrap testing procedure that usesa contact set estimator. LSW propose

an estimator of∆(P0) based on the sample analogue estimator of the momentsEP0 [g (X; ·)] .

Specifically, they estimate∆(P0) using

∆̂n =
{

t ∈ [t, t] :
∣

∣EP̂n
[g (X; t)]

∣

∣ < rn
}

, (2.10)

where{rn}n≥1 is a suitably chosen null sequence of positive (possibly random) numbers that

satisfies
√
nrn → +∞ asn → +∞.

The LSW bootstrap test procedure follows these steps:

1. Using the data, computêTn andP̂n.
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2. GenerateB bootstrap samples each of sizen,
{

X⋆
i,l

}n

i=1
for l = 1, . . . , B, using resampling

with replacement fromP̂n. That is, drawX⋆
i,l randomly with replacement from{Xi}ni=1

according toP̂n for i = 1, . . . , n andl = 1, . . . , B.

3. For each bootstrap sample, compute the bootstrap test statistic as follows:

T̂ ⋆
n,l =























∫ t

t

(

max

{

1√
n

n
∑

i=1

[

g
(

X⋆
i,l; t
)

− EP̂n
[g (X; t)]

]

, 0

})2

dt, if
∫

∆̂n
dt = 0,

∫

∆̂n

(

max

{

1√
n

n
∑

i=1

[

g
(

X⋆
i,l; t
)

− EP̂n
[g (X; t)]

]

, 0

})2

dt, if
∫

∆̂n
dt > 0,

(2.11)

where∆̂n is defined in (2.10).

4. Compute the approximate bootstrap p-valueΥ̂B = 1
B

∑B
l=1 1

[

T̂ ⋆
n,l ≥ T̂n

]

.

5. RejectH0 if Υ̂B ≤ α, whereα ∈ (0, 1/2) is a given nominal level.

LSW pay attention to the control of asymptotic rejection probabilities uniform inP ∈ P. For this

reason, they introduce a regularity condition on the asymptotic Gaussian processν, which is given

by Definition 2 of their paper. In the context of the present work, this condition is the following.

Definition 2. A Gaussian processν is regular onA ⊂ [t, t] if for any α ∈ (0, 1/2], there exists

ǫ > 0 depending only onα such that

P

[
∫

A

max {ν(t), 0}2 dt < ǫ

]

< 1− α (2.12)

and for anyc > 0,

lim sup
η↓0

sup
P∈P0

P

[
∣

∣

∣

∣

∫

A

max {ν(t), 0}2 dt− c

∣

∣

∣

∣

≤ η

]

= 0. (2.13)

See pages 190 and 191 of LSW for a discussion of this regularity condition.
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The test procedure this paper proposes follows the steps of the LSW bootstrap test procedure,

but with ∆̂n replaced by a different set estimator of∆(P0) when computing the bootstrap test

statistics in the third step above. The LSW contact set estimator is based on the empirical mea-

sureP̂n. As the empirical measure is in fact the unrestricted empirical likelihood estimator ofP0,

this paper proposes to replace it with the constrained empirical likelihood estimator ofP0 that im-

poses the moment inequality restrictions ofP0, in estimation of the contact set. The next section

introduces this procedure.

3 Contact Set Estimation

This section introduces the proposed contact set estimatorand its large-sample properties under

H0. Let
{

TN(n)

}

n≥1
be a given sequence of subsets of[t, t] with |TN(n)| = N(n) ∀n that con-

verges to[t, t] in the Hausdorff metric asn → +∞. The proposed contact set estimator replaces

EP̂n
[g (X; ·)] with EṔn

[g (X; ·)] in the definition of∆̂n, whereṔn =
∑n

i=1 ṕiδXi
with the proba-

bilities ṕ1, . . . , ṕn defined as the solution of the following optimization problem:

max
p1,...,pn

n
∑

i=1

log pi subject to pi ≥ 0 i = 1, . . . , n,

n
∑

i=1

pi = 1, and

n
∑

i=1

pig (Xi; t) ≤ 0 ∀t ∈ TN(n). (3.1)

The estimatoŕPn is the approximate constrained empirical likelihood estimator ofP0, and we

denote the contact set estimator based on it by∆́n. The estimator̂Pn solves the above optimization

problem, but without imposing the constraints (3.1); therefore,EP̂n
[g (X; ·)] does not necessarily

satisfy the restrictions of the null hypothesis. By contrast, from (3.1), the definition of́Pn implies

EṔn
[g (X; ·)] approximately satisfies the constraints (2.1) but with the approximation disappearing

asymptotically.

Next, we characterize the set of probabilities inP0 under which∆́n is a uniformly consistent
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estimator of the contact set. Noting that the moment functions for eachs ∈ Z+ are of the form

g(x; t) = h(xB; t)− h(xA; t) (3.2)

whereh(·; t) is weakly monotonic in its first argument for a givent ∈ [t, t], implies that they satisfy

the following property.

Property 1. The class of functionsF =
{

x 7→ g(x; t), t ∈ [t, t]
}

satisfies the following property.

For eachx ∈ R2
+ eitherg (x; t) ≤ 0 ∀t ∈ [t, t] or g (x; t) ≥ 0 ∀t ∈ [t, t].

This property states that the sign of the moment functionsg is determined by the configuration in

its data dimension independently oft. ForP ∈ P, an important consequence of Property 1, which

we exploit, is that the covariance kernel (2.9) satisfies

C(t, t′) = EP [g (X; t) g (X; t′)] ≥ 0 ∀(t, t′) ∈ ∆(P )×∆(P ) . (3.3)

Definition 3. For each[c1, c2] ∈ (0, 1]× (0,+∞), let P0(c1, c2) be the collection of probabilities

in P0 under which (i)P
[

supt∈[t,t] g (X; t) < 0
]

≥ c1, and (ii) inf
t,t′∈∆(P )

EP [g (X; t) g (X; t′)] ≥ c2.

Condition (i) of Definition 3 further restrictsP0 by excluding distributions that become arbitrar-

ily close to distributions that place zero probability on the event
{

supt∈[t,t] g (X; t) < 0
}

. It begets

the uniform asymptotic existence of the probabilitiesṕ1, . . . , ṕn and Lagrange multipliers that solve

Karush-Kuhn-Tucker conditions. Condition (ii) also restrictsP0; it excludes distributions whose

covariance kernel (3.3) is arbitrarily close to zero. This condition is useful for showing that the

norm of the Lagrange multipliers converges to zero in probability, uniformly overP0(c1, c2). For

brevity, we relegate the formal statements and proofs of these technical intermediate results to

Appendix B.

We have the following result.

Theorem 1. For each[c1, c2] ∈ (0, 1]× (0,+∞),

1. limn→+∞ supP∈P0(c1,c2) P
[

EṔn
[g (X; t)] ≤ EP̂n

[g (X; t)] ∀t ∈ [t, t]
]

= 1.
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2. limn→+∞ supP∈P0(c1,c2) P
[

∆(P ) ⊂ ∆́n ⊂ ∆̂n

]

= 1.

3. ∀ǫ > 0, limn→+∞ supP∈P0(c1,c2) P
[

∆̂n ⊂
{

t ∈ [t, t] : |EP [g (X; t)]| ≤ (1 + ǫ)rn
}

]

= 1.

Proof. See Appendix A.1.

Remark 3.1. Since{(1 + ǫ)rn}n≥1 is a null sequence for eachǫ > 0, the set

{

t ∈ [t, t] : |EP [g (X; t)]| ≤ (1 + ǫ)rn
}

,

is an (1 + ǫ)rn-enlargement of the contact set that shrinks to the contact set as the sample size

tends to infinity. Therefore, Parts 2 and 3 of Theorem 1 imply that the two contact set estimators

of ∆(P0) are equal in the limit, with uniformity. These results of this theorem drive the uniform

asymptotic equivalence of the testing procedures under thenull, which the next section presents.

Remark 3.2. Part 2 of Theorem 1 implies the LSW bootstrap test statistic,described in (2.11),

weakly dominates its modified counterpart stochastically at the first-order, conditional on the sam-

ple{Xi}ni=1 , and under probabilitiesP in P0(c1, c2) whenn is large enough. In consequence, the

proposed test is asymptotically less conservative than theLSW test. The next section presents the

asymptotic properties of the proposed test.

Remark 3.3. The limit P
[

∆̂n ⊂ ∆́n

]

→ 1 asn → +∞, doesnot hold under probabilitiesP in

the boundary ofP0(c1, c2) outside of the least favorable case3. That’s because

lim
n→+∞

P
[

EṔn
[g (X; t)] < EP̂n

[g (X; t)] ∀t ∈ [t, t]
]

> 0 and (3.4)

lim
n→+∞

P
[

EP̂n
[g (X, t′)] < −rn

]

= 1, where EP [g (X; t′)] < 0, (3.5)

hold for such probabilities inP0(c1, c2). The limit (3.5) and the continuity ofP imply ∃t0 ∈ [t, t]

such thatEP̂n
[g (X; t0)] = −rn with probability approaching unity, as the sample size increases.

Using this result, the limit (3.4) implies∃t00 ∈ ∆̂n in a neighborhood oft0 such thatt00 /∈ ∆́n with

3Note thatP is in the boundary ofP0(c1, c2) if ∃t′ ∈ [t, t] such thatEP [g (X; t′)] < 0.
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positive probability as the sample size increases. Finallynote that the large-sample property (3.4)

follows from Lemma C.1 and becauselim
n→+∞

P
[

Ṕn 6= P̂n

]

> 0 holds for such probabilities, where

Ṕn 6= P̂n ⇐⇒ sup
t∈TN(n)

EP̂n
[g (X, t)] > 0.

4 Asymptotic Size and Power Properties

This section introduces the asymptotic size and power properties of the proposed test. We also

characterize the set of probabilities underH0 for which the proposed test has asymptotically exact

size.

4.1 Asymptotic Size Properties

LSW impose regularity on r-enlargements of the contact sets,

B(r) =
{

t ∈ [t, t] : |EP [g (X; t)]| ≤ r
}

,

to characterize the set of probabilities on which their bootstrap test has asymptotically exact size.

This is done by introducing a regularity condition on the asymptotic Gaussian process in (2.8),

given by Definition 2. The set of probabilities under which the proposed bootstrap test has asymp-

totically exact size is given by the following.

Definition 4. (i) For eachǫ > 0 and[c1, c2] ∈ (0, 1]× (0,+∞), let P0(ǫ, c1, c2) be the collection

of probabilities inP0(c1, c2) under whichν in (2.8) is regular onBn for eachn ≥ 1, where

Bn =















B ((1− ǫ)rn) , if
∫

B((1+ǫ)rn)
dt > 0, and

[t, t], if
∫

B((1+ǫ)rn)
dt = 0;

(ii) Given ξn → 0, let P00(ǫ, c1, c2, {ξn}) be the collection of probabilities inP0(ǫ, c1, c2) under
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which for eachn > 1/ǫ, ν in (2.8) isregular onB
(

n−1/2ξn
)

,

∫

B((1−ǫ)rn)

dt > 0 and
∫

B((1+ǫ)rn)−B(n−1/2ξn)
dt ≤ ξn. (4.1)

Let
{

T́ ⋆
n,l

}B

l=1
denote the bootstrap test statistics computed as above but with ∆̂n replaced by

∆́n, and letAn denote the Borel sigma-algebra generated by the random sample {Xi}ni=1 . Also,

let ΎB = 1
B

∑B
l=1 1

[

T́ ⋆
n,l ≥ T̂n

]

.

Theorem 2. Given[c1, c2] ∈ (0, 1]× (0,+∞) andǫ > 0, thenΥ̂B − ΎB
P−→ 0 conditional onAn

uniformly in P0(ǫ, c1, c2).

Proof. See Appendix A.2.

Theorem 2 is an immediate consequence of Theorem 1. It establishes the asymptotic equiva-

lence of the bootstrap test statisticsΥ̂B andΎB, uniformly overP0(ǫ, c1, c2). Since for eachǫ > 0

and [c1, c2] ∈ (0, 1] × (0,+∞) the LSW test hasasymptotically exact size, in the sense of Def-

inition 1, uniformly over a superset ofP0(ǫ, c1, c2), it also has this property overP0(ǫ, c1, c2).

Consequently, Theorem 2 implies that the proposed test inherits the uniform asymptotic properties

of the LSW test for probabilities inP0(ǫ, c1, c2). By applying Theorem 2 of LSW in the setup of

our paper, these properties are

1. for eachǫ > 0 and[c1, c2] ∈ (0, 1]× (0,+∞),

lim sup
n→+∞

sup
P∈P0(ǫ,c1,c2)

P
[

Υ̂∞ ≤ α
]

≤ α, and (4.2)

2. for each decreasing sequenceξn → 0, ǫ > 0 and[c1, c2] ∈ (0, 1]× (0,+∞),

lim sup
n→+∞

sup
P∈P00(ǫ,c1,c2,{ξn})

∣

∣

∣
P
[

Υ̂∞ ≤ α
]

− α
∣

∣

∣
= 0. (4.3)

Therefore, Theorem 2 implies that the above statements in (4.2) and (4.3) hold witĥΥ∞ replaced

by Ύ∞.
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4.2 Asymptotic Power Properties

This section introduces the power properties of the proposed modification of the LSW bootstrap

test. The first result concerns consistency of the test.

Theorem 3. Suppose that we are under a fixed alternativeP ∈ P − P0 such that

∫ t

t

max {EP [g (X; t)] , 0}2 dt > 0. (4.4)

Then,limn→+∞ P
[

ΎB ≤ α
]

= 1.

Proof. See Appendix A.3.

Therefore, the proposed test is consistent against all alternatives. This property is also shared by the

LSW test. Recall thatP ∈ P−P0 also satisfiesP
[

supt∈[t,t] g (X; t) < 0
]

> 0 by Assumption 1. In

fact, the LSW test is also consistent whenP
[

supt∈[t,t] g (X; t) < 0
]

= 0 holds under the alternative

hypothesis. UnderP
[

supt∈[t,t] g (X; t) < 0
]

= 0, the asymptotic existence and uniqueness of the

probabilitiesṕ1, . . . , ṕn is no longer guaranteed. In consequence, the proposed contact set estimator

∆́n does not exist with positive probability in large sample sizes under the alternative hypothesis.

As already mentioned, we defer a detailed discussion of thiscondition to Section 5.

The next result develops sufficient conditions onP ∈ P − P0 that imply the superiority of one

testing procedure over the other in terms of asymptotic power. First, we introduce the following

notation: ∆̂c
n = [t, t] − ∆̂n, ∆́

c
n = [t, t] − ∆́n, and the bootstrap empirical processGn(·) =

1√
n

∑n
i=1

[

g
(

X⋆
i,l; ·
)

−EP̂n
[g (X; ·)]

]

.

Theorem 4. Suppose that the conditions of Theorem 3 hold. The followingstatements hold.

1. If P

[

sup
t∈∆́n∩∆̂c

n

max {Gn(t), 0}2
∫

∆́n∩∆̂c
n

dt ≤ inf
t∈∆̂n∩∆́c

n

max {Gn(t), 0}2
∫

∆̂n∩∆́c
n

dt | An

]

p−→

1, then for large enoughn, P
[

ΎB ≤ α
]

≥ P
[

Υ̂B ≤ α
]

.

2. If P

[

inf
t∈∆́n∩∆̂c

n

max {Gn(t), 0}2
∫

∆́n∩∆̂c
n

dt ≥ sup
t∈∆̂n∩∆́c

n

max {Gn(t), 0}2
∫

∆̂n∩∆́c
n

dt | An

]

p−→

1, then for large enoughn, P
[

Υ̂B ≤ α
]

≥ P
[

ΎB ≤ α
]

.
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Proof. See Appendix A.4.

A remarkable consequence of Theorem 4 is that these testing procedures cannot be ranked accord-

ing to large-sample power over all fixed alternatives. The results of Theorem 4 follow immediately

from the conditions in Theorem 4.

Next, we focus on the asymptotic local power property of the test. Following LSW, we consider

a sequence of probabilities{Pn}n≥1 ⊂ P − P0 such that

EPn [g (X; t)] = H(t) + δ(t)/
√
n and (4.5)

σ2
Pn
(t) = EPn

[

g2 (X; t)
]

− (EPn [g (X; t)])2 , (4.6)

where the functionsH(t) andδ(t) satisfy the following conditions.

Assumption 2. (i)
∫

C
dt > 0, whereC =

{

t ∈ [t, t] : H(t) = 0
}

. (ii) supt∈[t,t] H(t) ≤ 0. (iii)
∫

C
max {δ(t), 0}2 dt > 0. (iv) inf

t∈[t,t],n∈N
σ2
Pn
(t) > 0. (v) Pn

[

supt∈[t,t] g (X; t) < 0
]

> 0 for eachn.

Except for parts (iv) and (v), Assumption 2 is identical to Assumption 5 of LSW. Therefore, the

sequence{Pn}n≥1 represents local alternatives that converge to the boundary pointsP00 at the
√
n

rate in the directionδ(t). Part (iv) ensures the valid use of the Weak Law of Large Numbers and

the Central Limit Theorem for triangular arrays of row-wiseIID random variables. Part (v) implies

the asymptotic existence and uniqueness ofṔn, and that it is characterizable in terms of Lagrange

multipliers using Karush-Kuhn-Tucker conditions.

The bootstrap test procedure this paper proposes has a locallimiting power function that is at

least as large as its LSW counterpart.

Theorem 5.Under the local alternatives{Pn}n≥1 ⊂ P−P0 satisfying the conditions in (4.5), (4.6),

and Assumption 2,

lim
n→+∞

Pn

[

Ύ∞ ≤ α
]

≥ lim
n→+∞

Pn

[

Υ̂∞ ≤ α
]

.

Proof. See Appendix A.5.

17



A remarkable point concerning the result of Theorem 5 is thatit holds for all of the Pitman local

alternative directions. Thus, this asymptotic criterion discriminates between the tests. The reason

is that asymptotically the event
{

C ⊂ ∆́n ⊂ ∆̂n

}

occurs with probability approaching unity under

the sequence of local alternatives; see Lemma C.4. On this event, T́ ⋆
n ≤ T̂ ⋆

n holds conditional on

the data. Thus, when some moment inequality is satisfied under the alternative and is sufficiently

far from being an equality, then the proposed procedure willdetect this configuration more easily

than the LSW procedure, and therefore, take it into account by delivering a bootstrap p-value that

is suitable for the case where this moment inequality is omitted. On the other hand, when the

local alternatives converge to a probability in the least favorable case i.e. whenC = [t, t], the

event
{

C ⊂ ∆́n ⊂ ∆̂n

}

implies that
{

∆́n = ∆̂n

}

occurs; In consequence, the tests have the same

asymptotic local power function.

Remark 4.1. For local alternatives that satisfy the conditions of Theorem 5, the asymptotic prop-

ertyPn

[

∆̂n ⊂ ∆́n

]

→ 1 asn → +∞, doesnot hold in general. For example, suppose thatC is a

proper subset of[t, t]. Then∃t′ ∈ [t, t] such thatH(t) < 0, which implies that∃N ∈ Z+ for which

EPn [g (X; t)] < 0 ∀n > N. In consequence,

lim
n→+∞

Pn

[

EṔn
[g (X; t)] < EP̂n

[g (X; t)] ∀t ∈ [t, t]
]

> 0 and (4.7)

lim
n→+∞

Pn

[

EP̂n
[g (X, t′)] < −rn

]

= 1, (4.8)

where the limit (4.7) follows from Part 4 of Lemma C.3 and because lim
n→+∞

Pn

[

Ṕn 6= P̂n

]

> 0

holds for such probabilities. The limit (4.8) and the continuity of {Pn} imply ∃t0 ∈ [t, t] such that

EP̂n
[g (X; t0)] = −rn with probability approaching unity under the local alternatives. Using this

result, the limit (4.7) implies∃t00 ∈ ∆̂n in a neighborhood oft0 such thatt00 /∈ ∆́n with positive

probability as the sample size increases.
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5 Further Discussion

This section discusses the differences between the LSW testand the one this paper proposes.

Section 5.1 discusses the relationship between the tests’ parameter spaces. Section 5.2 discusses

the relationship between the sets of probabilities on whichthe tests have asymptotically correct

size, and asymptotic similarity on the boundary of the null hypothesis. Another difference between

the tests is a procedural one. The test this paper proposes follows the LSW bootstrap testing

procedure, but replaces their contact set estimator with one that employs a constrained estimator of

the moments in (2.1). For a given sample size, this constrained estimator approximately imposes

the restrictions of the null hypothesis (2.1) by imposing them on a gridTN(n) as in (3.1), with

the approximation disappearing asymptotically because
{

TN(n)

}

n≥1
converges to[t, t]. Section 5.3

presents some intuition behind the choice of the sequence ofgrids
{

TN(n)

}

n≥1
under the null and

alternative hypotheses. Finally, Section 5.4 presents a modification of the constraints (3.1) that can

increase the numerical accuracy of the solution in the constrained empirical likelihood optimization

problem.

5.1 The Parameter SpaceP

Recall that we denote the parameter space this paper employsby P, which is the set of all the

potential continuous distributions ofX that satisfy the conditions of Assumption 1. In the con-

text of the present work, the parameter space LSW employ is the set of all potential continuous

distributions ofX that satisfy Conditions (iii) and (iv) of Assumption 1. Therefore,P is a subset

of the parameter space that LSW employ. As incomes are non-negative, imposing Condition (ii)

of Assumption 1 in the definition of the parameter space, is only natural. It is Condition (i) of

this assumption that begets the results of the present work.Specifically, Condition (i) is that it is

sufficient for the asymptotic existence and uniqueness of the constrained empirical likelihood esti-

matorṔn and the asymptotic existence of the Lagrange multipliers that solve Karush-Kuhn-Tucker

conditions; See Appendix B for the technical details under the null hypothesis.
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Recall that Condition (i) of Assumption 1 isP
[

supt∈[t,t] g (X; t) < 0
]

> 0. Given [t, t] and

s ∈ Z+, the event
{

supt∈[t,t] g (X; t) < 0
}

is given by

{

sup
t∈[t,t]

g (X; t) < 0

}

=















{

XA < t,XB > t
}

, if s = 1, and

{

XA < t,XB > t
}

∪
{

XA < t,XA < XB ≤ t
}

, if s ≥ 2.

(5.1)

As this paper and LSW focus on continuous distributions, in the cases = 1, Condition (i) excludes

probabilities from the LSW parameter space that satisfy

P
[

XA < t,XB > t
]

= 0. (5.2)

Condition (5.2) does not hold for probabilities such that supp(P ) = R2
+ because[t, t] is a proper

subset ofR+. For this reason, the parameter spaceP includes probabilities such that supp(P ) =

R
2
+. However, condition (5.2) holds for compactly supported probabilities that satisfy

t ≤ inf {supp(PA)} and t ≥ sup {supp(PB)} . (5.3)

Therefore,P excludes such probabilities. Similarly, in the cases ≥ 2, Condition (i) does not

exclude probabilities supported onR2
+. Furthermore, it does not exclude compactly supported

probabilities that satisfy (5.3), provided that they also satisfyP
[

XA < t,XA < XB ≤ t
]

> 0.

A natural question to raise at this point is whether it is possible to extend the results in the text to

the case where the parameter spaceP includes probabilities such thatP
[

supt∈[t,t] g (X; t) < 0
]

=

0. The answer is yes, provided that the feasible set in the constrained empirical likelihood problem

i.e. the random set

{

pi, i = 1 . . . n : pi > 0 ∀i,
n
∑

i=1

pi = 1, and
n
∑

i=1

pig (Xi; t) ≤ 0 ∀t ∈ [t, t]

}

, (5.4)
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is asymptotically non-empty with probability tending to unity underP. For this asymptotic condi-

tion to hold,P must also satisfy the stronger support condition

P
[

g (X; t) = 0 ∀t ∈ [t, t]
]

= 1. (5.5)

The reason is thatP
[

supt∈[t,t] g (X; t) < 0
]

= 0 implies

P

[

sup
t∈[t,t]

g (X; t) ≥ 0

]

= 1 ⇐⇒ P
[

g (X; t) ≥ 0 ∀t ∈ [t, t]
]

= 1, (5.6)

where the equivalence follows from Property 1 of the moment functions. These probabilities are

degenerate in the sense that they place unit mass on the zero function in the set of realizations

{t 7→ g(x, t),x ∈ supp(P )} .

5.2 Asymptotically Correct Size and Asymptotic Similarity

The sets of probabilities on which the proposed test has asymptotically correct size are defined in

Part (i) of Definition 4. And the sets of probabilities on which the proposed test is asymptotically

similar on the boundary of the null hypothesis are defined in Part (ii) of Definition 4. These sets are

subsets of their LSW counterparts because two conditions, in addition to the ones LSW impose,

define them. For each[c1, c2] ∈ (0, 1] × (0,+∞), these conditions define the set of probabilities

P0(c1, c2), which is given by Definition 3.

5.3 Choice of The Grid Sequence
{

TN(n)

}

n≥1

The test procedure this paper proposes introduces a fine tuning parameter. This parameter is the

sequence of grids
{

TN(n)

}

n≥1
, which converges to the interval[t, t] in the Hausdorff metric. The

results in the previous sections do not depend on any specificchoice of this parameter or on its rate

of convergence. All that is required for the results to hold is that
{

TN(n)

}

n≥1
converges to[t, t],

which is because these results are asymptotic. However, thechoice of
{

TN(n)

}

n≥1
can significantly
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impact the finite-sample performance of the test this paper proposes. Thus, the question of the

optimal choice of
{

TN(n)

}

n≥1
is an important one, but it is beyond the scope of the present work.

Instead, we present some intuition behind its choice from the perspectives of the null and alternative

hypothesis, which illustrates a trade-off between test size and power. We also provide simulation-

based evidence of this trade-off in Section 6. Finally, we identify one possible avenue for optimally

selecting
{

TN(n)

}

n≥1
based on this trade-off.

UnderH0 and a large enough sample size, part 1 of Theorem 1 establishes that the estimator
{

EṔn
[g (X; t)] , t ∈ [t, t]

}

is biased downwards, uniformly overP0(c1, c2). Generally, decreas-

ing the Hausdorff distance between[t, t] andTN(n) weakly exacerbates this bias, uniformly in

P0(c1, c2). In consequence, the contact set estimator∆́n based on a fine grid is a subset of its coun-

terpart that uses a coarser grid, uniformly inP0(c1, c2). Thus, an increase in the test’s rejection

probability can be achieved under the null by using a very finegrid, which can improve its finite-

sample type 1 error rate under probability configurations outside of the least favorable case, whose

contact sets have small (but positive) Lebesgue measure. Section 6 illustrates this behavior of the

test using a Monte Carlo experiment.

By contrast, in the directions underH1 such thatinf t∈[t,t] EP [g (X; t)] > 0, the asymptotic

power of the test decreases as the Hausdorff distance between [t, t] andTN(n) shrinks to zero. We

briefly explain why this is the case. Because this class of directions under the alternative satisfies

lim
n→+∞

P
[

EP̂n
[g (X; t)] > rn ∀t ∈ [t, t]

]

= 1, (5.7)

the LSW contact set estimator∆̂n is asymptotically equal to the empty set, which implies thatthe

bootstrap test statistics (2.11) in the LSW testing procedure are asymptotically equal to

∫ t

t

(

max

{

1√
n

n
∑

i=1

[

g
(

X⋆
i,l; t
)

− EP̂n
[g (X; t)]

]

, 0

})2

dt. (5.8)

Hence, the bootstrap test statistic (5.8) stochastically dominates the one this paper proposes at

the first-order conditional onAn, becausé∆n ⊂ [t, t] holds with probability approaching unity
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asn tends to infinity. Furthermore, the limit (5.7) implies that∆́n equals[t, t] in the limit as

the Hausdorff distance between[t, t] andTN(n) tends to zero. Thus, the asymptotic power of the

proposed test must decrease as this Hausdorff distance tends to zero, because the two test statistics

are equal in the limit.

Thus, taking into account the above arguments, one possibleapproach to optimally select
{

TN(n)

}

n≥1
can be to optimize a loss function that is a weighted average of test size and power.

The use of this sort of loss function in hypothesis testing isnot new. For example, Sun et al. (2008),

develop the theory for optimal bandwidth selection in a Gaussian location model that has a non-

parametric autocorrelation structure. Mirroring their approach in the context of the present paper

is very difficult, because it requires asymptotic expansions of the rejection probability under the

null and local alternatives in terms of the grid, where the limit distributions of the test statistic are

non-standard. For this reason, we leave it as a subject for future research.

5.4 Constraints in the Empirical Likelihood Estimation Problem

ForP ∈ P, the solution of the constrained empirical likelihood estimation procedure, introduced

in Section 3, satisfies the following property

EṔn
[g (X; t)] ≤ EP̂n

[g (X; t)] ∀t ∈ [t, t], (5.9)

for large enoughn with probability tending to unity. Therefore, the inequalities (5.9) can be used

to increase the numerical accuracy and speed of the constrained empirical likelihood estimation

procedure by replacing the constraints (3.1) with the following:

n
∑

i=1

pig (Xi; t) ≤ 0 ∀t ∈ TN(n) ∩
{

t ∈ [t, t] : EP̂n
[g (X; t)] ≥ 0

}

and (5.10)

n
∑

i=1

pig (Xi; t) ≤ EP̂n
[g (X; t)] ∀t ∈ TN(n) ∩

{

t ∈ [t, t] : EP̂n
[g (X; t)] < 0

}

, (5.11)
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This replacement shrinks the domain of the probabilitiesp1, . . . , pn over which the optimization

routine searches for the solutionṕ1, . . . , ṕn.

6 Monte Carlo Experiments

This section reports the results of Monte Carlo experimentsthat compares the performance of the

LSW test with the one this paper proposes. The experimental setup is the same as the one in

Section 5 of LSW who focus on testing for first-order stochastic dominance. They construct data

generating-processes using continuous uniform random variables on the unit interval. Because the

first-order stochastic dominance ordering is invariant under positive monotonic transformations of

the income variable, it is without loss of generality that weuse their setup to study the behavior

of the tests for income distributions. We find the test this paper proposes is noticeably less conser-

vative for probabilities in the boundary of the null hypothesis outside of the least favourable case,

and has higher power against directions in the alternative of dominance and non-dominance.

In each simulation experiment, the nominal level was fixed at5%, rn(t) = σ̂t

√

logn
n

, where

σ̂2
t = EP̂n

[g (X; t)]2 −
(

EP̂n
[g (X; t)]

)2
and t ∈ [t, t]. This choice for the sequence{rn}n≥1 is

known as the BIC choice. An alternative choice, which LSW use, is the one based on the Law

of the Iterated Logarithm; it setsrn = an−1/2 log log n, which is a constant function oft ∈ [t, t],

wherea is a given constant. Presently, there isn’t a theoretical reason to prefer one choice over the

other. Instead, the moment inequality inference literature has relied on simulation-based evidence

in proposing a choice forrn. Andrews and Soares (2010) suggest the BIC choice forrn, and

we follow their lead. Unlike the Law of the Iterated Logarithm choice, the BIC choice does not

depend on any additional fine-tuning parameters, which makes it more practical for practitioners.

Furthermore, the BIC choice setsrn as a function oft ∈ [t, t] throughσ̂t.

We sett = 0.05 andt = 0.95, and constructed the grid as follows:

TN(n) =
{

t = t1 < t2 < · · · < tN(n) = t
}

, whereti+1 = ti +

(

t− t
)

⌊γ√n⌋ , (6.1)
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for i = 1, . . . , N(n)− 1, whereN(n) = ⌊γ√n⌋ + 1 andγ ∈ {0.25, 1, 2} . Finally, the number of

Monte Carlo replications was set to be 10000 in each simulation experiment, and the number of

bootstrap replications was 199.

6.1 Simulation UnderH0

We compare the type I error rate properties of the our test andLSW test. LSW use the following

generating process under the null. LetU1 andU2 beU(0, 1) random variables. Then defineXB =

U1 andXA = c−1
0 (U2−a0)1 [0 < U2 ≤ x0]+U21 [x0 < U2 < 1] , wherec0 = (x0−a0)/x0 ∈ (0, 1)

andx0 ∈ (0, 1). In this setup, the inequalities (2.1) hold for eachs ∈ Z+, and we examine the case

s = 1. The cumulative distribution function (CDF) ofXA has a “kink" atXA = x0 and the

slope of the CDF changes fromc0 to 1 at the kink pointx0. See Figure 2 in LSW for a graphical

representation of these CDFs.

In the simulations, we tookx0 ∈ {0, 0.1, 0.2, . . . , 0.9} andc0 ∈ {0.2, 0.4, 0.6, 0.8} . The sample

sizes we considered aren = 500, 1000. The casex0 = 0 corresponds to the least favorable case

as the CDFs ofXA andXB are equal to the CDF ofU1. For a givenc0 > 0, the contact set gets

smaller asx0 increases; therefore, the data-generating process (DGP) moves away from the least

favorable case toward the interior of the null. For each of these DGPs, the two CDFs coincide on

a set of positive Lebesgue measure. Therefore, Theorem 2 of LSW establishes that their bootstrap

test has an asymptotic size exactly equal to the nominal level under these DGPs. And Theorem 2

of this paper implies that the same result holds for the test this paper proposes.

The results are reported in Figure 1, which present the empirical rejection frequencies along

with their pointwise 95% confidence intervals. For each value ofc0 we considered, the discrepancy

between the performances of our method and the LSW test is notmuch forx0 close to zero i.e.

the least favorable case. However, asx0 increases i.e. the contact set get smaller, the rejection

probabilities under our test are statistically closer to the 5% nominal level than the ones based on

the LSW test. These results suggest the bias of the LSW test islarger than the one this paper

proposes. Furthermore, the simulations suggest that finer grids can attenuate the bias of the test
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Figure 1: The empirical rejection probabilities under the null.
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this paper proposes on DGPs in the boundary of the null hypothesis that are outside of the least

favorable case.

6.2 Simulation UnderH1 : Directions of Dominance

Let us now focus on the power properties of the two methods against directions of dominance

under the alternative hypothesis. We consider DGPs as in Section 6.1 except that nowXA and

XB have exchanged roles in the numerical experiment; that is,XA = U1 andXB = c−1
0 (U2 −

a0)1 [0 < U2 ≤ x0] + U21 [x0 < U2 < 1] . This construction yields DGPs in the alternative where

XA dominatesXB at the first-order over the range[0.05, 0.95]. Furthermore, we considered the

same values forc0 as in the previous section, and the values forx0 ∈ {0, 0.05, 0.1, 0.15, 0.2, 0.25} .

For a given value ofx0, the DGP moves closer to the null model asc0 increases. Therefore, we can

expect that it will be harder for the tests to detect alternatives wherec0 is large andx0 is small, when

the sample size isn’t large. Additionally, we can expect thetests to more easily detect alternatives

wherec0 is small andx0 large.

The simulation results are reported in Figure 2, which present the empirical rejection frequen-

cies along with their pointwise 95% confidence intervals. Overall, these results indicate that the

performance of the proposed test is no worse than that of the LSW test. For each sample size,

c0, andx0 such thatx0 < 0.15 andx0 > 0.2, the tests behave similarly. However, For values

of x0 ∈ {0.15, 0.2} , the proposed test statistically has strictly larger empirical power than that

of the LSW test, and this difference in empirical power can also be quite large. For example, at

x0 = 0.15, c0 = 0.8, andn = 1000 there is a difference of approximately 55% in empirical power

for all of the selected values ofγ.

At n = 500, the results indicate that the proposed test’s performance is sensitive to the choice

of γ. For example, atc0 = 0.4, the simulation results indicate that the test withγ = 2 outperforms

the rest of the tests, and atc0 = 0.6, the proposed test withγ = 1 is the best. Furthermore, these

differences in empirical power can be quite large: atx0 = 0.15, the test with the highest power is

statistically more powerful than the next best test by approximately 40%. However, this sensitivity
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Figure 2: The empirical rejection probabilities under the alternative: directions of dominance.
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vanishes whenn = 1000. These results suggest that the choice of the gridTN(n) is important in

moderate sample sizes.

6.3 Simulation UnderH1 : Directions of Non-Dominance

Let us now focus on the power properties of the two methods against directions of non-dominance.

Directions of non-dominance in the alternative hypothesishave stochastic dominance conditions

with some positive elements and some elements that are negative. Consider the following config-

uration of DGPs from LSW. SetXA ∼ U [0, 1]. Then define

XB = (U − a0b1) 1 [a0b1 ≤ U ≤ x0] + (U + a0b2) 1 [x0 < U ≤ 1− a0b2] (6.2)

for a0 ∈ (0, 1), whereU ∼ U [0, 1]. As a0 becomes closer to zero, the distribution ofXB becomes

closer to the uniform distribution. The scalea0 plays the role of the "distance"P0 is from H0.

Whena0 is large,P0 is farther fromH0, and whena0 = 0, XA andXB have the same distribution

which meansP0 belongs to the model of the null hypothesis under the least favorable configuration.

For a graphical depiction of the CDFs ofXA andXB, see Figure 4 in LSW. We set(b1, b2, x0) =

(0.1, 0.5, 0.15) anda0 ∈ {0, 0.05, 0.1, 0.15, 0.2, . . . , 0.75} . The configurations for whicha0 6= 0

correspond to alternative DGPs for which there are some non-violated inequalities for the case of

s = 1 in the moments (2.1). We considered the following sample sizesn = 256, 512, 1024, 2048,

and setXA and the uniform random variable in the definition ofXB to be negatively correlated,

with a correlation coefficient of -0.5.

The simulation results are reported in Figures 3, which present the empirical rejection fre-

quencies along with their pointwise 95% confidence intervals. For each sample size and fora0

sufficiently large, there is no difference between the two tests, which is expected since both tests

are consistent. For moderate values ofa0, our test has statistically higher power than the LSW test,

and the power differences can be large. Forn = 2048, our test dominates the LSW test, and quite

significantly whena0 = 0.1 with a difference of approximately 34%. These simulation results
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Figure 3: The empirical rejection probabilities under the alternative: directions of non-dominance.

suggest that the proposed test can better detect DGPs inH1 that are "close" toH0, when the sample

size is large enough. However, a theoretical result is required for a more concrete conclusion.

Overall, the simulation results show that our method performs better than the LSW test.

7 Empirical Illustration

This section illustrates the LSW and proposed bootstrap methods of testing for restricted stochastic

dominance by comparing weekly grocery expenditures using data from the Household, Income

and Labour Dynamics in Australia (HILDA) panel survey data for the periods 2001 and 2006.

As an important and substantial change in consumption is retirement, the empirical illustration

uses the sample construction in Barrett and Brzozowski (2012), who propose an explanation to the
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retirement-consumption puzzle4.

The empirical analysis is performed using the set of households ‘at risk’ of retirement during the

observation period5. By restricting the analysis to this group of households, one obtains a clearer

picture of changes in consumption poverty at the time of retirement. The data consists ofn = 1351

pairs on household grocery expenditures. We focus on restricted first-order stochastic dominance.

The comparison of the distributions using this ordering is equivalent to their comparison in terms

of the poverty orderingP1 defined in Foster and Shorrocks (1988), where the range of poverty lines

is the interval[t, t]. Figure 4 graphs the differencêF2001(·) − F̂2006(·) on the interval[$10, $50],

whereF̂2001 and F̂2006 are the empirical distribution functions. The interval[$10, $50] seems to

be reasonable enough to encompass most of the plausible poverty lines for weekly expenditure on

groceries in Australia. This graph indicates that there is non-dominance in the sample.

The empirical analysis considers tests for a set of nested null hypotheses, parametrized byt, of

the form distributionB stochastically dominates distributionA at the first-order over[t, $50],where

t ∈ [$10, $45]. As t decreases, the hypothesis becomes progressively more constrained, which is

consequently easier to reject. This analysis allows us to compute the set of poverty lines up to

which we may confidently assert that consumption poverty in distributionB is unambiguously not

lower than in distributionA. When non-dominance holds in the sample, this set of poverty lines

would be an interval[t̂, $50] for which the hypothesis can be rejected at levelα, which is a quantity

that is useful to know in practice. Sincêt is estimated from the sample, it is a random quantity,

whose definition is analogous to that for an upper limit of confidence interval for some parameter.

Hence, the closer it is to $10, the more powerful is the rejection of (restricted) dominance. The

fine-tuning parameters,rn andTn, were set as in the simulation experiments of Section 6 with

γ ∈ {0.5, 1, 1.5, . . . , 4} , and the number of bootstraps was set toB = 999.

4Specifically, the puzzle is the inconsistency in the predictions of the standard life-cycle model of income and
savings if retirement is an anticipated event i.e. consumption smoothing, and the substantial body of research based
on data in many countries and time periods that demonstrate significant decreases in household expenditure on non-
durables at retirement.

5These are households whose reference person is aged 45 yearsor older.
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The right panel in Figure 5 reports bootstrap p-values from the tests whose null hypotheses setA

andB as the 2001 and 2006 expenditure distributions, respectively. And the left panel reports the

bootstrap p-values from the tests with the roles of the 2001 and 2006 distributions being reversed.

Overall, the graphs indicate that the bootstrap p-values from the proposed test are not sensitive to

the different values ofγ under consideration. In the case of the left panel, it’s because the bootstrap

p-values coincide for each value oft. Whereas, in the right panel, they all coincide except for

the graphs indexed byγ = 2, 2.5 which exhibit slight deviations over the interval[$22.5, $24].

Furthermore, the bootstrap p-values obtained from using the proposed test are not larger than their

LSW counterparts, for all values oft under consideration.

First, we discuss the tests where distributionsA andB are the 2006 and 2001 expenditure

distributions, respectively. At level 10%, the proposed and LSW procedures generate identical

values oft̂ equal to $10. In consequence, both tests indicate that consumption poverty in 2001

is not unambiguously lower than in 2006 for the poverty lines[$10, $50]. At the 5% level, the

LSW and proposed tests generate values oft̂ equal to $35 and $10, respectively. Thus, using the

proposed test extends by $15 the range of poverty lines over which we can declare consumption

poverty in 2001 is not unambiguously lower than in 2006. Finally, at the 1% level, both tests

generate the same value oft̂ equal to $35, which implies that the same conclusion holds asin the

case with level 10%, but with range of poverty lines being[$35, $50].

Next, we discuss the tests where distributionsA andB are the 2001 and 2006 expenditure

distributions, respectively. At level 10%, the LSW and proposed tests generate values oft̂ equal

to $26.5 and $10, respectively. In consequence, the proposed test extends by $16.5 the range of

poverty lines over which we can declare consumption povertyin 2006 is not unambiguously lower

than in 2001. At level 5%, the LSW and proposed test generate values of̂t equal to $28.5 and $32.

Thus, a similar conclusion identical to that in the case of level 10% holds, except that the range

of the poverty lines has now been extended by $3.5. At the 1% level, the tests generate the same

value of t̂ equal to $38.5. Therefore, both tests indicate that consumption poverty in 2006 is not

unambiguously lower than in 2001 for the poverty lines[$38.5, $50].
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The above findings indicate that the generated values oft̂ from the proposed tests, at all con-

ventional nominal levels, are not larger than their LSW counterparts. This finding implies that the

range of poverty lines over the null hypothesis can be rejected by the LSW test is a subset of its

counterpart from using the proposed test. Therefore, the proposed test is more powerful than the

LSW test, which is anticipated from our theoretical result on local power (i.e. Theorem 5).

8 Conclusion

This paper proposes a new method of testing for restricted stochastic dominance which is based on

the test of LSW. The proposed testing procedure replaces thecontact set estimator LSW use with

the one based on the method of empirical likelihood. This method of estimation for the contact set

incorporates the statistical information from imposing the restrictions of the null hypothesis in the

estimation of the contact set and alters the finite-sample distribution of the bootstrap test statistics

in a data-dependent way. The proposed test is asymptotically less conservative than the LSW test

on the boundary of the null outside of the least favorable configuration. Under the alternative, the

proposed test is consistent, and its asymptotic local powerfunction is at least as large as its LSW

counterpart. These properties of the proposed test come at the expense of working with a parameter

space that is slightly more restrictive than the one LSW utilize, which is required for justifying the

existence of the proposed contact set estimator. In comparison to the LSW test, the simulation

study demonstrates that our test is noticeably less conservative on the boundary of the null outside

of the least favorable configuration, and has overall improved power. These benefits, however,

arise at the expense of introducing a fine tuning parameter, whose selection can be important in

moderate sample sizes. Finally, the LSW and proposed tests were illustrated in the context of

consumption poverty in Australia using the HILDA dataset for the years 2001 and 2006.
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A Proofs of Results

A.1 Theorem 1

Proof. Part 1. The proof proceeds by the direct method. Lemma B.4 implies that theṕi can be

characterized in terms of Lagrange multipliers as in (B.17). Without loss of generality, let

∆(Ṕn) = {t1, t2, . . . , tωn} . (A.1)

Therefore, the probabilities (B.17) can be expressed as

ṕi =
1

n

(

1 +

ωn
∑

j=1

µ́jg(Xi; tj)

)−1

. (A.2)

Therefore,

EṔn
[g (X; t)]−EP̂n

[g (X; t)] = −
n
∑

i=1

ṕi
∑

t′∈∆(Ṕn)

µ́t′g (Xi; t
′) g (Xi; t) , (A.3)

whereµ́t′ ≥ 0 ∀t′ ∈ ∆(Ṕn). Finally, givent′, Property 1 implies the desired result because

g (x; t′) g (x; t) ≥ 0 ∀(t,x) ∈ [t, t]× X . (A.4)

This concludes the proof.

Part 2. First, we prove the probability of the event
{

∆́n ⊂ ∆̂n

}

(in An) converges to unity in

probability uniformly overP0(c1, c2), as the sample size tends to infinity. The proof follows the

direct method and makes use of the result in part 1 of the this theorem.

Let t ∈ ∆́n, then
{

−rn < EṔn
[g (X, t)]

}

occurs. Consequently, part 1 of the theorem implies

the probability of the event
{

−rn < EP̂n
[g (X, t)]

}

, converges to unity in probability, uniformly

overP0(c1, c2), as the sample size tends to infinity. Now we show the probability of the event
{

rn > EP̂n
[g (X, t)]

}

, for eacht ∈ ∆́n, tends to unity with uniformity.
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Noting that fort ∈ ∆́n,

EP̂n
[g (X, t)] = EP̂n

[g (X, t)]−EṔn
[g (X, t)] + EṔn

[g (X, t)] (A.5)

< EP̂n
[g (X, t)]−EṔn

[g (X, t)] + rn (A.6)

= OP (n
−1/2) + rn uniformly over P0(c1, c2), (A.7)

where (A.7) follows by Proposition B.1. Next we show that theprobability of the event

EP̂n
[g (X, t)] ∈ [rn, OP (n

−1/2) + rn)

is uniformly asymptotically negligible.

Consider the following probabilityP
[

EP̂n
[g (X, t)] ∈ [rn, OP (n

−1/2) + rn)
]

, which is equal

to

P
[√

n
(

EP̂n
[g (X, t)]−EP [g (X, t)]

)

+
√
nEP [g (X, t)] ∈ [

√
nrn, OP (1) +

√
nrn)

]

. (A.8)

For t ∈ ∆(P ), this probability is equal toP
[√

nEP̂n
[g (X, t)] ∈ [

√
nrn, OP (1) +

√
nrn)

]

, and

the Uniform Central Limit Theorem establishes that
√
nEP̂n

[g (X, t)] = Op(1), uniformly over

P0(c1, c2). Because
√
nrn → +∞, it follows that

sup
P∈P0(c1,c2)

P
[√

nEP̂n
[g (X, t)] ∈ [

√
nrn, OP (1) +

√
nrn)

]

→ 0. (A.9)

Therefore, ift ∈ ∆(P ), thensupP∈P0(c1,c2) P
[

EP̂n
[g (X, t)] < rn

]

→ 1.

Now we focus on the last case underH0, which is whent /∈ ∆(P ). In this case,EP [g (X, t)] <

0 and we have that

√
nEP̂n

[g (X, t)] =
√
n
(

EP̂n
[g (X, t)]−EP [g (X, t)]

)

+
√
nEP [g (X, t)] (A.10)

OP (1) +
√
nEP [g (X, t)] uniformly over P0(c1, c2). (A.11)
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Since
√
nEP [g (X, t)] diverges to−∞,

√
nEP̂n

[g (X, t)] also diverges to−∞, but uniformly over

P0(c1, c2). Combining this result with the fact that
√
nrn → +∞, implies that the probability (A.8)

tends to zero with uniformity. Therefore,supP∈P0(c1,c2) P
[

EP̂n
[g (X, t)] < rn

]

→ 1, which con-

cludes the proof of this part of the theorem.

Now we turn our focus to the event
{

∆(P ) ⊂ ∆́n

}

. Let t ∈ ∆(P ) and consider the event

{

−rn < EṔn

[g (X, t)] < rn

}

=
{

−rn < EṔn

[g (X, t)]− EP̂n

[g (X, t)] + EP̂n

[g (X, t)] < rn

}

(A.12)

=
{

−rn < OP (n
−1/2) + EP̂n

[g (X, t)] < rn

}

(A.13)

=
{

−√
nrn < OP (1) + EP̂n

+
√
nEP̂n

[g (X, t)] <
√
nrn

}

, (A.14)

uniformly overP0(c1, c2) by Proposition B.1. Ast ∈ ∆(P ) , we have that
√
nEP̂n

[g (X, t)] =

OP (1) uniformly overP0(c1, c2), by the Uniform Central Limit Theorem. Therefore, the event (A.14)

is equal to

{

−√
nrn ≤ OP (1) ≤

√
nrn
}

, (A.15)

whose probability tends to unity uniformly overP0(c1, c2), because
√
nrn → +∞. This concludes

part 2.

Part 3. The proof follows identical steps to those in the second part of the proof of Claim 1, in

LSW on page 200.

A.2 Theorem 2

Proof. The proof proceeds by the direct method. As the test statistic is the same, it is sufficient to

show that the proposed and LSW bootstrap test statistics areasymptotically equal with uniformity.

Let

γ⋆
n (t) =

(

max

{

1√
n

n
∑

i=1

[

g
(

X⋆
i,l; t
)

− EP̂n
[g (X; t)]

]

, 0

})2

, (A.16)
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then consider the following,

∣

∣

∣
T̂ ⋆
n,l − T́ ⋆

n,l

∣

∣

∣
=















































∫

[t,t]−∆́n
γ⋆
n (t) dt if

∫

∆́n
dt > 0,

∫

∆̂n
dt = 0

∫

[t,t]−∆̂n
γ⋆
n (t) dt if

∫

∆́n
dt = 0,

∫

∆̂n
dt > 0

∫

∆́n⊖∆̂n
γ⋆
n (t) dt if

∫

∆́n
dt > 0,

∫

∆̂n
dt > 0

0 if
∫

∆́n
dt = 0,

∫

∆̂n
dt = 0,

(A.17)

where⊖ denotes the symmetric difference operator on sets. We have

∣

∣

∣
T̂ ⋆
n,l − T́ ⋆

n,l

∣

∣

∣
≤















































(

supt∈[t,t] γ
⋆
n (t)

) ∫

[t,t]−∆́n
dt if

∫

∆́n
dt > 0,

∫

∆̂n
dt = 0

(

supt∈[t,t] γ
⋆
n (t)

) ∫

[t,t]−∆̂n
dt if

∫

∆́n
dt = 0,

∫

∆̂n
dt > 0

(

supt∈[t,t] γ
⋆
n (t)

) ∫

∆́n⊖∆̂n
dt if

∫

∆́n
dt > 0,

∫

∆̂n
dt > 0,

0 if
∫

∆́n
dt = 0,

∫

∆̂n
dt = 0.

(A.18)

To prove the result we need to prove that
(

supt∈[t,t] γ
⋆
n (t)

)

is OP (1) conditional onAn, uni-

formly in P0(ǫ, c1, c2). and then apply Theorem 1 to the integrals in (A.18). Since theset of

moment functions

F =
{

x 7→ g(x, t), t ∈ [t, t]
}

is uniform Donsker with respect toP0(ǫ, c1, c2), Lemma A.2 of LSW implies that it is also boot-

strap uniform Donsker. Therefore, applying Lemma A.1 (uniform continuous mapping theorem)

of LSW to
(

supt∈[t,t] γ
⋆
n (t)

)

yields the desired result.

Parts 3 and 2 of Theorem 1 imply that∆̂n and∆́n are consistent estimators of∆(P ) uniformly

in P0(c1, c2), asP0(ǫ, c1, c2) ⊂ P0(c1, c2). Noting thatP ∈ P0(ǫ, c1, c2) implies that
∫

∆(P )
dt >

0, for largen, we must have∆́n 6= ∅, ∆̂n 6= ∅ with probability tending to one, uniformly in

P0(ǫ, c1, c2). Applying Part 2 of Theorem 1 to this case in (A.18) implies∆́n ⊖ ∆̂n = ∆̂n − ∆́n

with probability approaching unity uniformly inP0(ǫ, c1, c2). Consequently, by Parts 2 and 3 of
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Theorem 1

(

sup
t∈[t,t]

γ⋆
n (t)

)

∫

∆́n⊖∆̂n

dt
P−→ 0 (A.19)

conditional onAn uniformly in P0(ǫ, c1, c2). Therefore,T̂ ⋆
n,l − T́ ⋆

n,l
P−→ 0 conditional onAn

uniformly in P0(ǫ, c1, c2). This concludes the proof.

A.3 Theorem 3

Proof. The proof proceeds by the direct method. Because Theorem 3 ofLSW shows the test

statisticT̂n, given by (2.6), diverges to infinity under the alternative, to prove the desired result we

only need to show that the bootstrap test statistic isOP (1) (conditional onAn) underH1. These

two conditions imply that the bootstrap p-valueΎB converges to zero in probability underH1.

For P0 ∈ P, Lemma C.2 shows the existence and uniqueness of the solutionfrom the con-

strained empirical likelihood problem,́p, to be an event with probability converging to unity.

Hence, the contact set́∆n exists with probability converging to unity. Since the bootstrap test

statisticT́ ⋆
n is bounded above by

∫ t

t

(

max

{

1√
n

n
∑

i=1

[

g (X⋆
i ; t)−EP̂n

[g (X; t)]
]

, 0

})2

dt, (A.20)

which converges in distribution (conditional onAn) to the distribution of
∫ t

t
(max {ν(t), 0})2 dt,

it follows thatT́ ⋆
n = OP (1) conditional onAn. This concludes the proof.
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A.4 Theorem 4

Proof. Part 1. The proof proceeds by the direct method. We first show that the condition

P

[

sup
t∈∆́n∩∆̂c

n

max {Gn(t), 0}2
∫

∆́n∩∆̂c
n

dt ≤ inf
t∈∆̂n∩∆́c

n

max {Gn(t), 0}2
∫

∆̂n∩∆́c
n

dt | An

]

p−→ 1

(A.21)

implies thatT́ ⋆
n ≤ T̂ ⋆

n , for large enoughn with probability approaching unity conditional onAn.

By definition of the test statistics, we have that

T́ ⋆
n − T̂ ⋆

n =

∫

∆́n∩∆̂c
n

max {Gn(t), 0}2 dt−
∫

∆̂n∩∆́c
n

max {Gn(t), 0}2 dt (A.22)

≤ sup
t∈∆́n∩∆̂c

n

max {Gn(t), 0}2
∫

∆́n∩∆̂c
n

dt− inf
t∈∆̂n∩∆́c

n

max {Gn(t), 0}2
∫

∆̂n∩∆́c
n

dt (A.23)

Then condition (A.21) implies that asymptotically

sup
t∈∆́n∩∆̂c

n

max {Gn(t), 0}2
∫

∆́n∩∆̂c
n

dt ≤ inf
t∈∆̂n∩∆́c

n

max {Gn(t), 0}2
∫

∆̂n∩∆́c
n

dt, (A.24)

holds, with probability approaching unity conditional onAn. And the condition (A.24) implies

that asymptoticallýT ⋆
n ≤ T̂ ⋆

n holds with probability tending to unity conditional onAn.

Part 2. Arguments similar to those in part 1 can be used to prove the desired result; therefore,

we omit the proof for brevity.

A.5 Theorem 5

Proof. The proof proceeds by the direct method. Since the test statistics are the same, it suffices

to compare the bootstrap p-values of the tests asB → +∞. They are

Ύ∞ = P ⋆
[

T́ ⋆
n ≥ T̂n

]

and Υ̂∞ = P ⋆
[

T̂ ⋆
n ≥ T̂n

]

, (A.25)
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which are conditional onAn. By Lemma C.4, the bootstrap test statisticsT́ ⋆
n andT̂ ⋆

n converge in

distribution conditional onAn to
∫

∆́n
max {ν(t), 0}2 dt and

∫

∆̂n
max {ν(t), 0}2 dt, respectively,

under the sequence of local alternatives. Furthermore, Lemma C.4 implies that asymptotically

∫

∆́n

max {ν(t), 0}2 dt ≤
∫

∆̂n

max {ν(t), 0}2 dt

holds with probability tending to unity under the sequence of local alternatives. So that

Ύ∞ = P ⋆

[
∫

∆́n

max {ν(t), 0}2 ≥ T̂n

]

≤ P ⋆

[
∫

∆̂n

max {ν(t), 0}2 ≥ T̂n

]

= Υ̂∞ (A.26)

holds asymptotically, conditional onAn, which implies the following relationship between the

rejection events
{

Υ̂∞ ≤ α
}

⊂
{

Ύ∞ ≤ α
}

holds conditional onAn, with probability tending

to unity under the sequence of local alternatives. In consequence,limn→+∞ Pn

[

Ύ∞ ≥ α
]

=

limn→+∞ Pn

[

Υ̂∞ ≤ α
]

.

B Intermediate Technical Results for Theorems 1 and 2

This section presents intermediate technical results thatare used in the proofs of Theorems 1

and 2. Subsection B.1 presents a technical result that is an immediate consequence of Part (i) of

Definition 3. Section B.2 uses this technical result to provethe existence and uniqueness of the

solution from the constrained empirical likelihood problem, under the null. In turn, Section B.3

uses the results of the previous sections to develop the large-sample properties of the Lagrange

multipliers underH0, which make use of Part (ii) of Definition 3. Finally, Section B.4 uses all

of the previous results to establish the uniform consistency of the proposed empirical likelihood

estimator of the moments, underH0.
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B.1 A Consequence of Part (i) of Definition 3

The result of this subsection concerns the large-sample behavior of the likelihood of observing the

event{I−n 6= ∅} underH0, where

I−n =
{

i ∈ {1, . . . , n} : g (Xi; t) < 0 ∀t ∈ [t, t]
}

. (B.1)

Lemma B.1. Given[c1, c2] ∈ (0, 1]×(0,+∞), letP0 ∈ P0(c1, c2). ThensupP∈P0(c1,c2) P [I−n 6= ∅] →

1.

Proof. The proof proceeds by the direct method. We show that the probability of the complement

of {I−n 6= ∅} converges to zero uniformly inP0(c1, c2). This complement of this event is

{

I−n = ∅
}

=
{

for each i∃t ∈ [t, t]; g (Xi; t) ≥ 0
}

.

By the bivariate random sampling assumption on{Xi}ni=1 , we have that

sup
P∈P0(c1,c2)

P
[

I−n = ∅
]

= sup
P∈P0(c1,c2)

(

P

[

sup
t∈[t,t]

g (X1; t) ≥ 0

])n

(B.2)

= sup
P∈P0(c1,c2)

(

1− P

[

sup
t∈[t,t]

g (X1; t) < 0

])n

(B.3)

≤ (1− c1)
n → 0 (B.4)

asn → +∞, sincec1 ∈ (0, 1].

B.2 Existence and Uniqueness of́p under H0

Let Hn = {pi, i = 1, . . . , n;
∑n

i=1 pi = 1, pi ≥ 0, ∀i = 1, . . . , n} , and denote the interior of this

set byH◦
n. Additionally, letH0

n(X) =
{

p ∈ Hn :
∑n

i=1 pig (Xi; t) ≤ 0 ∀t ∈ TN(n)

}

.
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Lemma B.2. On the event{H0
n(X) ∩H◦

n 6= ∅} , the random set

argmax

{

n
∑

i=1

log (pi) ; pi ≥ 0,
n
∑

i=1

pi = 1,
n
∑

i=1

pig (Xi; t) ≤ 0 ∀t ∈ TN(n)

}

is nonempty and a singleton.

Proof. The proof proceeds by verifying the conditions of Weierstrass’ Theorem. The objective

function is strictly concave in the probabilities. The constraint set,H0
n(X), is certainly bounded. It

is the finite intersection of closed half-planes (which are convex), and since convexity and closed-

ness are preserved under a finite number of intersections, itis closed and convex. Thus, we are

done wheneverH0
n(X) ∩H◦

n 6= ∅.

Lemma B.3. Given[c1, c2] ∈ (0, 1]× (0,+∞), suppose thatP0 ∈ P0(c1, c2). Then

sup
P∈P0(c1,c2)

P
[

H0
n(X) ∩H◦

n 6= ∅
]

→ 1 as n → +∞.

Proof. The proof proceeds by the direct method.

For largen and uniformly inP0(c1, c2), Lemma B.1 implies that the event

∃i ∈ {1, 2, . . . , n} g (Xi, t) < 0 ∀t ∈ TN(n) (B.5)

occurs with probability approaching 1, sinceTN(n) ⊂ [t, t] for eachn. Therefore, without loss of

generality, suppose that this event holds only fori = 1. Then it follows that

∀i ∈ {2, 3, . . . , n} : sup
t∈TN(n)

g (Xi, t) ≥ 0. (B.6)

A probability vectorp in H0
n(X) ∩H◦

n must satisfypi > 0 ∀i = 1, . . . , n,
∑n

i=1 pi = 1 and

n
∑

i=1

pig (Xi; t) ≤ 0 ∀t ∈ TN(n) ⇐⇒ 1 > p1 ≥
n
∑

i=2

pi

(

g (Xi; t)

−g (X1; t)

)

∀t ∈ TN(n) (B.7)
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Therefore, a sufficient condition for the inequalities in (B.7) is

sup
t∈TN(n)

n
∑

i=2

pi

(

g (Xi; t)

−g (X1; t)

)

≤ max
2≤i≤n

(

sup
t∈TN(n)

g (Xi; t)

−g (X1; t)

)

n
∑

i=2

pi (B.8)

≤ max
2≤i≤n

(

supt∈TN(n)
g (Xi; t)

inft∈TN(n)
−g (X1; t)

)

n
∑

i=2

pi < 1. (B.9)

It should be noted thatinft∈TN(n)
−g (X1; t) > 0 follows directly from (B.5). On the event

max
2≤i≤n

(

supt∈TN(n)
g (Xi; t)

inft∈TN(n)
−g (X1; t)

)

∈ [0, 1],

any positive probability vector satisfies the inequalities(B.7). Otherwise, on the event

max
2≤i≤n

(

supt∈TN(n)
g (Xi; t)

inft∈TN(n)
−g (X1; t)

)

> 1,

the inequality (B.8) is equivalent to

n
∑

i=2

pi <
1

max2≤i≤n

(

supt∈TN(n)
g(Xi;t)

inft∈TN(n)
−g(X1;t)

) ⇐⇒ 1− 1

max2≤i≤n

(

supt∈TN(n)
g(Xi;t)

inft∈TN(n)
−g(X1;t)

) < p1.

(B.10)

Thus, for anyp1 such that

1−
(

max
2≤i≤n

(

supt∈TN(n)
g (Xi; t)

inft∈TN(n)
−g (X1; t)

))−1

< p1 < 1,

there is a set of possible choices forp2, p3, . . . , pn such thatpi > 0 ∀i = 1, . . . , n, and
∑n

i=1 pi = 1.

This concludes the proof.
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B.3 Properties of Lagrange Multipliers under H0

In this subsection we present the properties of the Lagrangemultipliers arising in the constrained

empirical likelihood problem introduced in Section 3. Thisoptimization problem has the following

Lagrangian function:

L =

n
∑

i=1

log (pi) + λ

(

1−
n
∑

i=1

pi

)

− n
∑

t∈TN(n)

µt

n
∑

i=1

pig (Xi; t) , (B.11)

whereλ ∈ R is the multiplier on the equality constraint
∑n

i=1 pi = 1, andµt ≥ 0 for t ∈ TN(n) are

the multipliers on the inequality constraints. The Karush-Kuhn-Tucker (KKT) conditions are

1

pi
= λ+ n

∑

t∈TN(n)

µtg (Xi; t) i = 1, 2, . . . , n (B.12)

n
∑

i=1

pig (Xi; t) ≤ 0 ∀t ∈ TN(n),

n
∑

i=1

pi = 1 (B.13)

µt

n
∑

i=1

pig (Xi; t) = 0 ∀t ∈ TN(n). (B.14)

In classical optimization theory, the existence ofλ́ and µ́t for t ∈ TN(n) that solve KKT con-

ditions along withṕ results from a constraint qualification. This paper uses theMangasarian-

Fromovitz constraint qualification. In the setting of this paper, the Mangasarian-Fromovitz con-

straint qualification is the following event

Sn =

{

∃d ∈ R
n :

n
∑

i=1

di = 0 and
n
∑

i=1

dig (Xi; t) < 0 ∀t ∈ ∆
(

Ṕn

)

}

, (B.15)

where∆
(

Ṕn

)

=
{

t ∈ TN(n) :
∑n

i=1 ṕig (Xi; t) = 0
}

. We have the following result.

Lemma B.4 (Existence). Given[c1, c2] ∈ (0, 1]× (0,+∞), suppose thatP0 ∈ P0(c1, c2). Then

sup
P∈P0(c1,c2)

P [Sn] → 1 as n → +∞.
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Proof. The proof proceeds by using the direct method. For large enough n and uniformly in

P0(c1, c2) Lemmas B.2 and B.3 imply that́p exists and is unique. To prove the desired result, we

will show the probability of the eventSn converges to one, uniformly inP0(c1, c2).

Noting that the moment functions satisfy Property 1, consider the following construction for the

d ∈ R
n :
∑n

i=1 di = 0, and the sign restrictions

sign(di) =















< 0, if g (Xi, t) ≥ 0 ∀t ∈ TN(n)

> 0, if g (Xi, t) < 0 ∀t ∈ TN(n),

(B.16)

Lemma B.1 implies the occurrence of the event
{

∃i : g (Xi, t) < 0 ∀t ∈ TN(n)

}

with probabil-

ity approaching one, uniformly inP0(c1, c2). Therefore, the above construction is asymptotically

feasible. Such vectorsd trivially satisfy the conditions of the Mangasarian-Fromovitz constraint

qualification. This concludes the proof since the above implies that the probability of the eventSn

converges to one uniformly inP0(c1, c2).

In fact, using the KKT conditions, one can easily show thatλ́ = n,

ṕi =
1

n

(

1

1 +
∑

t∈∆(Ṕn)
µ́tg (Xi; t)

)

i = 1, 2, . . . , n, (B.17)

where
{

µ́t = 0, ∀t ∈ TN(n) −∆(Ṕn)
}

and
{

µ́t ≥ 0, ∀t ∈ ∆(Ṕn)
}

. The Mangasarian-Fromovitz

constraint qualification implies that there exists a compact set of multipliers on the binding con-

straints that satisfy the KKT conditions. We denote this setof multipliers by

Λn

(

Ṕn

)

=
{

µ́t t ∈ ∆(Ṕn) that satisfy(B.12)− (B.14)
}

. (B.18)

Next, we focus on the large sample properties of the multipliers inΛn

(

Ṕn

)

, underH0. Let
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w ∈ Z+ ∪ {+∞} , and define the Banach spaces, as indexed byw,

l1w =

{

a = (a1, a2, . . . , aw) ∈ R
w :

w
∑

j=1

|aj| < +∞
}

, (B.19)

normed by‖a‖l1w =
∑w

j=1 |aj|.

Lemma B.5 (Asymptotic Bound for Lagrange Multipliers). Given [c1, c2] ∈ (0, 1] × (0,+∞),

suppose thatP0 ∈ P0(c1, c2). Then

(i) limn→+∞ supP∈P0(c1,c2) P
[

∆(Ṕn) ⊂ ∆(P0)
]

= 1.

(ii) Let ωn =
∣

∣

∣
∆(Ṕn)

∣

∣

∣
. Denote the vector of Lagrange multipliers on the constraints binding

constraints býµ and thel1ωn
norm of the vectoŕµ by ||µ́||l1ωn

. Thensup
µ́∈Λn(Ṕn) ||µ́||l1ωn

=

oP (1) uniformly in P0(c1, c2) at the
√
n-rate.

Proof.

(i) We show this result using proof by contrapositive, that is, we show that for largen,

t /∈ ∆(P0) =⇒ t /∈ ∆(Ṕn)

Consider anyt ∈ [t, t]. For large enoughn, Property 1 and the non-negativity of the La-

grange multipliers implies that

n
∑

i=1

p′ig(Xi; t) ≤
1

n

n
∑

i=1

g(Xi; t) =
1

n

n
∑

i=1

g(Xi; t)−EP0 [g(X ; t)] + EP0 [g(X ; t)] (B.20)

Now, considert /∈ ∆(P0). As P0 ∈ P0(c1, c2), this implies thatEP0 [g(X ; t)] < 0. By the

law of large numbers,

1

n

n
∑

i=1

g(Xi; t)− EP0 [g(X ; t)] = OP (n
−1/2)
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uniformly in P0(c1, c2). Thus, for sufficiently largen, equation (B.20) simplifies to

n
∑

i=1

ṕig(Xi; t) < 0

This shows thatt /∈ ∆(Ṕn).

(ii) Recall that the cardinality of the set∆(Ṕn) is ωn ≤ N(n). Without loss of generality, let

∆(Ṕn) = {t1, t2, . . . , tωn} . (B.21)

Therefore, the probabilities (B.17) can be expressed as

ṕi =
1

n

(

1 +

ωn
∑

j=1

µ́jg(Xi; tj)

)−1

(B.22)

For any choice oftj ∈ ∆(Ṕn), we have

n
∑

i=1

ṕig(Xi; tj) =
1

n

n
∑

i=1

g(Xi; tj)

1 +
∑ωn

j=1 µ́jg(Xi; tj)
= 0 (B.23)

To express the system of equations described by (B.23) in vectorised form, define the vector

gi = [g(Xi; t1), g(Xi; t2), . . . , g(Xi; tωn)]
T (B.24)

Now, as all the elements of́µ are non-negative, thel1ωn
norm is simply the sum of all elements

of µ́, i.e. ||µ́||l1ωn
=
∑ωn

j=1 µ
′
j . This means we can express the vectorµ́ in the form

µ́ = ||µ́||l1ωn
θ , θ ∈ R

ωn
+
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Under this construction, thejth element ofθ is

θj =
µ́j

∑ωn

j=1 µ́j

This implies that
∑ωn

j=1 θj = 1. The system of equations defined by (B.23) for allt ∈ ∆(Ṕn)

can be written in the following form

1

n

n
∑

i=1

gi

1 + (µ́)Tgi
= 0 =⇒ θT

(

1

n

n
∑

i=1

gi

1 + (µ́)Tgi

)

= 0 (B.25)

Define the quantityYi = (µ́)Tgi. Using the manipulation 1
1+Yi

= 1− Yi

1+Yi
and the fact that

(µ́)Tgi = gT
i µ́ in equation (B.25) gives

θT

(

1

n

n
∑

i=1

gi

(

1− gT
i µ́

1 + Yi

)

)

= 0

θT

(

1

n

n
∑

i=1

gi

)

= θT

(

1

n

n
∑

i=1

gig
T
i µ́

1 + Yi

)

θT

(

1

n

n
∑

i=1

gi

)

= θT

(

1

n

n
∑

i=1

gig
T
i ||µ́||θ
1 + Yi

)

∴ θT

(

1

n

n
∑

i=1

gi

)

= ||µ́||l1ωn
θT

(

1

n

n
∑

i=1

gig
T
i

1 + Yi

)

θ (B.26)

We denote the sample analogue estimate of the covariance matrix of measurement functions

over the set of allt ∈ ∆(Ṕn) by

Σ̂∆(Ṕn)
=

1

n

n
∑

i=1

gig
T
i

DefineYmax = max
i

|Yi|. Note that

Ymax = max
i

|Yi| = max
i

ωn
∑

j=1

µ́j |g(Xi; tj)| ≤
2t

s−1

(s− 1)!

ωn
∑

j=1

µ́j =
2t

s−1

(s− 1)!
||µ́||l1ωn

, (B.27)
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where we have used the uniform boundedness of the moment functions.

Now, consider

||µ́||l1ωn

(

θT Σ̂∆(Ṕn)
θ
)

= ||µ́||l1ωn

(

θT

(

1

n

n
∑

i=1

gig
T
i

)

θ

)

≤ ||µ́||l1ωn

(

θT

(

1

n

n
∑

i=1

gig
T
i

1 + Yi

)

θ

)

(1 + Ymax)

≤ ||µ́||l1ωn

(

θT

(

1

n

n
∑

i=1

gig
T
i

1 + Yi

)

θ

)

(1 + ||µ́||l1ωn
)

∴ ||µ́||l1ωn

(

θT Σ̂∆(Ṕn)
θ
)

≤ θT

(

1

n

n
∑

i=1

gi

)

(1 + ||µ́||l1ωn
) (B.28)

where the last line results from substituting the expression given in (B.26). Rearranging

(B.28) gives

||µ́||l1ωn

[

θT Σ̂ωnθ − θT

(

1

n

n
∑

i=1

gi

)]

≤ θT

(

1

n

n
∑

i=1

gi

)

∀µ́ ∈ Λn

(

Ṕn

)

, (B.29)

since the derivation above holds for eachµ́ ∈ Λn

(

Ṕn

)

. We consider the components of

(B.29) to find the required asymptotic bound on||µ́||. From part (i) of this lemma, for large

n we have∆(Ṕn) ⊂ ∆(P0). This means for largen, we have that for allt ∈ ∆(Ṕn),

EP0 [g(X ; tj)] = 0. As a result,

θT

(

1

n

n
∑

i=1

gi

)

=

ωn
∑

j=1

θj

(

1

n

n
∑

i=1

g(Xi; tj)− EP0 [g(X ; tj)]

)

∣

∣

∣

∣

∣

θT

(

1

n

n
∑

i=1

gi

)
∣

∣

∣

∣

∣

≤
ωn
∑

j=1

θj

∣

∣

∣

∣

∣

1

n

n
∑

i=1

g(Xi; tj)− EP0 [g(X ; tj)]

∣

∣

∣

∣

∣

≤ max
j

∣

∣

∣

∣

∣

1

n

n
∑

i=1

g(Xi; tj)− EP0 [g(X ; tj)]

∣

∣

∣

∣

∣

(

ωn
∑

j=1

θj

)

≤ sup
t∈[t,t]

∣

∣

∣

∣

∣

1

n

n
∑

i=1

g (Xi; t)−EP0 [g (X; t)]

∣

∣

∣

∣

∣

(B.30)

The last line follows from the fact that
∑ωn

j=1 θj = 1 by construction. The upper bound given
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by equation (B.30) isoP (1) uniformly in P0(c1, c2). This follows from the functions being

of Vapnik-Chervonenkis class. The moment functionsg belonging to a uniformly bounded

Vapnik-Chervonenkis class of functions ensures that classof functions is also uniformly

Glivenko-Cantelli.

Now, for sufficiently largen, part (i) of this lemma tells us that∆(Ṕn) ⊂ ∆(P0). Therefore,

part (ii) of Definition 3 implies thatθTΣ∆(Ṕn)
θ ≥ c2 > 0. Using this result and the bound

from equation (B.30), we can rewrite (B.29) as

||µ́||l1ωn
≤ oP (1)

c + oP (1)
∀µ́ ∈ Λn

(

Ṕn

)

, uniformly in P0(c1, c2). (B.31)

Consequently,

sup
µ́∈Λn(Ṕn)

||µ́||l1ωn
≤ oP (1)

c+ oP (1)
, uniformly in P0(c1, c2). (B.32)

Therefore,sup
µ́∈Λn(Ṕn) ||µ́||l1ωn

= oP (1) uniformly in P0(c1, c2). Finally, to show that

sup
µ́∈Λn(Ṕn) ||µ́||l1ωn

= OP (n
−1/2) uniformly in P0(c1, c2), first note that the expression

on the right side of (B.29) has this property. So that

sup
µ́∈Λn(Ṕn)

||µ́||l1ωn
≤ OP (n

−1/2)

c+ oP (1)
uniformly in P0(c1, c2), (B.33)

which implies

√
n sup

µ́∈Λn(Ṕn)
||µ́||l1ωn

≤ OP (1)

c+ oP (1)
uniformly in P0(c1, c2). (B.34)

Hence,
√
n sup

µ́∈Λn(Ṕn) ||µ́||l1ωn
, a positive random variable, is bounded from above by an-
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other variable that isOP (1), uniformly inP0(c1, c2). Therefore, we must have that

√
n sup

µ́∈Λn(Ṕn)
||µ́||l1ωn

= OP (1) uniformly in P0(c1, c2).

B.4 Relationship BetweenEP̂n
[g (X, ·)] and EṔn

[g (X, ·)]

The following result implies that the estimatorEṔn
[g (X, ·)] is a uniformly consistent estimator of

EP0 [g (X, ·)] underH0.

Proposition B.1. Given[c1, c2] ∈ (0, 1]× (0,+∞) and thatP0 ∈ P0(c1, c2), then

sup
t∈[t,t]

∣

∣EP̂n
[g (X, t)]−EṔn

[g (X, t)]
∣

∣ = OP (n
−1/2) uniformly over P0(c1, c2). (B.35)
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Proof. The proof follows the direct method. Consider the followingderivation:

∣

∣EP̂n
[g (X, t)]−EṔn

[g (X, t)]
∣

∣ =

∣

∣

∣

∣

∣

n
∑

i=1

1

n
g(Xi; t)−

n
∑

i=1

ṕig(Xi; t)

∣

∣

∣

∣

∣

≤
n
∑

i=1

∣

∣

∣

∣

(

1

n
− ṕi

)

g(Xi; t)

∣

∣

∣

∣

≤
n
∑

i=1

∣

∣

∣

∣

∣

1

n

(

1− 1

1 +
∑N

j=1 µ́jg(Xi; tj)

)

g (Xi, t)

∣

∣

∣

∣

∣

=
n
∑

i=1

∣

∣

∣

∣

∣

1

n
·
g (Xi, t)

∑N
j=1 µ́jg(Xi; tj)

1 +
∑N

j=1 µ́jg(Xi; tj)

∣

∣

∣

∣

∣

=

n
∑

i=1

∣

∣

∣

∣

∣

ṕig (Xi, t)

N
∑

j=1

µ́jg(Xi; tj)

∣

∣

∣

∣

∣

≤
(

2t
s−1

(s− 1)!

)2 n
∑

i=1

ṕi

∣

∣

∣

∣

∣

N
∑

j=1

µ́j

∣

∣

∣

∣

∣

≤
(

2t
s−1

(s− 1)!

)2 N
∑

j=1

|µ́j|

=

(

2t
s−1

(s− 1)!

)2

||µ́||l1ωn
(B.36)

≤
(

2t
s−1

(s− 1)!

)2

sup
µ́∈Λn(Ṕn)

||µ́||l1ωn
, (B.37)

whereΛn

(

Ṕn

)

is the set of Lagrange multipliers on∆(Ṕn) defined in (B.18). Lemma B.5(ii)

establishes

sup
µ́∈Λn(Ṕn)

||µ́||l1ωn
= OP (n

−1/2) uniformly over P0(c1, c2), (B.38)

which implies the desired result via the inequality (B.37).
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C Technical Lemmas for Theorems 3 and 5

C.1 Theorem 3

This subsection presents two technical lemmas that are useful for proving Theorem 3. They are a

consequence of the conditionP
[

supt∈[t,t] g (X1; t) < 0
]

> 0 being true. The first lemma is similar

to Lemma B.1, but we now do not constrainP to satisfyH0.

Lemma C.1. SupposeP0 ∈ P and letI−n be given by (B.1). Thenlimn→∞ P [I−n 6= ∅] = 1.

Proof. The proof follows similar steps as those in the proof of LemmaB.1. We show that the

probability of the complement of{I−n 6= ∅} converges to zero. This set is

{

I−n = ∅
}

=
{

for each i∃t ∈ [t, t]; g (Xi; t) ≥ 0
}

.

By the bivariate random sampling assumption on{Xi}ni=1 , we have that

P0

[

I−n = ∅
]

=

(

P0

[

sup
t∈[t,t]

g (X1; t) ≥ 0

])n

(C.1)

=

(

1− P0

[

sup
t∈[t,t]

g (X1; t) < 0

])n

→ 0 (C.2)

n → +∞ by Condition (i) of Assumption1.

The second lemma concerns the existence and uniqueness of the constrained empirical likeli-

hood probability vectoŕp. Recall thatHn = {pi, i = 1, . . . , n;
∑n

i=1 pi = 1, pi ≥ 0, ∀i = 1, . . . , n}

and that its interior isH◦
n. Additionally, recall that the constraint is

H0
n(X) =

{

p ∈ Hn :

n
∑

i=1

pig (Xi; t) ≤ 0 ∀t ∈ TN(n)

}

.

As with the previous result, we do not constraintP to satisfyH0.
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Lemma C.2. SupposeP0 ∈ P. Then

lim
n→∞

P0

[

H0
n(X) ∩H◦

n 6= ∅
]

= 1.

Proof. For largen, Lemma C.1 implies that the event

∃i ∈ {1, 2, . . . , n} g (Xi, t) < 0 ∀t ∈ TN(n) (C.3)

occurs with probability approaching 1, sinceTN(n) ⊂ [t, t] for eachn. The rest of the proof

proceeds using steps similar to those in the proof of Lemma B.2; therefore, we omit them for

brevity.

C.2 Theorems 5

This section presents technical lemmas for the local power analysis of the tests. It relies on the

WLLN and Lindeberg-Feller Central limit Theorem for triangular arrays of row-wise IID random

variables. These large sample results can be found in Section 27 of Billingsley (1995).

First, we briefly mention a few intermediate useful results regarding constrained estimation

under the local alternatives.

Lemma C.3. Suppose that the conditions of Theorem 5 hold. Then

1. limn→+∞ Pn [I
−
n 6= ∅] = 1, whereI−n is defined in (B.1).

2. limn→+∞ Pn [H0
n(X) ∩ H◦

n 6= ∅] = 1.

3. limn→+∞ Pn [Sn] = 1, whereSn is the event defined in (B.15).

4. limn→+∞ Pn

[

EṔn
[g (X; t)] ≤ EP̂n

[g (X; t)] ∀t ∈ [t, t]
]

= 1.

5.
√
n sup

µ́∈Λn(Ṕn) ||µ́||l1ωn
= OPn(1).

21



Proof. Under the conditions of Theorem 5, the steps for proving parts 1 to 4 of this lemma are

identical to their counterparts in Appendix B, but with probability computations under the local

alternatives; therefore, we omit them for brevity.

We now focus on proving part 5 of this lemma. We will first show that

lim
n→+∞

Pn

[

∆(Ṕn) ⊂ C
]

= 1 holds, where C =
{

t ∈ [t, t] : H(t) = 0
}

.

The proof will follow steps similar to those of pat (i) of Lemma B.5. Proceeding by contraposition,

we need to show that

t /∈ C =⇒ t /∈ ∆(Ṕn) (C.4)

for largen with probability approaching unity, under the local alternatives. Part 4 of this lemma

implies

EṔn
[g (X; t)] ≤ EP̂n

[g (X; t)] = EP̂n
[g (X; t)]− EPn [g (X; t)] + EPn [g (X; t)] . (C.5)

Now, considert /∈ C. This implies thatlimn→+∞EPn [g (X; t)] = H(t) < 0. By the WLLN for

triangular arrays,

EP̂n
[g (X; t)]−EPn [g (X; t)] = oPn(1). (C.6)

It should be noted that the application of the WLLN for triangular arrays is valid since the set

of moment functionsF is uniformly bounded. Thus for sufficiently largen, the inequality (C.5)

simplifies to

EṔn
[g (X; t)] ≤ H(t) < 0 as n → +∞. (C.7)

This shows thatt /∈ ∆(Ṕn) for largen with probability approaching unity under the local alterna-
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tives.

Using the notation of Lemma B.5, and following identical steps to those up to the inequal-

ity (B.29), we have that

||µ́||l1ωn

[

θT Σ̂ωnθ − θT

(

1

n

n
∑

i=1

gi

)]

≤ θT

(

1

n

n
∑

i=1

gi

)

∀µ́ ∈ Λn

(

Ṕn

)

, (C.8)

wheregi = [g(Xi; t1), g(Xi; t2), . . . , g(Xi; tωn)]
T ,∆(Ṕn) = {t1, t2, . . . , tωn} andθ ∈ R

ωn
+ with

||θ||l1ωn
= 1. Noting that

θT

(

1

n

n
∑

i=1

gi

)

=
ωn
∑

j=1

θj

(

1

n

n
∑

i=1

g(Xi; tj)− EPn [g(X ; tj)]

)

+
ωn
∑

j=1

θj(δ(tj)/
√
n) = oPn(1)

(C.9)

by the WLLN for triangular arrays of random variables that are row-wise IID, we have that

sup
µ́∈Λn(Ṕn)

||µ́||l1ωn
≤

θT

(

1

n

∑n
i=1 gi

)

[

θT Σ̂ωnθ − θT

(

1

n

∑n
i=1 gi

)] (C.10)

since part 1 of this lemma implies thatlimn→+∞ Pn

[

θT Σ̂ωnθ > 0
]

= 1.

Hence,

√
n sup

µ́∈Λn(Ṕn)
||µ́||l1ωn

≤

√
nθT

(

1

n

∑n
i=1 gi

)

[

θT Σ̂ωnθ − θT

(

1

n

∑n
i=1 gi

)] . (C.11)

To conclude the proof, all we need to do is to show that the numerator on the right side of the
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inequality (C.11) isOPn(1). Noting that

√
nθT

(

1

n

n
∑

i=1

gi

)

=
ωn
∑

j=1

σn(tj)θj

(

1

σn(tj)
√
n

n
∑

i=1

g(Xi; tj)− EPn [g(X ; tj)]

)

+
ωn
∑

j=1

θjδ(tj),

(C.12)

where we can apply the Lindeberg-Feller Central Limit Theorem for IID triangular arrays (via

Lyapounov’s condition) to each

1

σn(tj)
√
n

n
∑

i=1

g(Xi; tj)− EPn [g(X ; tj)] j = 1, . . . , ωn (C.13)

sinceF is uniformly bounded. Hence, the first term on the right side of (C.12) isOPn(1) since it is

asymptotically a convex combination ofOPn(1) terms. Finally, part (iii) of Assumption 2 implies

that the second term on the right side of (C.12) is finite. Therefore,

√
n sup

µ́∈Λn(Ṕn)
||µ́||l1ωn

= OPn(1), (C.14)

which concludes the proof.

Lemma C.4. Suppose that the conditions of Theorem 5 hold. Then

lim
n→+∞

Pn

[

C ⊂ ∆́n ⊂ ∆̂n

]

= 1. (C.15)

Proof. The proof proceeds by the direct method. We first focus on proving limn→+∞ Pn

[

C ⊂ ∆́n

]

=

1. Lemma C.3 implies that the random set∆́n exists for large enoughn, with probability ap-

proaching unity under the local alternatives. Considert ∈ [t, t] such thatH(t) = 0 and the event
{

−rn ≤ EṔn
[g (X; t)] ≤ rn

}

. This event is equal to







−
√
nrn

σn(t)
≤

√
n
(

EṔn

[g (X; t)]− EP̂n

[g (X, t)]
)

σn(t)
+

√
n
(

EP̂n

[g (X; t)]− EPn
[g (X, t)]

)

σn(t)
+

δ(t)

σn(t)
≤

√
nrn

σn(t)







,

(C.16)
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where

√
n
(

EṔn
[g (X; t)]− EP̂n

[g (X, t)]
)

= −
√
n
∑

t′∈∆(Ṕn)

µ́t′

n
∑

i=1

ṕig (Xi; t
′) g (Xi; t) . (C.17)

As
∑n

i=1 ṕig (Xi; t
′) g (Xi; t) is a uniformly bounded function oft and t′, part 5 of Lemma C.3

implies the right side of (C.17) isOPn(1). Noting that

−
√
nrn

σn(t)
→ −∞,

√
nrn

σn(t)
→ +∞,

√
n
(

EP̂n
[g (X; t)]− EPn [g (X, t)]

)

σn(t)
= OPn(1)

asn → +∞ by the Lindeberg-Feller Central Limit Theorem for IID triangular arrays, andδ(t) is

a uniformly bounded function by part (iii) of Assumption 2, it follows that

lim
n→+∞

Pn

[

C ⊂ ∆́n

]

= 1.

Next we focus on provinglimn→+∞ Pn

[

∆́n ⊂ ∆̂n

]

= 1.Parts 1 and 2 of Lemma C.3 implies

that asymptotically the set estimator∆́n exist with probability approaching unity under the local al-

ternatives. Suppose thatt ∈ ∆́n, then by Part 4 of Lemma C.3,limn→+∞ Pn

[

EP̂n
[g (X; t)] > −rn

]

=

1. Thus, to prove the result we need to show thatlimn→+∞ Pn

[

EP̂n
[g (X; t)] < rn

]

= 1.

We will show thatlimn→+∞ Pn

[

EP̂n
[g (X; t)] ≥ rn

]

= 0. Noting that

EP̂n
[g (X; t)] = EP̂n

[g (X; t)]−EPn [g (X; t)] + EPn [g (X; t)] , and (C.18)

√
n
(

EP̂n
[g (X; t)]−EPn [g (X; t)]

)

/σPn(t) = OPn(1) (C.19)

by the Central Limit Theorem for triangular arrays of row-wise IID random variables, it follows

that

lim
n→+∞

Pn

[

EP̂n
[g (X; t)] ≥ rn

]

= lim
n→+∞

Pn

[

OPn(1) +

√
n

σPn(t)
EPn [g (X; t)] ≥ √

nrn/σPn(t)

]

.

(C.20)
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As
√
nrn/σPn(t) → +∞ (because the set of moment functions is uniformly bounded),for t ∈ C,

the term
√
nEPn [g (X; t)] /σPn(t) = δ(t)/σPn(t), is uniformly bounded with uniformity overn;

hence, the limit (C.20) is equal to zero. Furthermore, fort ∈ [t, t]− C, the term

√
nEPn [g (X; t)] /σPn(t) = (

√
nH(t) + δ(t))/σPn(t),

hasH(t) < 0 andδ(t)/σPn(t) is uniformly bounded; in consequence, the limit (C.20) is equal to

zero for sucht. This concludes the proof.
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