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Abstract

This paper proposes a method of bootstrap testing for ecestristochastic dominance be-
tween two income distributions. The proposed testing o retains the bootstrap test
procedure of Linton et al. (2010) (LSW), but reformulatesithbootstrap test statistics using
an estimator of the contact set based on the method of corestrampirical likelihood that
imposes the restrictions of the null hypothesis. This paharacterizes the set of probabilities
in the null hypothesis so that the proposed test has asyitgitptcorrect level, and the subsets
of this set on which its asymptotic size is exactly equal tortbminal level. The testing proce-
dure of this paper is less conservative than the one LSW pmgdeurthermore, it is consistent
and has asymptotic local power no less than the LSW test wedetarity conditions. We
report simulation results that show the proposed test igewly less conservative than the
test of LSW and has improved power. Finally, the methodslarg&tiiated in an assessment of
consumption poverty in Australia for the periods 2001 and&20
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Note 1. An earlier version of this paper was circulated as the uripbbtd manuscript Lok and
Tabri (2015). That paper proposed (1) a contact set estmatiocedure based on the method of
empirical likelihood, and (2) a modification of the bootsttasting procedure LSW develop which
replaces their contact estimator with the proposed costastimator. However, that manuscript
did not fully and formally analyze the asymptotic propestad these procedures, because it was
intended to be a short paper that demonstrates, via Monte Slarulations, the potential benefits
of the modified testing procedure. The present work, undes#me title, rigorously establishes
the asymptotic properties of the proposed contact set agimand the bootstrap test based on it,
includes a more extensive set of Monte Carlo simulation expnts and an empirical illustration.

It is thus intended to subsume the 2015 manuscript.



1 Introduction

Stochastic dominance orderings of income distributioesfandamental in poverty and income
studies. Since the 1980's, these orderings were used taisktavhether poverty or social welfare
is greater in one income distribution than in another foragahclasses of poverty indices and for
ranges of possible poverty lines (e.g. Atkinson, 1987 arstdf@nd Shorrocks, 1988).

In practice, population income distributions are in geheod observable, and so comparisons
must be based on statistical tests that make use of distmtsugstimated from samples. Bootstrap
tests that posit a null ainrestricted stochastic dominance of a given order appeared over the last
two decades (e.g. Barrett and Donald, 2003, Horvath et @062and Linton et al., 2010), and
all of them apply to testing forestricted stochastic dominance orderidg&inton et al. (2010)
(LSW, hereafter) proposed a bootstrap testing procedategtasymptotically similar over a large
set of distributions in the boundary of the null hypothedibey allow for the case of dependent
populations and show that their test is asymptoticallydvahiformly over the distributions in the
null hypothesis under certain regularity conditions. Toaoibthese properties of their test, LSW
introduce consistent estimation of the "contact set", Wisdhe subset of the domain on which the
dominance functions coincide. This set is of great imparédmecause it enters the asymptotic null
distributions of conventional test statistics (e.g. oited Crameér-von-Mises and Kolmogorov-
Smirnov test statistics). LSW construct bootstrap tedissies that adapt to the contact set using
a consistent contact set estimator, whose use is simildretgeneralized moment selection pro-
cedure in Andrews and Soares (2010) and Chernozhukov e2Gl3) who develop inference

procedures for a finite-dimensional parameter. In contthstobject of interest in the present pa-

Stochastic dominance orderings can either be unrestrattedstricted, as to whether the comparison of the
distributions is carried out over the entire range of th@amif their supports or only over some predesignated résstkic
range of it. The saliency of this distinction in poverty amddme studies arises for a normative reason, being that
unrestricted stochastic dominance orderings do not impoffeient limits on the ranges over which certain ethical
principles must be obeyed. Said differently, these ordgridiscriminate between the living standards of everyone
below a survival poverty line when in fact this should not reelbecause everyone under that threshold should certainly
be deemed to be in very difficult circumstances. In consecpiethese orderings do not give equal ethical weight
to all those who are below a survival poverty line. By cortréise rankings of income distributions based on the
restricted stochastic dominance orderings eliminatesgheern with the precise living standards of the most deplriv
See Bourguignon and Fields (1997) for more on this point.



per is infinite dimensional. Although LSW has significantjvanced the inference literature on
stochastic dominance orderings, simulation-based ega&lsnggests that it is conservative on con-
figurations in the boundary of the null hypothesis outsidéhefleast favorable case. The present
paper builds on the contribution of LSW by introducing a Isb@p test for restricted stochastic
dominance that is asymptotically less conservative thair test on these configurations in the
null hypothesis.

The bootstrap test this paper proposes retains the LSWhdeptbcedure but replaces their
contact set estimator with one based on a constrained dstiwiahe dominance functions. The
contact set estimator this paper introduces uses the egmedrempirical likelihood estimator of
the dominance functions, where the constraints reprebentestrictions of the null hypothesis
By contrast, the LSW contact set estimator uses the samplegure estimator of the dominance
functions. Therefore, our empirical likelihood estimatiprocedure defines a "constrained" es-
timator of the contact set. In effect, the test we proposensodification of the LSW test that
reformulates the LSW bootstrap test statistics in a dapeni@ent way that incorporates the sta-
tistical information contained in the constraints of thdl hypothesis. We characterize the set of
probabilities in the null hypothesis so that the proposstitas asymptotically correct level, and
the subsets of this set on which its asymptotic size is exadial to the nominal level.

The bootstrap test this paper proposes has a couple of agemntFirst, it is asymptotically less
conservative than the LSW test on configurations in the banaf the null hypothesis outside of
the least favorable case. This property is a consequenbe pfbposed contact set estimator being
asymptotically a subset of its LSW counterpart under sugiufaion configurations. For popu-
lation configurations in the least favorable case, the twdamd set estimators are asymptotically
equal. Accordingly, the LSW bootstrap test statistic isnagtotically no smaller than its modified
counterpart, under the null. Second, we provide sufficiemid@ions under which the proposed
test is asymptotically more powerful than the LSW test agfdimed alternatives, and vice-versa.

The proposed test is shown to be consistent against alhattees, which is also a property that

2See Owen (2001) and the references therein for the methadifieal likelihood.



the LSW test shares. Furthermore, we adopt the frameworksdY¥ lto compare the asymptotic
local power properties of the tests, who consider Pitmaallakternative sequences. We find the
local limiting power function of the proposed test is gredban or equal to its LSW counterpart,
regardless of the Pitman local alternative directions.

These desirable properties, however, come at the expenstraducing an additional tuning
parameter, and the use of a slightly more restrictive par@anspace than the one LSW employ.
The tuning parameter is a grid that approximates the prgdated range in the domain of the
dominance functions. The grid indexes the points in this@ioron which we wish to impose the
restrictions of the null in the constrained empirical likelod estimation problem. This estimation
problem is easy to implement in practice using standard coimgppackages. The parameter space
in this paper is a subset of the one that LSW employ becausednditions in addition to the ones
LSW impose, define it. The first condition is sufficient for testence and uniqueness of the
solution in the constrained empirical likelihood estimatproblem, and the existence of Lagrange
multipliers via Karush-Kuhn-Tucker conditions. The seda@ondition imposes a zero lower bound
on the supports of the income distributions, which is nafriets/e as incomes are non-negative.

To explore the finite-sample properties of the tests, wertddonte Carlo simulation results
that compare the tests. The simulations use the experihtag@gns in Section 5 of LSW, which
are for fixed data-generating processes. The simulatiaritseshow the proposed test has better
Type | error properties. The data-generating processear iinel alternative are in the directions of
dominance and non-dominance, which allows us to gauge tleeatices in the powers of the tests
that our theoretical findings suggest. Overall, the simmutatesults suggest that the proposed test
weakly dominates the LSW test, and that there can be sulatdifferences in their performance.

Tests based on the procedure Barrett and Donald (2003)dinteoalso apply to testing for
restricted stochastic dominance. They proposed a consistetstrap test for the case of indepen-
dent populations, where the bootstrap critical value ismat@d using a bootstrap data-generating
process in the least favorable case of the null hypothesrsla® works in this area include, for ex-

ample, Horvath et al. (2006). In general, these types ahigprocedures are too conservative, and



have asymptotically exact size equal to the nominal levedmihe dominance functions are equal
almost everywhere. Tests for restricted stochastic domemare not new. Davidson and Duclos
(2013) and Davidson (2009) propose asymptotic and boptséists that posit instead a null of
non-dominance. By contrast, our paper and the literatigeudsed earlier, have non-dominance
as one of the configurations under the alternative. Thezetbese two approaches are not directly
comparable, but they certainly do complement each other.

The rest of this paper is organized as follows. Section 2 defihe null hypothesis of restricted
stochastic dominance, introduces the test statistic LSWejttheir definition of a test having
asymptotically exact size, and their bootstrap testingg@dare. Section 3 introduces the the pro-
posed contact set estimator and its asymptotic propertideruhe null. Section 4 presents the
asymptotic properties of the proposed testing procedwgetid 5 presents a further discussion on
the differences between the LSW test and the one this pappopes. Section 6 reports the find-
ings of Monte Carlo simulation experiments. Section 7 thates the LSW and proposed inference
procedures using with an application to Australian consionmata. Finally, Section 8 concludes
and Section 9 collates the acknowledgements of the indilsdand institutions who provided help

during the research.

2 Setup

This section introduces the testing problem this paperdeswn, the test statistic and its pointwise-
asymptotic null distribution. Furthermore, it presents lSW contact set estimator and bootstrap

testing procedure.

2.1 The Null Hypothesis

Consider two populationsg} and B, with respective distribution function3, and Pz, and suppose
that there is a joint distribution functio®, with marginal distributiong?4 and Pg. It is important

to account for the statistical dependence between the twalagtions in many applications, such



as the comparison of distributions over time, or before ditel @an economic policy or event.
Distribution B is said to dominate distribution, stochastically at order € Z, and over the range
[£,] C supp(P4) U supp(Pp), if

. B\s—1
(- x?)"

- (t _XA)sfl]_
(s —1)!

Ep (s —1)!

[XP <] (X4 <t]| <0 vteltl], (2.1)
whereX = [X4, X 5] is a random vector whose distributionfs and supg Py ) is the support of
P, K = A, B. The unrestricted stochastic dominance orderings are defis@bove, but with
the equality:[¢, t] = supp(P4) U supp(Pg) .

Let P, denote the "true” distribution &X. For ease of exposition, ldtx — ¢ (x;t),¢ € [t, 1]}
denote the set of moment functions in (2.1). Implicit in thigation for the moment functions is
the order of stochastic dominance, which is fixed by the ngfidthesis. Given € Z, and|t, ],

we wish to test that, satisfies the moment inequalities (2.1). That is, the nydidtlyesis of main

interest takes the following form:

Hy: Ep, [g(X;t)] <0 Vteltt], (2.2)

H, : 3t € [t, t] such thatEp, [g (X;t)] > 0. (2.3)

The statistical model this paper considers is denotef.dyis the set of all potential continuous

distributions ofX that satisfies the following assumption.

Assumption 1. (i) P [sup,c, 59 (X;t) < 0] > 0; (ii) supp(P) € R%; (iii) {X;}_, is a random

sample fromP, and (iv) for somes > 0, sup Ep [|X5[X=DVDH] < yoofor K = A, B.
pepP

DefinePy = {P € P: Ep[g(X;t)] <0 Wt € [t 1]} .This paper characterizes submodelPpf
that serve as models of the null hypothesis for which theg@sed testing procedure has/mptot-
ically exact size and isasymptotically similar in the sense of Definition 1 of LSW. We repeat this

definition here for convenience.



Definition 1. Suppose thd is the model of the null hypothesis. (i) A test with a nominal level

« is said to have aasymptotically exact size if there exists a nonempty subg&tc 2 such that:

lim sup sup Epp, < «, and (2.4)
n—+oo Pe
limsup sup |Epyp, —al = 0. (2.5)
n—+oo PeQ)Y

(i) When a testp,, satisfies (2.5), we say that the tesasymptotically similar on'.

Remark 2.1. LSW allows for X4 and X ” to depend on unknown parameters that are finite or
infinite dimensional. This accommodation, albeit usefut@ntain applications, is not applicable
to the comparison of income distributions. Conditionaktktstic dominance orderings would be
the appropriate approach to accommodate the effect of ied®aron the comparison of income

distributions, which is beyond the scope of this paper.

Remark 2.2. An important consequence of Condition (ii) is that for eacke Z.,, the set of
moment functions{x — ¢ (x;t),¢ € [t,7]} is uniformly bounded. This property of the set of
moment functions along with the fact that it is suitably meable and Vapnik-Chervonenkis,

drives the uniform asymptotic results in the present work.

2.2 Test Statistic and Asymptotic Theory

LSW use a Cramér-von-Mises type test statistic in a bogigtating procedure fof,. In the

setting of this paper it is given by

T, = n/t max {Ep [g (X;1)] ,0}2 dt, (2.6)

whereP, = 1 377 §x, is the empirical measure based on the random saffl§;"_, , andE

denotes the expectation undey. The asymptotic null distribution df;, depends on the form of



the contact set
A(P)={tetq: Eplg(X;t)] =0}, (2.7)

for P € Py, and follows from the Donsker property of the class of momenictionsF with
respect taP, for eachs € Z, and[t, t]. Let Py = {P €Poy: fA(P) dt > 0} . Then the pointwise

asymptotic null distribution of, is given by

- d fA(P) max {v(t), 0}2 dt, if P& Py,

T, — (2.8)
0, if P € Py— Poo,
wherev(-) is a zero-mean Gaussian processtot] with a covariance kernel given by
C(tr, 12) = Covp (9 (Xs11) , g (Xs 1)) (2.9)

The limiting null distribution of’, exhibits a discontinuity in the underlying probabilithat
generates the data. The consequence of this large sam@eidirebf the test statistic is that it
invalidates the use of the canonical bootstrap for testigde.g. see Andrews, 2000). For this
reason, LSW propose a bootstrap testing procedure thatusegact set estimator. LSW propose
an estimator ofA (P,) based on the sample analogue estimator of the monfegts (X;-)] .

Specifically, they estimata () using
Ap={teltq:|Bp lg(X 0] <ra}, (2.10)

where{r,},., is a suitably chosen null sequence of positive (possiblyloar) numbers that
satisfies,/nr,, — +00 asn — +o0.

The LSW bootstrap test procedure follows these steps:

1. Using the data, compuf&, andP,.



2. Generate3 bootstrap samples each of size{X;,}"  fori =1,..., B, using resampling
with replacement from?,. That is, drawX7, randomly with replacement froniX;}!_,

according toP, fori =1,...,nandl=1,...,B.

3. For each bootstrap sample, compute the bootstrap téstistas follows:

/E (max {% i lg (X;it) — Ep [9(X;1)]] ,O}) dt, if [y dt=0,
/ (max{%i l9 (X5t) — Ep (9 (X;t)]] ,O}) dt, if [y dt>0,

i=1

(2.11)

whereA,, is defined in (2.10).
4. Compute the approximate bootstrap p-value= = > 1 [ [, > Tn} .
5. RejectH, if T < a, wherea € (0,1/2) is a given nominal level.

LSW pay attention to the control of asymptotic rejectionigabilities uniform inP € P. For this
reason, they introduce a regularity condition on the asptigppGaussian process which is given

by Definition 2 of their paper. In the context of the presentkythis condition is the following.

Definition 2. A Gaussian processis regular on A C [t, t] if for any a € (0,1/2], there exists

€ > (0 depending only o such that
P [/ max {v(t),0}” dt < E} <l—-a (2.12)
A

and for anyc > 0,

< n} =0. (2.13)

/ max {v(t),0} dt — ¢
A

lim sup sup P {
nl0  PePy

See pages 190 and 191 of LSW for a discussion of this regutaoitdition.
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The test procedure this paper proposes follows the stepedf$W bootstrap test procedure,
but with A,, replaced by a different set estimator &f( 7)) when computing the bootstrap test
statistics in the third step above. The LSW contact set estinis based on the empirical mea-
sureP,. As the empirical measure is in fact the unrestricted emgtitikelihood estimator of,
this paper proposes to replace it with the constrained ecaplikelihood estimator of’, that im-
poses the moment inequality restrictions/f in estimation of the contact set. The next section

introduces this procedure.

3 Contact Set Estimation

This section introduces the proposed contact set estinaatbiits large-sample properties under
Hy. Let {Tym }, ., be a given sequence of subsets[iof] with |Tx(,)| = N(n) Vn that con-
verges tdt, ¢] in the Hausdorff metric as — +oo. The proposed contact set estimator replaces

Ep g(X;-)] with B [g (X -)] in the definition ofA,,, whereP, = S, j;0x, with the proba-

bilities p4, . . ., p,, defined as the solution of the following optimization prohle
max ZlogpZ subjectto p; >0i=1,...,n, Zpi =1, and
..... "= :
Zpl (Xi;t) <0Vt € Tagm:- (3.1)

The estimator?, is the approximate constrained empirical likelihood eation of 7, and we
denote the contact set estimator based on ikpyThe estimato, solves the above optimization
problem, but without imposing the constraints (3.1); then& £ [g (X; )] does not necessarily
satisfy the restrictions of the null hypothesis. By cortiréiem (3.1), the definition of?, implies
Ey [9(X;-)] approximately satisfies the constraints (2.1) but with fhgreximation disappearing
asymptotically.

Next, we characterize the set of probabilitiesFin under whichA,, is a uniformly consistent

11



estimator of the contact set. Noting that the moment funstior eachs € Z, are of the form
g(x;t) = h(z";t) — h(z; 1) (3.2)

whereh(-; t) is weakly monotonic in its first argument for a giver |, ], implies that they satisfy

the following property.

Property 1. The class of functiond = {x — g(x; ), t € [t,7] } satisfies the following property.

For eachx € R? eitherg (x;t) <0Vt € [t,t] org (x;t) > 0Vt € [t,1].

This property states that the sign of the moment functipissdetermined by the configuration in
its data dimension independentlytofror P € P, an important consequence of Property 1, which

we exploit, is that the covariance kernel (2.9) satisfies
C(t,t) = Eplg(X;t) g (X;t)] 20 V(t,) € A(P) x A(P). (3.3)

Definition 3. For eachlc;, c] € (0, 1] x (0, +00), let Py(c1, c2) be the collection of probabilities

in Py under which (i)P [supte[tﬂ g(X;t) <0] > ¢, and (ii)tt inAf(P) Eplg(X;t) g (X;t)] > co.
t e

Condition (i) of Definition 3 further restrict®, by excluding distributions that become arbitrar-
ily close to distributions that place zero probability oe #vent{sup,., 5 g (X;t) < 0} . It begets
the uniform asymptotic existence of the probabilifies . ., p,, and Lagrange multipliers that solve
Karush-Kuhn-Tucker conditions. Condition (ii) also réss P,; it excludes distributions whose
covariance kernel (3.3) is arbitrarily close to zero. Thosdition is useful for showing that the
norm of the Lagrange multipliers converges to zero in prdlighbuniformly over Py(c;, c2). For
brevity, we relegate the formal statements and proofs cfettiechnical intermediate results to
Appendix B.

We have the following result.
Theorem 1. For eachcy, cs] € (0,1] x (0, +00),
1. 1My 400 SUP pepy er0) P [Eﬁn l9(X;0)] < Ep [9(X;1)] Vt e [ﬁ,f]] =1.
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2. llmn_)_i_oo Suppepo(cth) P |:A (P) C An C An] = 1.
3. Ve > 0, My, 400 SUP pepy ey ,c0) P [An C {t €t t]: |Eplg(X;t)]| < (1+ e)rn}} =1.
Proof. See Appendix A.1. O

Remark 3.1. Since{(1 + ¢)r, },,, is a null sequence for eaeh> 0, the set
{telt?:|Eplg(Xit)]| < (L +e)ra},

is an(1 + €)r,-enlargement of the contact set that shrinks to the contcasthe sample size
tends to infinity. Therefore, Parts 2 and 3 of Theorem 1 imp#t the two contact set estimators
of A (Fy) are equal in the limit, with uniformity. These results ofgtiheorem drive the uniform

asymptotic equivalence of the testing procedures underuhgewhich the next section presents.

Remark 3.2. Part 2 of Theorem 1 implies the LSW bootstrap test statiséscribed in (2.11),
weakly dominates its modified counterpart stochasticaltii@first-order, conditional on the sam-
ple {X;}"_, , and under probabilitie® in Py(c1, c;) whenn is large enough. In consequence, the
proposed test is asymptotically less conservative thabh W test. The next section presents the

asymptotic properties of the proposed test.

Remark 3.3. The limit P [An C A’n} — 1 asn — +oo, doesnot hold under probabilitieg’ in

the boundary of,(cy, ¢,) outside of the least favorable cds&hat’s because

lim P[Ey [g(X;t)] < Ep [9(X;t)] Vtelt,?]] >0 and (3.4)

n—-+o0o

lim P[Ep [g(X,t)] <-r,) =1, where Eplg(X;t)] <0, (3.5)

n——+oo n

hold for such probabilities ifP(c1, ¢2). The limit (3.5) and the continuity of imply 3¢, € [¢, ]
such thatt, [g (X;t)] = —r, With probability approaching unity, as the sample sizeeases.

Using this result, the limit (3.4) impliesty, € A, ina neighborhood of, such that, ¢ A,, with

Note thatP is in the boundary oPy(ci, co) if 3t' € [t, 7] such thatEp [g (X;t')] < 0.

13



positive probability as the sample size increases. Fimadte that the large-sample property (3.4)

follows from Lemma C.1 and becauseém P [Pn + Pn} > 0 holds for such probabilities, where

n—-+o0o

P, # P, < sup Ep [¢(X,1)] > 0.

tETN(n)

4  Asymptotic Size and Power Properties

This section introduces the asymptotic size and power ptiegeof the proposed test. We also
characterize the set of probabilities undgyfor which the proposed test has asymptotically exact

size.

4.1 Asymptotic Size Properties

LSW impose regularity on r-enlargements of the contact sets
B(r)={tet?:|Eplg(X;t)]| <r},

to characterize the set of probabilities on which their btrap test has asymptotically exact size.
This is done by introducing a regularity condition on therapyotic Gaussian process in (2.8),
given by Definition 2. The set of probabilities under whick firoposed bootstrap test has asymp-

totically exact size is given by the following.
Definition 4. (i) For eache > 0 and|c;, cs] € (0,1] x (0, +00), let Py(e, ¢1, c2) be the collection

of probabilities inPy (¢, c2) under whichv in (2.8) is regular orB,, for eachn > 1, where

B B((1—-¢e)r,), Iif fB((l-i—E)rn) dt >0, and

[Ea ﬂv if fB((1+6)7-n) dt = 0;

(i) Given &, — 0, let Pyo(e, 1, c2,{&,}) be the collection of probabilities i, (¢, ¢1, o) under

14



which for eachn > 1/¢, v in (2.8) isregular on B (n='/2¢,)

/ dt >0 and dt < &,. (4.1)
B((1—€)rn) B((1+€)rn)—B(n=1/2¢,)

, B .

Let {Tgl} denote the bootstrap test statistics computed as aboveitbut\y replaced by
T )i=1

A, and letA, denote the Borel sigma-algebra generated by the randomlediXp} . , . Also,

letTp = 5 21|17, =2 T

Theorem 2. Given|c;, ¢s] € (0,1] x (0, +00) ande > 0, thenT; — T — 0 conditional on4,,

uniformly in Py (e, c1, ¢2).
Proof. See Appendix A.2. O

Theorem 2 is an immediate consequence of Theorem 1. It ettablthe asymptotic equiva-
lence of the bootstrap test statistitg and Y B, uniformly overPy (e, 1, c2). Since for eacl > 0
and|cy, co] € (0,1] x (0, +00) the LSW test hassymptotically exact size, in the sense of Def-
inition 1, uniformly over a superset & (e, ¢1, c2), it also has this property ovePy(e, ¢, ¢2).
Consequently, Theorem 2 implies that the proposed testitallee uniform asymptotic properties
of the LSW test for probabilities if? (¢, c¢1, c2). By applying Theorem 2 of LSW in the setup of

our paper, these properties are

1. for eache > 0 and|c, ¢2] € (0, 1] x (0, +00),

limsup sup P [Too < cw} <a, and (4.2)

n—+00 PePy(e,c1,c2)

2. for each decreasing sequegge— 0,¢ > 0 and|cy, ¢o] € (0, 1] x (0, +00),

lim sup sup ’P [TOO < oz} — a’ =0. (4.3)
b

n—+00 PePoo(e€,c1,c2,{én

Therefore, Theorem 2 implies that the above statements2) &hd (4.3) hold withl .., replaced
by Tw.

15



4.2 Asymptotic Power Properties

This section introduces the power properties of the praposedification of the LSW bootstrap

test. The first result concerns consistency of the test.

Theorem 3. Suppose that we are under a fixed alternakive P — P, such that
i
/ max { Ep [g (X: £)],0)% dt > 0. (4.4)
t

Then,lim,,_, .. P [YB < a} ~ 1.
Proof. See Appendix A.3. O

Therefore, the proposed test is consistent against alhaliges. This property is also shared by the
LSW test. Recall thaP € P—P, also satisfie®” [sup,c;, 3 g (X;t) < 0] > 0 by Assumption 1. In
fact, the LSW test is also consistent Wh@l’ﬁsupte[m g (X;t) < 0] = 0holds under the alternative
hypothesis. UndeP [suptem g(X;t) < 0] = 0, the asymptotic existence and uniqueness of the
probabilitiesy,, . . ., p, IS no longer guaranteed. In consequence, the proposecdtsatastimator
A,, does not exist with positive probability in large sampleesizinder the alternative hypothesis.
As already mentioned, we defer a detailed discussion ottmslition to Section 5.

The next result develops sufficient conditionsire P — P, that imply the superiority of one
testing procedure over the other in terms of asymptotic powest, we introduce the following
notation: Ac = [t.7] — A,, Ac = [t,7] — A, and the bootstrap empirical proce8s(-) =
ﬁ > i [9 (X;l; ) — Ep, l9 (X )H .

Theorem 4. Suppose that the conditions of Theorem 3 hold. The followgtagements hold.

1. IfP

sup max {G,(t),0}> dt < inf max{G,(t),0}" dt | An] REAN

teAnnAc AnnAg teAnnAg AnnAc

1, then for large enough, P [TB < a] > P [TB < a] .

2. IfP

teA,nAg AnnAg teAnnAg AnnAg

inf  max {G,(t),0}" dt > sup max{G,(t),0}> ) dt | An] RN
1, then for large enough, P [YB < a] > P [TB < a] .

16



Proof. See Appendix A.4. O

A remarkable consequence of Theorem 4 is that these testieggures cannot be ranked accord-
ing to large-sample power over all fixed alternatives. Tiseite of Theorem 4 follow immediately
from the conditions in Theorem 4.

Next, we focus on the asymptotic local power property of gst.tFollowing LSW, we consider

a sequence of probabilitigs’, }, ., C P — P, such that

Ep, [9(X;t)] = H(t) +4(t)/v/n and (4.5)
op,(t) = Ep, [¢° (X;t)] — (Ep, [9 (X;1)])*, (4.6)

where the functiong/ (¢) ando(¢) satisfy the following conditions.

Assumption 2. (i) [, dt > 0, whereC' = {t € [t,7] : H(t) = 0} . (ii) sup,c;, 7 H(t) < 0. (iii)
Jomax {4(t), 0}* dt > 0. (iv) inf oy (t) > 0. (V) P, [supte[m g (X;t) < 0] > 0 for eachn.

te(t,t],neN

Except for parts (iv) and (v), Assumption 2 is identical tosAmption 5 of LSW. Therefore, the
sequencég P}, represents local alternatives that converge to the boyrutants?,, at they/n
rate in the directiord(¢). Part (iv) ensures the valid use of the Weak Law of Large Nusbed
the Central Limit Theorem for triangular arrays of row-wide random variables. Part (v) implies
the asymptotic existence and uniquenesg,ofand that it is characterizable in terms of Lagrange
multipliers using Karush-Kuhn-Tucker conditions.

The bootstrap test procedure this paper proposes has difoitalg power function that is at

least as large as its LSW counterpatrt.

Theorem 5. Under the local alternative{sPn}n21 C P—"P, satisfying the conditionsin (4.5), (4.6),
and Assumption 2,

lim P, [Too < a] > lim P, ['foo < cz} .

n—-+o00 n—-+00

Proof. See Appendix A.5. O
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A remarkable point concerning the result of Theorem 5 is ithawlds for all of the Pitman local
alternative directions. Thus, this asymptotic criterioscdminates between the tests. The reason
is that asymptotically the ever{(;* cA, C An} occurs with probability approaching unity under
the sequence of local alternatives; see Lemma C.4. On thigt& < 7* holds conditional on

the data. Thus, when some moment inequality is satisfiedruhdalternative and is sufficiently
far from being an equality, then the proposed proceduredeiiéct this configuration more easily
than the LSW procedure, and therefore, take it into accoyielivering a bootstrap p-value that

is suitable for the case where this moment inequality is @it On the other hand, when the
local alternatives converge to a probability in the leasbfable case i.e. whe@' = [t,{], the
event{(] c A, C An} implies that{An = An} occurs; In consequence, the tests have the same

asymptotic local power function.

Remark 4.1. For local alternatives that satisfy the conditions of Tle®oi5, the asymptotic prop-
erty P, [An - An] — 1 asn — +o0, doesnot hold in general. For example, suppose thas a
proper subset dt, t]. Then3t’ € [t, ¢] such that (¢) < 0, which implies thaBN € Z, for which

Ep, [g(X;t)] <0 V¥n > N.Inconsequence,

Jim P, [Ep [9(Xs5t)] < Ep [9(X;t)] Ve e [t,4]] >0 and (4.7)
ngrfoo P, [Eﬁn g (Xat/)] < _Tn} =1, (4.8)

where the limit (4.7) follows from Part 4 of Lemma C.3 and bmngrfoo P, [Pn £ Pn} >0

holds for such probabilities. The limit (4.8) and the counity of { P, } imply 3¢, € [¢, ] such that
Ep lg(X;t)] = —r, with probability approaching unity under the local altdives. Using this
result, the limit (4.7) impliesity, € A, ina neighborhood of, such that,, ¢ A,, with positive

probability as the sample size increases.
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5 Further Discussion

This section discusses the differences between the LSWatekthe one this paper proposes.
Section 5.1 discusses the relationship between the tesmt@hpeter spaces. Section 5.2 discusses
the relationship between the sets of probabilities on wihiehtests have asymptotically correct
size, and asymptotic similarity on the boundary of the nyfidthesis. Another difference between
the tests is a procedural one. The test this paper propoewsahe LSW bootstrap testing
procedure, but replaces their contact set estimator wigtloait employs a constrained estimator of
the moments in (2.1). For a given sample size, this congtda@stimator approximately imposes
the restrictions of the null hypothesis (2.1) by imposingrthon a grid7y(,) as in (3.1), with
the approximation disappearing asymptotically beca{ﬂsgn) }n>1 converges tdt, ¢]. Section 5.3
presents some intuition behind the choice of the sequengEids‘{TN(n)}n>1 under the null and
alternative hypotheses. Finally, Section 5.4 presentsdifioation of the constraints (3.1) that can
increase the numerical accuracy of the solution in the caim&td empirical likelihood optimization

problem.

5.1 The Parameter Spacé®

Recall that we denote the parameter space this paper empyofs which is the set of all the
potential continuous distributions & that satisfy the conditions of Assumption 1. In the con-
text of the present work, the parameter space LSW employeiséh of all potential continuous
distributions ofX that satisfy Conditions (iii) and (iv) of Assumption 1. Tlké&rre,P is a subset
of the parameter space that LSW employ. As incomes are ngatime, imposing Condition (ii)
of Assumption 1 in the definition of the parameter space, Iy oatural. It is Condition (i) of
this assumption that begets the results of the present v8pé&cifically, Condition (i) is that it is
sufficient for the asymptotic existence and uniquenesseottimstrained empirical likelihood esti-
mator P, and the asymptotic existence of the Lagrange multiplieasgblve Karush-Kuhn-Tucker

conditions; See Appendix B for the technical details undemtull hypothesis.

19



Recall that Condition (i) of Assumption 1 iB [sup,c;,5 9 (X;t) < 0] > 0. Given |z, ] and

s € Zy, the event{sup,., 5 g (X; 1) < 0} is given by

{X4<t,XP>1}, if s=1, and
sup g (X;t) <0p =

tet,t]

{(XA<t, XB>Tu{Xxt<t, X< XB<t}, ifs>2

(5.1)

As this paper and LSW focus on continuous distributionshéxdase = 1, Condition (i) excludes

probabilities from the LSW parameter space that satisfy
PIX*<t,XP>1=0. (5.2)

Condition (5.2) does not hold for probabilities such thagigi) = R? becausét, t] is a proper
subset ofR, . For this reason, the parameter sp@&ecludes probabilities such that sugp =

IR? . However, condition (5.2) holds for compactly supportedatailities that satisfy
t <inf {supp(P4)} and t > sup{supp(Ps)}. (5.3)

Therefore,P excludes such probabilities. Similarly, in the case> 2, Condition (i) does not
exclude probabilities supported d@t.. Furthermore, it does not exclude compactly supported
probabilities that satisfy (5.3), provided that they alatisfy P [ X4 < ¢, X* < XZ <] > 0.

A natural question to raise at this point is whether it is flego extend the results in the text to
the case where the parameter spRdacludes probabilities such that [sup,c, 7 g (X;t) < 0] =
0. The answer is yes, provided that the feasible set in the @net empirical likelihood problem

i.e. the random set

{pi,’i: L..on:pi>0Vi, Y pi=1,and ) pyg(Xit) <0Vt e [g,z]}, (5.4)
=1 =1
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is asymptotically non-empty with probability tending toityrunder P. For this asymptotic condi-

tion to hold, P must also satisfy the stronger support condition
Plg(X;t)=0 Vtelti]] =1 (5.5)
The reason is tha® [sup,, 7 ¢ (X;t) < 0] = 0 implies

P |sup g(X;t) >0

te(t, 1]

=1 <<= Pg(X;t)>0 Vte[ti]] =1, (5.6)

where the equivalence follows from Property 1 of the momantfions. These probabilities are
degenerate in the sense that they place unit mass on theureioh in the set of realizations

{t = g(x,t),x € supP)}.

5.2 Asymptotically Correct Size and Asymptotic Similarity

The sets of probabilities on which the proposed test has piotivally correct size are defined in
Part (i) of Definition 4. And the sets of probabilities on whithe proposed test is asymptotically
similar on the boundary of the null hypothesis are definecan @) of Definition 4. These sets are
subsets of their LSW counterparts because two conditionagdition to the ones LSW impose,
define them. For eacla,, c2] € (0, 1] x (0, +00), these conditions define the set of probabilities

Po(c1, c2), which is given by Definition 3.

5.3 Choice of The Grid Sequence Ty }, -,

The test procedure this paper proposes introduces a finegtpairameter. This parameter is the
sequence of grid§ 7w, |, ., , which converges to the intervl 7] in the Hausdorff metric. The
results in the previous sections do not depend on any spekdice of this parameter or on its rate
of convergence. All that is required for the results to htslcﬂﬁat{TN(n)}n21 converges tdt, ],

which is because these results are asymptotic. Howevesthtiiee of{T N(n) }n>1 can significantly

21



impact the finite-sample performance of the test this papapgses. Thus, the question of the
optimal choice of{7‘]\,(n)}n>1 IS an important one, but it is beyond the scope of the preserk.w
Instead, we present some intuition behind its choice fraap#rspectives of the null and alternative
hypothesis, which illustrates a trade-off between tes aimd power. We also provide simulation-
based evidence of this trade-off in Section 6. Finally, venitfy one possible avenue for optimally
selecting{ 7w }, ., based on this trade-off.

Under Hy, and a large enough sample size, part 1 of Theorem 1 establishethe estimator
{Ep lg(X;1)],t €[t 7]} is biased downwards, uniformly ové®y(c;,c;). Generally, decreas-
ing the Hausdorff distance betweént] and 7y, weakly exacerbates this bias, uniformly in
Po(c1, c2). In consequence, the contact set estimét,g)based on afine grid is a subset of its coun-
terpart that uses a coarser grid, uniformly/n(c;, co). Thus, an increase in the test’s rejection
probability can be achieved under the null by using a verydine, which can improve its finite-
sample type 1 error rate under probability configuratiortside of the least favorable case, whose
contact sets have small (but positive) Lebesgue measuctioé illustrates this behavior of the
test using a Monte Carlo experiment.

By contrast, in the directions undéf, such thatinf,., 7 Ep [g (X;t)] > 0, the asymptotic
power of the test decreases as the Hausdorff distance beftvéeand 7y ,,) shrinks to zero. We
briefly explain why this is the case. Because this class efttivns under the alternative satisfies

lim P[Ep [g(X;t)] >r, Vte[ti]] =1, (5.7)

n—+o0 n

the LSW contact set estimatdy;, is asymptotically equal to the empty set, which implies that

bootstrap test statistics (2.11) in the LSW testing proceduoe asymptotically equal to

/tt <max {% Z [9 (X5it) — Ep, [g(X50)] o}) dt. (5.8)

Hence, the bootstrap test statistic (5.8) stochasticaliyidates the one this paper proposes at

the first-order conditional ont,,, because\,, C [t, ] holds with probability approaching unity
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asn tends to infinity. Furthermore, the limit (5.7) implies that, equals[t, t] in the limit as
the Hausdorff distance betweé@nt| and 7y, tends to zero. Thus, the asymptotic power of the
proposed test must decrease as this Hausdorff distancettendro, because the two test statistics
are equal in the limit.

Thus, taking into account the above arguments, one posafipeoach to optimally select
{TN(n)}nzl can be to optimize a loss function that is a weighted averagesbsize and power.
The use of this sort of loss function in hypothesis testimgpisnew. For example, Sun et al. (2008),
develop the theory for optimal bandwidth selection in a Gauslocation model that has a non-
parametric autocorrelation structure. Mirroring theipeagach in the context of the present paper
is very difficult, because it requires asymptotic expansiohthe rejection probability under the
null and local alternatives in terms of the grid, where tingtiidistributions of the test statistic are

non-standard. For this reason, we leave it as a subjecttiorefuesearch.

5.4 Constraints in the Empirical Likelihood Estimation Problem

For P € P, the solution of the constrained empirical likelihood esttimn procedure, introduced

in Section 3, satisfies the following property
Ep, l9(Xst)] < Ep [g(X51)] Vit € [t1], (5.9)

for large enough with probability tending to unity. Therefore, the inequiak (5.9) can be used
to increase the numerical accuracy and speed of the cametrampirical likelihood estimation

procedure by replacing the constraints (3.1) with the foilha:

> pig(Xit) <0 Vte Ty N{t €t : Ep [g(X;t)] >0} and (5.10)

=1

zn:pig (Xist) < Ep [g(Xs5t)] Vi€ TymN{telt,?]: Ep [g(X;5t)] <0}, (5.11)

=1

23



This replacement shrinks the domain of the probabilities.. . , p,, over which the optimization

routine searches for the solutign . . ., p,.

6 Monte Carlo Experiments

This section reports the results of Monte Carlo experim#rascompares the performance of the
LSW test with the one this paper proposes. The experimeatapss the same as the one in
Section 5 of LSW who focus on testing for first-order stocitagbminance. They construct data
generating-processes using continuous uniform randorablas on the unit interval. Because the
first-order stochastic dominance ordering is invariantaunmbsitive monotonic transformations of
the income variable, it is without loss of generality that wge their setup to study the behavior
of the tests for income distributions. We find the test thisgaroposes is noticeably less conser-
vative for probabilities in the boundary of the null hypatieoutside of the least favourable case,
and has higher power against directions in the alternafideminance and non-dominance.

In each simulation experiment, the nominal level was fixe8%t r,,(t) = &, 10%, where
62 = Ep [g(X;t))* — (Ep, g (X;t)])2 andt e [t,7]. This choice for the sequende,,},-, is
known as the BIC choice. An alternative choice, which LSW, us¢he one based on the Law
of the Iterated Logarithm; it sets, = an~'/?loglog n, which is a constant function afc [, 1],
wherea is a given constant. Presently, there isn’t a theoreti@dar to prefer one choice over the
other. Instead, the moment inequality inference liteehas relied on simulation-based evidence
in proposing a choice for,,. Andrews and Soares (2010) suggest the BIC choicefoand
we follow their lead. Unlike the Law of the Iterated Loganttchoice, the BIC choice does not
depend on any additional fine-tuning parameters, which smakaore practical for practitioners.
Furthermore, the BIC choice setsas a function of € [¢, {] throughd;.

We sett = 0.05 and? = 0.95, and constructed the grid as follows:

_ t—t
Tvm ={t=1t <ty <+ <iyw =1}, wheret;;; =t; + u (6.1)

vV’
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fori=1,...,N(n) — 1, whereN(n) = |y/n| + 1 andy € {0.25,1, 2} . Finally, the number of
Monte Carlo replications was set to be 10000 in each sinmrakperiment, and the number of

bootstrap replications was 199.

6.1 Simulation Under H,

We compare the type | error rate properties of the our testL.&W test. LSW use the following
generating process under the null. LgtandU, beU (0, 1) random variables. Then defide” =
Uy andX4 = ¢y H(Us—ag)1 [0 < Uy < 0] +Us1 [1g < Us < 1], wherecy = (29 —ag) /o € (0,1)
andz, € (0,1). In this setup, the inequalities (2.1) hold for each Z, , and we examine the case
s = 1. The cumulative distribution function (CDF) of“ has a “kink" atX“ = z, and the
slope of the CDF changes frog to 1 at the kink pointry. See Figure 2 in LSW for a graphical
representation of these CDFs.

In the simulations, we took, € {0,0.1,0.2,...,0.9} andcy € {0.2,0.4,0.6,0.8} . The sample
sizes we considered are= 500, 1000. The caser, = 0 corresponds to the least favorable case
as the CDFs ofX 4 and X ? are equal to the CDF df,. For a givenc, > 0, the contact set gets
smaller asr, increases; therefore, the data-generating process (D@®svaway from the least
favorable case toward the interior of the null. For each eE&hDGPs, the two CDFs coincide on
a set of positive Lebesgue measure. Therefore, Theorem 3\Wf é&stablishes that their bootstrap
test has an asymptotic size exactly equal to the nominal lenager these DGPs. And Theorem 2
of this paper implies that the same result holds for the testtaper proposes.

The results are reported in Figure 1, which present the eétapirejection frequencies along
with their pointwise 95% confidence intervals. For each eair, we considered, the discrepancy
between the performances of our method and the LSW test ismnoh forz, close to zero i.e.
the least favorable case. However,zgsincreases i.e. the contact set get smaller, the rejection
probabilities under our test are statistically closer ® 38 nominal level than the ones based on
the LSW test. These results suggest the bias of the LSW témtger than the one this paper

proposes. Furthermore, the simulations suggest that firds gan attenuate the bias of the test

25



— LW
-
— =05
e

— Nominal Level

cozo.z andn=500

0.06

004F

002

006

00 02 03 04 05 06 01 08 09

cO=0‘6andn:500

006

cO:OBandn:500

006

0.06

c0:0.2 andn=1000

004F

002p

0 02 03 04 05 06 07 08 09

6 04andn=1000

006

0 02 03 04 05 06 0T 08 09

e 06andn=1000

0.06

004r

002

002 03 04 05 06 07 08 09

6 08andn=1000

NR
V0

004r

002p

002 03 04 05 06 07 08 09

Figure 1: The empirical rejection probabilities under thd.n
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this paper proposes on DGPs in the boundary of the null hgsattihat are outside of the least

favorable case.

6.2 Simulation Under H; : Directions of Dominance

Let us now focus on the power properties of the two methodsagdirections of dominance
under the alternative hypothesis. We consider DGPs as itioBe8.1 except that now# and

X B have exchanged roles in the numerical experiment; that{s= U; and X? = cgl(Ug —
ap)1[0 < Uy < x] + Usl [xg < Uy < 1]. This construction yields DGPs in the alternative where
X4 dominatesX? at the first-order over the rande .05, 0.95]. Furthermore, we considered the
same values faf, as in the previous section, and the valuesifpe {0,0.05,0.1,0.15,0.2,0.25} .

For a given value of;, the DGP moves closer to the null modekgsncreases. Therefore, we can
expect that it will be harder for the tests to detect alteveatwhere is large and, is small, when
the sample size isn’t large. Additionally, we can expecttdsts to more easily detect alternatives
wherec, is small andz, large.

The simulation results are reported in Figure 2, which prettee empirical rejection frequen-
cies along with their pointwise 95% confidence intervals.ef@il, these results indicate that the
performance of the proposed test is no worse than that of 8W test. For each sample size,
co, andxy such thatry < 0.15 andz, > 0.2, the tests behave similarly. However, For values
of o € {0.15,0.2}, the proposed test statistically has strictly larger eroplrpower than that
of the LSW test, and this difference in empirical power casodle quite large. For example, at
xo = 0.15, ¢g = 0.8, andn = 1000 there is a difference of approximately 55% in empirical ppwe
for all of the selected values of

At n = 500, the results indicate that the proposed test’s performansensitive to the choice
of v. For example, at, = 0.4, the simulation results indicate that the test with- 2 outperforms
the rest of the tests, and @t = 0.6, the proposed test with = 1 is the best. Furthermore, these
differences in empirical power can be quite largexat= 0.15, the test with the highest power is

statistically more powerful than the next best test by apipnately 40%. However, this sensitivity
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vanishes whem = 1000. These results suggest that the choice of the @kid, is important in

moderate sample sizes.

6.3 Simulation Under H; : Directions of Non-Dominance

Let us now focus on the power properties of the two methodsmagdirections of non-dominance.
Directions of non-dominance in the alternative hypothésie stochastic dominance conditions
with some positive elements and some elements that areiveeg@bnsider the following config-

uration of DGPs from LSW. SeX“ ~ U0, 1]. Then define

XB = (U — a0b1> 1 [Clobl < U < l’o] + (U + Clobg) 1 [33'0 <U < 1-— aobz] (62)

for ag € (0,1), whereU ~ UJ0, 1]. As ao becomes closer to zero, the distribution’®6f becomes
closer to the uniform distribution. The scalg plays the role of the "distance?, is from H,.
Whenq, is large, P, is farther fromH,, and wherz, = 0, X4 and X ” have the same distribution
which meand’, belongs to the model of the null hypothesis under the leastdéle configuration.
For a graphical depiction of the CDFs &f* and X ?, see Figure 4 in LSW. We séb,, by, 7)) =
(0.1,0.5,0.15) andag € {0,0.05,0.1,0.15,0.2,...,0.75} . The configurations for which, # 0
correspond to alternative DGPs for which there are somevimated inequalities for the case of
s = 1 in the moments (2.1). We considered the following samplessiz= 256, 512, 1024, 2048,
and setX and the uniform random variable in the definitionJ6f to be negatively correlated,
with a correlation coefficient of -0.5.

The simulation results are reported in Figures 3, whichgeshe empirical rejection fre-
guencies along with their pointwise 95% confidence intexvdélor each sample size and fgy
sufficiently large, there is no difference between the tvatstewhich is expected since both tests
are consistent. For moderate valuegg@four test has statistically higher power than the LSW test,
and the power differences can be large. kot 2048, our test dominates the LSW test, and quite

significantly whem, = 0.1 with a difference of approximately 34%. These simulaticsufts
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Figure 3: The empirical rejection probabilities under theraative: directions of non-dominance.

suggest that the proposed test can better detect DGPsthmat are "close" td,, when the sample
size is large enough. However, a theoretical result is reduior a more concrete conclusion.

Overall, the simulation results show that our method per®better than the LSW test.

7 Empirical Illustration

This section illustrates the LSW and proposed bootstrapoastof testing for restricted stochastic
dominance by comparing weekly grocery expenditures usatg fom the Household, Income
and Labour Dynamics in Australia (HILDA) panel survey data the periods 2001 and 2006.
As an important and substantial change in consumption iseneént, the empirical illustration

uses the sample construction in Barrett and BrzozowskiZg®ho propose an explanation to the
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retirement-consumption puzZle

The empirical analysis is performed using the set of houslshat risk’ of retirement during the
observation period By restricting the analysis to this group of households obtains a clearer
picture of changes in consumption poverty at the time ofegtent. The data consistsof= 1351
pairs on household grocery expenditures. We focus on ctsdrfirst-order stochastic dominance.
The comparison of the distributions using this orderinggsiealent to their comparison in terms
of the poverty ordering”, defined in Foster and Shorrocks (1988), where the range @frpolnes
is the intervallt, 7]. Figure 4 graphs the differendgo (-) — Fios(-) On the interval$10, $50],
where Fhyy, and Fyys are the empirical distribution functions. The inter{&l0, $50] seems to
be reasonable enough to encompass most of the plausibldgylres for weekly expenditure on
groceries in Australia. This graph indicates that thereois-dominance in the sample.

The empirical analysis considers tests for a set of nestikthypotheses, parametrized byof
the form distributionB stochastically dominates distributiehat the first-order ovdt, $50], where
t € [$10, $45]. As ¢ decreases, the hypothesis becomes progressively moreained, which is
consequently easier to reject. This analysis allows us topcte the set of poverty lines up to
which we may confidently assert that consumption povertystribution B is unambiguously not
lower than in distributiond. When non-dominance holds in the sample, this set of povergg |
would be an interval, $50] for which the hypothesis can be rejected at leveihich is a quantity
that is useful to know in practice. Sin¢ds estimated from the sample, it is a random quantity,
whose definition is analogous to that for an upper limit offaence interval for some parameter.
Hence, the closer it is to $10, the more powerful is the regaodf (restricted) dominance. The
fine-tuning parameters,, and7,,, were set as in the simulation experiments of Section 6 with

v €40.5,1,1.5,...,4}, and the number of bootstraps was seBte- 999.

4Specifically, the puzzle is the inconsistency in the préalict of the standard life-cycle model of income and
savings if retirement is an anticipated event i.e. consion@moothing, and the substantial body of research based
on data in many countries and time periods that demonstigriidisant decreases in household expenditure on non-
durables at retirement.

SThese are households whose reference person is aged 4®yektsr.
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The right panel in Figure 5 reports bootstrap p-values frioartésts whose null hypotheses det
and B as the 2001 and 2006 expenditure distributions, respégtixad the left panel reports the
bootstrap p-values from the tests with the roles of the 20@12806 distributions being reversed.
Overall, the graphs indicate that the bootstrap p-valums the proposed test are not sensitive to
the different values of under consideration. In the case of the left panel, it's beedhe bootstrap
p-values coincide for each value bf Whereas, in the right panel, they all coincide except for
the graphs indexed by = 2,2.5 which exhibit slight deviations over the intervi@2.5, $24].
Furthermore, the bootstrap p-values obtained from usiegtbposed test are not larger than their
LSW counterparts, for all values éfunder consideration.

First, we discuss the tests where distributioh&nd B are the 2006 and 2001 expenditure
distributions, respectively. At level 10%, the proposed &$W procedures generate identical
values oft equal to $10. In consequence, both tests indicate that oustgan poverty in 2001
is not unambiguously lower than in 2006 for the poverty liffel), $50]. At the 5% level, the
LSW and proposed tests generate valuesexjual to $35 and $10, respectively. Thus, using the
proposed test extends by $15 the range of poverty lines okietwwe can declare consumption
poverty in 2001 is not unambiguously lower than in 2006. Fnat the 1% level, both tests
generate the same valuetoéqual to $35, which implies that the same conclusion holds s
case with level 10%, but with range of poverty lines beip, $50].

Next, we discuss the tests where distributiohsand B are the 2001 and 2006 expenditure
distributions, respectively. At level 10%, the LSW and msed tests generate valuest@qual
to $26.5 and $10, respectively. In consequence, the prdgese extends by $16.5 the range of
poverty lines over which we can declare consumption poverp06 is not unambiguously lower
than in 2001. At level 5%, the LSW and proposed test genesdtes off equal to $28.5 and $32.
Thus, a similar conclusion identical to that in the case v&ld 0% holds, except that the range
of the poverty lines has now been extended by $3.5. At the 1#4,lthe tests generate the same
value oft equal to $38.5. Therefore, both tests indicate that conSompoverty in 2006 is not

unambiguously lower than in 2001 for the poverty lin®38.5, $50].
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The above findings indicate that the generated valueésfroin the proposed tests, at all con-
ventional nominal levels, are not larger than their LSW detparts. This finding implies that the
range of poverty lines over the null hypothesis can be regebly the LSW test is a subset of its
counterpart from using the proposed test. Therefore, thpgsed test is more powerful than the

LSW test, which is anticipated from our theoretical resulia@cal power (i.e. Theorem 5).

8 Conclusion

This paper proposes a new method of testing for restrictezhastic dominance which is based on
the test of LSW. The proposed testing procedure replacesothiact set estimator LSW use with
the one based on the method of empirical likelihood. Thiswebf estimation for the contact set
incorporates the statistical information from imposing thstrictions of the null hypothesis in the
estimation of the contact set and alters the finite-samgkeiblution of the bootstrap test statistics
in a data-dependent way. The proposed test is asymptgtieall conservative than the LSW test
on the boundary of the null outside of the least favorabldigarmation. Under the alternative, the
proposed test is consistent, and its asymptotic local péuwvetion is at least as large as its LSW
counterpart. These properties of the proposed test corne akpense of working with a parameter
space that is slightly more restrictive than the one LSWagtjlwhich is required for justifying the
existence of the proposed contact set estimator. In cosgatd the LSW test, the simulation
study demonstrates that our test is noticeably less coabez\on the boundary of the null outside
of the least favorable configuration, and has overall impdogower. These benefits, however,
arise at the expense of introducing a fine tuning parametavse selection can be important in
moderate sample sizes. Finally, the LSW and proposed tests Mustrated in the context of

consumption poverty in Australia using the HILDA datasettfee years 2001 and 2006.
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A Proofs of Results

A.1 Theorem 1

Proof. Part 1. The proof proceeds by the direct method. Lemma B.4 imphas thep, can be

characterized in terms of Lagrange multipliers as in (B.Without loss of generality, let
A(B,) = {t1,ta, ... 1o, } . (A.1)

Therefore, the probabilities (B.17) can be expressed as

-1
, 1 N
j=1
Therefore,
Ep [g(Xit)] = Ep [9(X0)] == 5 > fwg(Xit) g (Xit), (A.3)
=1 yeA(P)

wheref, > 0Vt € A(Pn). Finally, givent’, Property 1 implies the desired result because
g(6t)g(xt) =0 V(t,x) € [t x X. (A.4)

This concludes the proof.

Part 2. First, we prove the probability of the eve{lﬁn - An} (in A,,) converges to unity in
probability uniformly overPy(cy, ¢2), as the sample size tends to infinity. The proof follows the
direct method and makes use of the result in part 1 of thehlisrem.

Lett € A,, then{—r, < E; [9(X,t)]} occurs. Consequently, part 1 of the theorem implies
the probability of the even{—rn < Ep [g(X, t)]} , converges to unity in probability, uniformly
over Py(cy, c2), as the sample size tends to infinity. Now we show the prolighifi the event

{r. > Ep [9(X,t)]}, for eacht € A,, tends to unity with uniformity.



Noting that fort € A,,,

Ep l9(X,0)] = Ep, [g(X,1)] = Ep, [9(X,0)] + Ep, [9(X,1)] (A.5)
< Ep, lg(X,0)] = Ep, [g(X, )] + 14 (A.6)
= Op(n™Y?)+r, uniformly over Py(cy,cs), (A7)

where (A.7) follows by Proposition B.1. Next we show that finebability of the event
Ep, lg (X,)] € [, Op(n™72) +1,)

is uniformly asymptotically negligible.
Consider the following probability> [E [g (X, t)] € [rn, Op(n~"/?) + )], which is equal

to

P [Vn(Ep, [g(X,t)] = Ep g (X,t)]) +VnEp[g(X,t)] € [V, Op(1) + Var,)] . (A8)

Fort € A(P), this probability is equal toP [\/nEp [9(X,t)] € [y/nr,, Op(1) + y/nry,)] , and
the Uniform Central Limit Theorem establishes that ', [g (X, ?)] = O,(1), uniformly over

Po(cq, c2). Because,/nr, — +oo, it follows that

sup P [VnEp [9(X,t)] € [Vnr,, Op(1) + /nry,)| — 0. (A.9)

PePo(ci,c2)

Therefore, ift € A(P), thensuppep, e, ) P [Ep, 19 (X, 1)] < 10] — 1.
Now we focus on the last case undéy, which is whent ¢ A(P). In this caseFp [g (X, 1)] <

0 and we have that

VnEp lg(X,t)] = vn (Ep, [g(X,1)] — Ep[g(X,1)]) + vVnEp [g (X, 1)) (A.10)

Op(1) + v/nEp[g(X,t)] uniformly over Py(cy, co). (A.11)



Sincey/nEp [g (X, )] diverges to-oo, /nEp [g(X, )] also diverges te-oo, but uniformly over
Po(c1, o). Combining this result with the fact thgtnr, — 400, implies that the probability (A.8)

tends to zero with uniformity. Thereforeip pep,( P[Ep [9(X,t)] <r,] — 1, which con-

c1,¢2)

cludes the proof of this part of the theorem.
Now we turn our focus to the ever{tA (P) C An} . Lett € A (P) and consider the event

{~r < Bp loX.t) < p = {-ru < By Lo (X0 = B 9RO+ Ep [9(X,0)] <} (A12)

n n

{frn <Op(n ) + By [g(X,1)] < rn} (A.13)

{=Vir, < 0p(1) + Bp + VaBy, [9(X,0)] < var}, (A.14)

uniformly overP(cy, c;) by Proposition B.1. As € A (P), we have that/nE; [g(X,t)] =
Op(1) uniformly overPy(cy, ¢2), by the Uniform Central Limit Theorem. Therefore, the evéni@)

is equal to

{—v/nr, <0p(1) < Vnr,}, (A.15)

whose probability tends to unity uniformly ov®(c;, ¢,), because/nr,, — +oo. This concludes
part 2.
Part 3. The proof follows identical steps to those in the second gfathe proof of Claim 1, in

LSW on page 200. 0J

A.2 Theorem 2

Proof. The proof proceeds by the direct method. As the test statssthe same, it is sufficient to

show that the proposed and LSW bootstrap test statisticsgraptotically equal with uniformity.

T () = <ma><{

Let

n

> l9(Xist) — Ep [9(X50)]] ,0}> : (A.16)

=1

Bl



then consider the following,

(

Jomoa, a (&) dt i [ dt>0, [y dt=0

Ty —Th| = (A.17)
Ja oa, vn@)ydt if [ dt>0, [z dt>0
wherec denotes the symmetric difference operator on sets. We have
(
(Suprer i (1) Sy, dt if [5, dt>0,[5 dt=0
. ) supyern Yu (1) [ua_a dt if [x dt =0, [z dt>0
o, oy < { O O s, & & (A.18)

(SUPte[;,{] Y (t)) fAneAn dt if fA’n dt >0, fAn dt >0,

\

To prove the result we need to prove tr(alnptew v; (t)) is Op(1) conditional onA,, uni-
formly in Py(e, ¢1,¢2). and then apply Theorem 1 to the integrals in (A.18). Sincestteof
moment functions

F = {XHQ(Xat>7t S [Lﬂ}

is uniform Donsker with respect tBy(¢, c1, c2), Lemma A.2 of LSW implies that it is also boot-
strap uniform Donsker. Therefore, applying Lemma A.1 (omif continuous mapping theorem)
of LSW to (sup,c;, 5 77 (t)) yields the desired result.

Parts 3 and 2 of Theorem 1 imply that, andA,, are consistent estimators Af( P) uniformly
in Po(c1, c2), asPo(e, c1, ¢2) C Poler, cz). Noting thatP € Po(e, c1, c) implies thatf, ,, dt >
0, for large n, we must haved,, # 0, A, # () with probability tending to one, uniformly in
Pol(e, ¢1, ¢2). Applying Part 2 of Theorem 1 to this case in (A.18) impligs © A, = A, — A,

with probability approaching unity uniformly iy (e, ¢;, c2). Consequently, by Parts 2 and 3 of



Theorem 1

sup v, (¢) / dt 50 (A.19)
tet,t) An0A,

conditional on.A,, uniformly in Py (e, c1, ca). Therefore,T,;l - Tﬁ,z - 0 conditional on A,

uniformly in Py (e, ¢1, c2). This concludes the proof.

A.3 Theorem 3

Proof. The proof proceeds by the direct method. Because TheoremL3W shows the test
statisticT},, given by (2.6), diverges to infinity under the alternatieeptove the desired result we
only need to show that the bootstrap test statistioig1) (conditional onA,) underH;. These
two conditions imply that the bootstrap p-valilig; converges to zero in probability und&f .

For P, € P, Lemma C.2 shows the existence and uniqueness of the sofubionthe con-
strained empirical likelihood problenp, to be an event with probability converging to unity.
Hence, the contact set,, exists with probability converging to unity. Since the bxicdp test

statisticZ™* is bounded above by

/t (max {% Z [g (X35t) — Ep, lg (X,t)H ,0}) dt, (A.20)

which converges in distribution (conditional ofy,) to the distribution offf (max {v(t),0}) dt,

it follows that7* = Op(1) conditional onA,,. This concludes the proof.



A.4 Theorem 4

Proof. Part 1. The proof proceeds by the direct method. We first show tleattmdition

P| sup max{G,(t),0}> dt < inf max{G,(t),0}> dt | An] 51

teAnnAg AnnAg teAnnAs, AnnAg

(A.21)

implies thatT;; < T;, for large enough with probability approaching unity conditional of,,.

By definition of the test statistics, we have that

Tt = / max {G,,(£), 0} df — / max {G, (1), 0} dt (A.22)
AnnAg AnnAg
< sup max{G,(t),0}> dt — inf max{G,(t),0}> dt (A.23)
teAnnAg AnnAg teAnNAg AnnAg

Then condition (A.21) implies that asymptotically

sup max {G,(t),0} dt < inf max{G,(t),0}> ) dt, (A.24)

teAnnAc AnnAg teAnnAg AnnAg

holds, with probability approaching unity conditional of),. And the condition (A.24) implies
that asymptoticallf; < T; holds with probability tending to unity conditional of,.
Part 2. Arguments similar to those in part 1 can be used to prove ¢lseetl result; therefore,

we omit the proof for brevity.

A5 Theorem5

Proof. The proof proceeds by the direct method. Since the testttatare the same, it suffices

to compare the bootstrap p-values of the test8 as +oc. They are

T, = P* [T > Tn] and 1. = P* [ > n} , (A.25)



which are conditional od,,. By Lemma C.4, the bootstrap test statisti¢sand7* converge in
distribution conditional ond,, to [ max {v(t),0}* dt and [y max {v(t),0}” dt, respectively,

under the sequence of local alternatives. Furthermorena@.4 implies that asymptotically

' max {(t), 0} dt < / max {v(t), 0} dt

An

holds with probability tending to unity under the sequenti®cal alternatives. So that

/.

Ty =P~ [ ~ max {v(t),0}* > Tn} < P* [ max {v(t),0}> > Tn} =T (A.26)
An

holds asymptotically, conditional od,,, which implies the following relationship between the
rejection events{?oo < a} C {Too < a} holds conditional on4,,, with probability tending
to unity under the sequence of local alternatives. In comsece,lim,, , . P, [T'OO > a} =

limy, s yo0 Pr [TOO < a] . O

B Intermediate Technical Results for Theorems 1 and 2

This section presents intermediate technical resultsaratused in the proofs of Theorems 1
and 2. Subsection B.1 presents a technical result that imarediate consequence of Part (i) of
Definition 3. Section B.2 uses this technical result to prihesexistence and uniqueness of the
solution from the constrained empirical likelihood prableunder the null. In turn, Section B.3
uses the results of the previous sections to develop the-Eample properties of the Lagrange
multipliers underH,, which make use of Part (ii) of Definition 3. Finally, Sectiom4Buses all

of the previous results to establish the uniform consisteriche proposed empirical likelihood

estimator of the moments, unddg.



B.1 A Consequence of Part (i) of Definition 3

The result of this subsection concerns the large-samplavib@tof the likelihood of observing the

event{/ # (0} underH,, where
Iy ={ie{l,....n}:g(Xyt) <0Vt e[t1]}. (B.1)

LemmaB.1. Given|cy, c;] € (0, 1]x(0, +00), let Py € Po(cy, c2). TheNSUP pepy ey ep) P 1L, # 0] —
1.

Proof. The proof proceeds by the direct method. We show that theghibty of the complement

of {I,; # 0} converges to zero uniformly iR (c1, c2). This complement of this event is
{I, =0} = {foreach i3t € [t,7]; g (X;;t) > 0}.
By the bivariate random sampling assumption{d& }"_, , we have that

sup  P[I, =0]= sup (P sup g (Xy;t) >0
)

) (B.2)

PePo(ci,c2) PePo(ci,e2 te(t,t]
= sup 1—P|sup g(Xy;t) <0 (B.3)
PePo(c1,c2) te(t,t]
asn — +oo, sincec; € (0,1]. O

B.2 Existence and Uniqueness g$ under H,

LetH, = {pi,i=1,...,m;>.  pi=1p; >0,Vi=1,...,n}, and denote the interior of this
set byH:. Additionally, letH%(X) = {p € H, : Y1 pig (Xi;t) <0Vt € Ty }-



Lemma B.2. On the even{#H?(X) N H: # (0}, the random set

arg max {Zlog (pi) s pi >0, Zpi =1, sz’g (Xit) <0 Ve TN(n)}
i=1 i=1

=1
is nonempty and a singleton.

Proof. The proof proceeds by verifying the conditions of Weiersdialrheorem. The objective
function is strictly concave in the probabilities. The cait set,4(X), is certainly bounded. It
is the finite intersection of closed half-planes (which aewex), and since convexity and closed-
ness are preserved under a finite number of intersectiorssclibsed and convex. Thus, we are

done whenevet? (X) N H; # 0. O

Lemma B.3. Given|cy, o] € (0,1] x (0, +00), suppose thaby, € Py(c1,c2). Then

sup  P[Ho(X)NH; #0] -1 as n— +oo.

PePy (Cl ,Cg)

Proof. The proof proceeds by the direct method.

For largen and uniformly inPy(c1, c2), Lemma B.1 implies that the event
Fed{l,2,....,n} g(X;,t) <0 Vte TN @) (B.5)

occurs with probability approaching 1, singg,, C [t, ] for eachn. Therefore, without loss of

generality, suppose that this event holds onlyifer 1. Then it follows that

Vie{2,3,...,n}: sup ¢(X;,t)>0. (B.6)

tETN(n)

A probability vectorp in H2(X) N H;, must satisfyp, >0Vi=1,...,n,> . p; =1and

9(Xs;t)

7_9 (X1; t)) Vt € TN(n) (B.7)

Zpig(Xi;t)ﬁo Vt € Tnwm < 1>p122p2~(
=2

i=1



Therefore, a sufficient condition for the inequalities in{Bis

S (90t ) Xa) |
e 2 P T ) S el | S pi (B.8)
t€TN(n) =2 (_g (X1§ t) 2<i<n t€Tnm Y le ;
SuptETN( ) g XZ; t
. § < 1. B.9
221?3;1 (mfteTN( : g (Xy:t) s Di (B.9)

It should be noted thatficr, ,, —g (Xi;t) > 0 follows directly from (B.5). On the event

max SuptETN( ) g (X“ t) c [0 ]-]
2<i<n lnftETN(n) (Xla t) ’ ’

any positive probability vector satisfies the inequali{ids’). Otherwise, on the event

sup Xt
maX( tETN()g< )) >1’

2<i<n lnftETN( ) —g (X17 t)

the inequality (B.8) is equivalent to

1 1

E P < — 1- < p1.
-t D17y oy 9Ki) P17y 9Ki)
i= . )

maXo<i<n infteTN<n) —o(X1:0) maXao<i<n infteTN(n) —9(X13b)

(B.10)

Thus, for anyp; such that

—1
1 — | max e T 7 (Xs;1) <p1 <1
a<i<n \ infiery  —g (X135 1) ! ’

there is a set of possible choices forps, ..., p, suchthap, > 0Vi=1,...,n,and>_;  p; = 1.

This concludes the proof. O

10



B.3 Properties of Lagrange Multipliers under H

In this subsection we present the properties of the Lagramggpliers arising in the constrained
empirical likelihood problem introduced in Section 3. Taimization problem has the following

Lagrangian function:

L= Zlog (p:) +A<1—sz> S0 Y WY ne(Xat). (B.11)

t€TN(n) i=1

where) € R is the multiplier on the equality constraipt , p; = 1, andu, > 0 for ¢t € Ty, are

the multipliers on the inequality constraints. The Kart@kn-Tucker (KKT) conditions are

1
—=A+n Z g (Xit) i=1,2,...,n (B.12)
pi tETN(n)
D pig(Xist) <0 VEE Ty, Y pi=1 (B.13)
i=1 =

e sz Xz;t =0 Vte 7dN(n (814)

In classical optimization theory, the existence/'\oandﬂt fort € Ty, that solve KKT con-
ditions along withp results from a constraint qualification. This paper usesMa@gasarian-
Fromovitz constraint qualification. In the setting of thisper, the Mangasarian-Fromovitz con-

straint qualification is the following event

S, = {Eld cR": idi —0 and idig (Xi;t) <0Vt € A (Pn>}, (B.15)

=1 =1
whereA ( ) ={t € Tnm) : >oiq Pig (Xi5t) = 0} . We have the following result.

Lemma B.4 (Existence) Given|cy, c3] € (0,1] x (0, 400), suppose thaby € Py(c1, c2). Then

sup P[S,]—1 as n— +oo.
PePy(c1,c2)

11



Proof. The proof proceeds by using the direct method. For large gimauand uniformly in
Po(c1, c2) Lemmas B.2 and B.3 imply that exists and is unique. To prove the desired result, we
will show the probability of the evers,, converges to one, uniformly iRy(c;, ).

Noting that the moment functions satisfy Property 1, coaside following construction for the

deR": %" d; =0, and the sign restrictions

<0, if g(X;,t) >0Vt € Ty
sign(d;) = (B.16)

>0, if g(X;,t) <0Vte Tnm,

Lemma B.1 implies the occurrence of the evéﬁilz’ 19 (X, t) <0Vt e TN(n)} with probabil-

ity approaching one, uniformly i?(c;, c2). Therefore, the above construction is asymptotically
feasible. Such vectorétrivially satisfy the conditions of the Mangasarian-Frontp constraint
qualification. This concludes the proof since the above imsghat the probability of the eveft,

converges to one uniformly iRy (c1, ca). O

In fact, using the KKT conditions, one can easily show that n,

1 1
Di = — , 1=1,2,...,n, (B.17)
n <1 + Dteacp) g (Xi; t))

where{/lt = 0,Vt € Tam) — A(Pn)} and {ﬂt > (0,Vt € A(Pn)} . The Mangasarian-Fromovitz
constraint qualification implies that there exists a comgat of multipliers on the binding con-

straints that satisfy the KKT conditions. We denote thisodetultipliers by
Mo (Br) = {int € AB) that satisfy(B.12) — (B.14)} . (B.18)

Next, we focus on the large sample properties of the mugtiplin A,, (Pn> , under H,. Let

12



w € Z, U{+o0}, and define the Banach spaces, as indexed,by

1L = {a:(al,ag,...,aw)GRW:Z\CLA <+OO}, (B.19)

j=1
normed byflally, = =7, |a;].

Lemma B.5 (Asymptotic Bound for Lagrange Multipliers)Given [c;, o] € (0,1] x (0, +00),

suppose thaby € Py(cy, c2). Then
(l) hmngri,oo Suppepo(cth) P [A(Pn> - A(P()) = 1.

(i) Let w, = )A(Pn)

. Denote the vector of Lagrange multipliers on the constsainding

constraints byz and thel},

l:l; L Thensupﬂe/\n(]jn) ||lj’||l&,n =

op(1) uniformly in Py(cy, c2) at they/n-rate.
Proof.

(i) We show this result using proof by contrapositive, tlsatwe show that for large,
td A(R) = t ¢ AR,

Consider any € [t,]. For large enough, Property 1 and the non-negativity of the La-

grange multipliers implies that
sz (Xit) < Zg (Xist) = Z (Xi;t) — Ep, [9(X; )] + Ep, [9(X;1)] (B.20)
=1

Now, considett ¢ A(F). As Py € Py(c1,c2), this implies thatEp, [¢(X;t)] < 0. By the

law of large numbers,

n

%Zg(Xi;t) — Ep, [9(X;1)] = Op(n™"?)

i=1

13



uniformly in Py(cq, ¢o). Thus, for sufficiently large:, equation (B.20) simplifies to

Zp,ig(Xi; t) <0
i=1

This shows that ¢ A(P,).

(i) Recall that the cardinality of the séi( ) iISw, < N(n). Without loss of generality, let
A(P) = {t1,ta, ...ty }. (B.21)

Therefore, the probabilities (B.17) can be expressed as

1
.1 o~
pi=- <1 + Zﬂjg(Xi;tj)> (B.22)

J=1

For any choice of; € A(P,), we have

1 u 9(Xit;)
Pig(Xist;) =0 (B.23)
Z Z 143700 fig(Xisty)
To express the system of equations described by (B.23) tonsed form, define the vector

g = [g(Xu tl)? g(Xu t2)7 AR g(Xza twn)]T (824)

Now, as all the elements gf are non-negative, tHg norm is simply the sum of all elements

of i, i.e.|[ally, = Zj;l ;. This means we can express the vegtan the form

A= llill, 6, 0 R

14



Under this construction, thg" element ofd is

P
! Zjil /lj

This implies thafy %", 0; = 1. The system of equations defined by (B.23) fortadl A(P,)

can be written in the following form

1 gi . (1 - gi -
T 0 ( Zmu)g)‘o 5

Define the quantity; = (12)”g;. Using the manlpulat|0@+—y 1+Y

(1)''g; = gl in equation (B.25) gives

o (%ig 1+Y )

i) (i25)

o7 _Zgz> ( Zgz?ﬂ/ﬁl@)

-6 —Zgz> —||N||zin9T< ﬁf’g,)e (B.26)

We denote the sample analogue estimate of the covariance wianeasurement functions

over the set of alt € A(B,) by

Sa) = Zgzgz

DefineY,,,, = max|Y;|. Note that

—sl

Yinae = max Y] = max 3 (Xt e ,Zu] = oyl ©27)

J=1

15



where we have used the uniform boundedness of the momertidnsc

Now, consider

el (67Sas,)0) = i, (67| - gig?) 9)
0

<Ay, | 6" | -

1 gigl
< ’ 0T - ¥
= e, 1075 2 1+Yi>

. 8 1< .
el (6725p,0) < 67 <5 Zg> 1+ lall,) (B.28)

where the last line results from substituting the expresgiven in (B.26). Rearranging

(B.28) gives

iy,

. 1 — 1 & . ,
07, 0 — 07 <ﬁ X;g)] <7 (E ;gi) Vi e A, (Pn> . (B.29)

since the derivation above holds for eathe A, (Pn> . We consider the components of
(B.29) to find the required asymptotic bound |[#||. From part (i) of this lemma, for large

n we haveA(P,) C A(F,). This means for large, we have that for alt € A(P,),

Ep, [9(X;t;)] = 0. As aresult,

T <% Z&) = Zn:ej <% Zg(Xz‘;tj) — Ep, [9(X§tj)]>
6" (%i&) < wznej
< max %Zg(Xi;tj) — Ep, [g(X;tj)]| <Z 9j>

J =

% Zg(Xz‘§ tj) — Ep, [9(X;t5)]

(B.30)

1 n
< sup = g(Xiit) = B [g(X;t)]
i=1

te(t,t]

The last line follows from the fact th@t}j;l ¢; = 1 by construction. The upper bound given
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by equation (B.30) i®p(1) uniformly in Py(cq, c2). This follows from the functions being
of Vapnik-Chervonenkis class. The moment functigriselonging to a uniformly bounded
Vapnik-Chervonenkis class of functions ensures that adiganctions is also uniformly

Glivenko-Cantelli.

’

Now, for sufficiently larger, part (i) of this lemma tells us that(P,,) C A(F,). Therefore,
part (ii) of Definition 3 implies thaf)TEA(pn)O > ¢ > 0. Using this result and the bound

from equation (B.30), we can rewrite (B.29) as

3 op(1 ; . . .
Ay, < HPT(p()l) Vi e A, (Pn> ., uniformly in = Py(cq, cz). (B.31)
Consequently,
1 . .
sup ||l < L(), uniformly in = Py(cq, ). (B.32)
fiehn(Fn) "~ c+op(l)

Therefore,sup .

fenn(Py) |&4]ln, = op(1) uniformly in Py(cy, c2). Finally, to show that

SUD e, (1) Al = Op(n='/?) uniformly in Py(cy, c,), first note that the expression

on the right side of (B.29) has this property. So that

~1/2
sup ||| SM uniformly in = Py(cq, ¢2), (B.33)
e (PBy) "~ c+op(l)
which implies
Jn o sup ||g||lingOP7(1) uniformly in - Po(cy, c2). (B.34)

ﬂEAn(Pn) C—I—OP( )

Hence,/n SUD e, (5, ||2]|1, . @ positive random variable, is bounded from above by an-

17



other variable that i® (1), uniformly in Py(cy, ¢o). Therefore, we must have that

vn o sup ||Alln, =Op(1) uniformlyin Po(ci, c2).
11EAR (Pn)

B.4 Relationship Betweent; [¢ (X, )] and £ [g (X, )]

The following result implies that the estimatby, [g (X, -)] is a uniformly consistent estimator of

Ep, g (X,-)] underH,.

Proposition B.1. Given|cy, cs] € (0, 1] x (0, +00) and thatP, € Py(cy, ¢2), then

sup |Ep, [9(X,8)] — Ep [g(X,1)]| = Op(n"/?) uniformly over Py(ci,c2).  (B.35)

teft,t]
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Proof. The proof follows the direct method. Consider the followdegivation:

5, g (X,0)] — Bp [g(X, )] =

IN

IN

IN

sz (Xi;t)

1

— =i | 9(Xit
(n p)g( )‘
1
n

g(Xi;t) —

i=1

1
1— , g (XZ7 t)
( 1+, Mjg(Xz‘§tj)>
19 (X, t) Zjvzl f19(Xi;t5)
o 1+ g(Xisty)
n N
Z Dig szt Zﬂjg th )
i=1 =1
—S— 2 n N
2r ! Ny
St o
=1 |j=1
—s—1 \ 2 N
921 )
j=1
—s—1 2
7 .
(s— 1)1) iz, (B.36)
2
2%571 )
: ,) sup [Jll,. (8.37)
(s = 1)t HEAR (Pn)

whereA,, (Pn> is the set of Lagrange multipliers a(P,) defined in (B.18). Lemma B.5(ii)

establishes

sup

Ay, =
1€ML (Pr)

which implies the desired result via the inequality (B.37).

Op(n

~1/2) uniformly over Py(cy, ), (B.38)
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C Technical Lemmas for Theorems 3 and 5

C.1 Theorem 3

This subsection presents two technical lemmas that arelufsefproving Theorem 3. They are a
consequence of the conditidh|sup,, 7 ¢ (X1:¢) < 0] > 0 being true. The first lemma is similar

to Lemma B.1, but we now do not constraito satisfyH,.
Lemma C.1. Suppose?’, € P and let/,; be given by (B.1). Thetim,,_,., P[I, # 0] = 1.

Proof. The proof follows similar steps as those in the proof of Lenina. We show that the

probability of the complement dfl;; # ()} converges to zero. This set is
{1, =0} = {foreach i3t € [t,7]; g (X;;t) > 0}.

By the bivariate random sampling assumption{o& }*_, , we have that

Ry [I; =0] = (Po sup g (Xa;t) > OD (C.1)
te(t,t]

:<1_PO

n — +oo by Condition (i) of Assumptionl. O

sup g (Xy;t) < O]) —0 (C.2)

te(t ]

The second lemma concerns the existence and uniqueness adribtrained empirical likeli-
hood probability vectop. Recall that,, = {p;,i =1,...,n;> . pi=1,p;, > 0,Vi=1,....,n}

and that its interior ig{;. Additionally, recall that the constraint is

Ha(X) = {P €Mn: Zpig (X5t) <0 Vte TN(n)} :
i=1

As with the previous result, we do not constraihto satisfyH,,.
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Lemma C.2. SupposeP, € P. Then

lim Py [H)(X) NH;, # 0] = 1.

n—oo

Proof. For largen, Lemma C.1 implies that the event
Jie{1,2,...,n} g(Xi,t) <0 ¥Vt € Taw (C.3)

occurs with probability approaching 1, sin@&,) C [t,?] for eachn. The rest of the proof
proceeds using steps similar to those in the proof of Lemn2a Berefore, we omit them for

brevity. O

C.2 Theorems5

This section presents technical lemmas for the local powalyais of the tests. It relies on the
WLLN and Lindeberg-Feller Central limit Theorem for triarigr arrays of row-wise 11D random
variables. These large sample results can be found in 8€Tiof Billingsley (1995).

First, we briefly mention a few intermediate useful resuéigarding constrained estimation

under the local alternatives.

Lemma C.3. Suppose that the conditions of Theorem 5 hold. Then
1. lim, o Po[I; # 0] = 1, wherel is defined in (B.1).
2. limyy o0 P [HOA(X) NHS # 0] = 1.
3. lim, 1 P, [S,] = 1, whereS,, is the event defined in (B.15).

4. 1m0 Py [Ep [9(X;t)] < Ep [g(X5t)] VE € [t,8]] = 1.

5. \/ﬁsupﬂeAn(Pn) ally, = Op,(1).
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Proof. Under the conditions of Theorem 5, the steps for provingsparto 4 of this lemma are
identical to their counterparts in Appendix B, but with pabldity computations under the local
alternatives; therefore, we omit them for brevity.

We now focus on proving part 5 of this lemma. We will first shdnatt

lim P, [A(Pn) C C] =1 holds, where C'={t € [t,7]: H(t) =0}.

n—-+o0o

The proof will follow steps similar to those of pat (i) of LenanB.5. Proceeding by contraposition,

we need to show that
téC = t¢ A(P) (C.4)

for largen with probability approaching unity, under the local aliives. Part 4 of this lemma

implies
Ep l9(X0)] < Ep lg(X5t)] = Ep [9(X;0)] = Ep, [9(X58)] + Ep, [g(X;0)]. (C.5)

Now, considert ¢ C. This implies thatim,, ., Fp, [¢ (X;t)] = H(t) < 0. By the WLLN for

triangular arrays,
Ep 9(X;t)] = Ep, [g(X;1)] = op,(1). (C.6)

It should be noted that the application of the WLLN for triafey arrays is valid since the set
of moment functionsF is uniformly bounded. Thus for sufficiently large the inequality (C.5)
simplifies to

Ep lg(X;t)) <H() <0 as n— +oo. (C.7)

’

This shows that ¢ A(F,) for largen with probability approaching unity under the local alterna
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tives.
Using the notation of Lemma B.5, and following identicalpstdo those up to the inequal-

ity (B.29), we have that

n

- 1« 1 ) .
075, 0 — o7 (5 E;g)] <67 (5 3 gi> Vi€ A, (Pn) . (C8)

=1

/i

1
o

Wheregi = [g(Xi;tl)a g(Xi;t2)> ey g(Xi;twn)]T ) A(pn) = {t17t27 s 7twn} andé < Rﬁn with
6], = 1. Noting that

0" <% > gi) =Y, (% > a(Xiit) — En, [o(X; m]) £ 3 000)/VA) = or, (1)

i=1 j=1

(C.9)

by the WLLN for triangular arrays of random variables tha eow-wise 11D, we have that

I
0" (E >ie1 gi)
T — 1 €19
1€ML (Pn) [BTEW,LO ~- 0" <5 > e g1>}
since part 1 of this lemma implies thiatn,, ., , ., P, [aTiwne = O] =1
Hence,
T 1 n
\/ﬁe 5 Zi:l gi
Vi sup il < 1 ' (4
/lEAn(Pn) |:0T2wn0 - OT (_ Z?:l gl):|
n

To conclude the proof, all we need to do is to show that the matoeon the right side of the
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inequality (C.11) isDp, (1). Noting that

(C.12)

where we can apply the Lindeberg-Feller Central Limit Tleaorfor 11D triangular arrays (via

Lyapounov’s condition) to each

ngmm —Ep, [9(X;t))] j=1,...,w, (C.13)

sinceF is uniformly bounded. Hence, the first term on the right sifi@€ol12) isOp, (1) since it is
asymptotically a convex combination 65, (1) terms. Finally, part (i) of Assumption 2 implies

that the second term on the right side of (C.12) is finite. €fwe,

Vi sup il = O, (D). (C.14)

fichn (Pr)
which concludes the proof. O

Lemma C.4. Suppose that the conditions of Theorem 5 hold. Then

lim P, |C c A, Cc A,

lim ] ~ 1. (C.15)

Proof. The proof proceeds by the direct method. We first focus onipgdim,, ., ., P, [C C An} =
1. Lemma C.3 implies that the random s&f, exists for large enough, with probability ap-
proaching unity under the local alternatives. Consider|t, ¢] such thatH (t) = 0 and the event
{-r. < Ep lg(X;t)] < r,} . This eventis equal to

on(t) ~ on(t) on(t) on(t) = onl(t)

{_\/ﬁrn B \/ﬁ(Ep lg (X)) = Ep, g (th)]) \/H(Ep lg(X;1)] = Ep, g (th)]) 6() _ i }

(C.16)
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where
Vi (Ep, lg(Xst)] = Ep, [g(X,0)]) ==vn Y fiw Y pig(Xiit)g(Xit).  (C.17)

t'eA(Py) i=

As > pig (X;;t') g (X;;t) is a uniformly bounded function afand¢’, part 5 of Lemma C.3
implies the right side of (C.17) i©p,(1). Noting that

S o, Y e, (B3, 19 it Bl &N _ o, )

asn — +oo by the Lindeberg-Feller Central Limit Theorem for IID trgular arrays, and(t) is

a uniformly bounded function by part (iii) of Assumption 2fallows that

lim P, [C c An} — 1.

n—-+4o0o

Next we focus on provingm,, , ., P, [An C An] = 1.Parts 1 and 2 of Lemma C.3 implies

that asymptotically the set estimatyy, exist with probability approaching unity under the local al

ternatives. Suppose that A, then by Part 4 of Lemma C.Bm, 1o P, [Ep g (Xs50)] > =7

1. Thus, to prove the result we need to show that,, , . P, [Ep [9(X;t)] <7,] =1
We will show thatlim,_, « P, [Ep [9(X;t)] > r,] = 0. Noting that

Ep, lg(X;t)] = Ep, [g (X;1)] + Ep, [¢(X;1)], and (C.18)

Ep, l9(X;t)] =
Vi (Ep, [9(X3t)] = Ep, [9(X:1)]) /op,(t) = Op, (1) (C.19)

by the Central Limit Theorem for triangular arrays of rowseillD random variables, it follows

that

lim P, [Ep [g(X;t)] > 1] = nl_l)I_{loo P, 0p, (1) + U;/Z) Ep, [g(X;t)] > /nr,/op,(t)

n—-+o00
(C.20)
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As /nr,/op,(t) — +oo (because the set of moment functions is uniformly boundedy, € C,
the termy/nEp, [g (X;t)] Jop,(t) = §(t)/op,(t), is uniformly bounded with uniformity over;

hence, the limit (C.20) is equal to zero. Furthermore{fer(t, {] — C, the term

VnEp, [g(X;0)] Jop, () = (VrH(t) + (1) [op, (D),

hasH(t) < 0 andi(t)/op,(t) is uniformly bounded; in consequence, the limit (C.20) isado

zero for sucht. This concludes the proof. O
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