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Abstract

Differing degrees of assortativity in matching can be expected to have both

genetic and cultural determinants. When assortativity is subject to evolution,

the main result of Alger and Weibull (2013) on the evolution of stable other-

regarding preferences does not hold. Instead, both non-Nash and Pareto ineffi-

cient behavior are evolutionarily unstable.
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1. Introduction

Alger and Weibull (2013) show that, under an exogenously given match-

ing protocol, a population consisting of types whose behavior is determined

by a particular utility function, homo hamiltonensis, is robust to invasion by

types (genotypes) whose behavior (phenotype) differs from that of homo hamil-

tonensis. The level of other-regarding behavior exhibited by homo hamiltonen-

sis depends directly on the level of assortativity in matching shown by small

populations of invading mutants. Specifically, in a population of whom a pro-

portion 1 − ε are homo hamiltonensis and a proportion ε are some invading

type τ , the level of other-regarding behavior by homo hamiltonensis is given by

σ := limε→0 Pr[τ |τ, ε], where Pr[τ |τ, ε] is the probability that an agent matches

with a τ -type given that he himself is of type τ and that there are ε τ -types in

1Come rain or come shine, I can be reached at jonathan.newton@sydney.edu.au, telephone
+61293514429. This work was completed while the author was supported by a Discovery
Early Career Researcher Award funded by the Australian Research Council.
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the population. That is, homo hamiltonensis’ behavior depends directly on the

behavior, as manifested via the degree of assortativity, of an invading type.

It is assumed by Alger and Weibull (2013) that the degree of assortativity

is type independent. That is, σ does not depend on τ . This is a very strong

assumption, whether Pr[τ |τ, ε] is considered to be biologically or culturally de-

termined. In fact, a deep and interesting literature exists that looks at the

evolution of assortative behavior, in which mutants can exhibit higher or lower

degrees of assortativity.2 In addition, factors that indirectly lead to greater or

lesser assortativity, such as the predilection to roam far from home or habitat

location and size, are subject to evolutionary pressures.3 Cultural determinants

of assortativity also differ as social groups vary in degree of hostility to outsiders

and openness to external influence.4

Considering the above, it is important to include assortativity in the possible

behaviors determined by evolution. That is, to consider στ = limε→0 Pr[τ |τ, ε],

where Pr[τ |τ, ε] depends on τ . Following this change, the predictions of Alger

and Weibull (2013) no longer hold. If there exists a selfish rover type, τr, whose

strategic behavior is determined solely by individual fitness considerations, and

for whom στr = 0, then non-Nash equilibrium behavior is evolutionarily un-

stable. Moreover, if there exists a Kantian parochial type, τp, whose strate-

gic behavior maximizes fitness from symmetric strategy profiles, and for whom

στp = 1, then Pareto inefficient behavior is also evolutionarily unstable.

2. Model and result

Consider a population whose individuals are randomly matched into pairs

to engage in a symmetric interaction with the common strategy set X. An

individual playing strategy x against an individual playing strategy y receives

2See, for example, Cara et al. (2008); Dieckmann and Doebeli (1999); Matessi et al. (2002);

Otto et al. (2008); Pennings et al. (2008); Servedio (2010).
3Bearhop et al. (2005); Dyson-Hudson and Smith (1978); López-Sepulcre and Kokko (2005).
4Cashdan (2001); Choi and Bowles (2007); Fry and Söderberg (2013).
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a payoff, representing biological fitness, π(x, y), where π : X2 → R. The pair

〈X,π〉 is the fitness game. X is a nonempty, compact and convex set in a

topological vector space and π is continuous. Each individual is characterized

by a type θ ∈ Θ which defines a continuous utility function uθ : X2 → R and an

index of assortativity σθ ∈ [0, 1]. An individual’s type is his private information.

Consider a population with two types present and define a population state

s = (θ, τ, ε), where θ, τ ∈ Θ are the two types and ε ∈ (0, 1) is the population

share of type τ . The random matching process is such that, with probability

Pr[τ |θ, ε] a given individual of type θ is matched with an individual of type τ ,

and with probability Pr[θ|τ, ε] a given individual of type τ is matched with an in-

dividual of type θ. Let Pr[τ |τ, ε] satisfy limε→0 Pr[τ |τ, ε]→ στ . The balancing

condition for heterogeneous matchings then implies that limε→0 Pr[θ|θ, ε]→ 1.

For a state s = (θ, τ, ε), strategies x ∈ X used by type θ and y ∈ X used by

type τ , the average fitness of each type is

Πθ(x, y, ε) = Pr[θ|θ, ε] · π(x, x) + Pr[τ |θ, ε] · π(x, y), (1)

Πτ (x, y, ε) = Pr[θ|τ, ε] · π(y, x) + Pr[τ |τ, ε] · π(y, y). (2)

It is assumed that the strategies chosen by individuals of both types are a

(Bayesian) Nash equilibrium.

Definition 2.1. In any state s = (θ, τ, ε), a strategy pair (x∗, y∗) ∈ X2 is a

(Bayesian) Nash Equilibrium, (x∗, y∗) ∈ BNE(s), ifx
∗ ∈ arg maxx∈X Pr[θ|θ, ε] · uθ(x, x∗) + Pr[τ |θ, ε] · uθ(x, y∗),

y∗ ∈ arg maxy∈X Pr[θ|τ, ε] · uτ (y, x∗) + Pr[τ |τ, ε] · uτ (y, y∗).

(3)

This definition defines, for fixed types θ, τ , an equilibrium correspondence

BNE(θ, τ, ·) : (0, 1) ⇒ X2 that maps mutant population shares to equilibria.

Letting Pr[·|·, 0] = limε→0 Pr[·|·, ε], the domain of BNE(θ, τ, ·) can be extended

to [0, 1).

The same definition of evolutionary instability as Alger and Weibull (2013)

is used.
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Definition 2.2. A type θ ∈ Θ is evolutionarily unstable if there exists a type

τ ∈ Θ and ε̄ > 0 such that Πθ(x
∗, y∗, ε) < Πτ (x∗, y∗, ε) in all Nash equilibria

(x∗, y∗) in all states s = (θ, τ, ε) with ε ∈ (0, ε̄).

Two types are now defined, the first of which will guarantee that non-Nash

behavior is unstable, the second of which will guarantee that Pareto inefficient

behavior is unstable. Note that, replacing a universal value of σ by type specific

στ , both of these types are varieties of homo hamiltonensis (Alger and Weibull,

2013).

Definition 2.3.

The selfish rover type τr satisfies uτr (x, y) = π(x, y); στr = 0.

The Kantian parochial type τp satisfies uτp(x, y) = π(x, x); στp = 1.

For each type θ ∈ Θ, let βθ : X ⇒ X denote the best response correspon-

dence, βθ(y) = arg maxx∈X uθ(x, y) ∀y ∈ X, and Xθ ⊆ X the set of fixed points

under βθ,

Xθ = {x ∈ X : x ∈ βθ(x)} .

Note that Xτr corresponds to the set of symmetric Nash equilibria when selfish

individuals maximize their own fitness. In contrast, Xτp corresponds to the set

of Pareto efficient symmetric strategy profiles.

Theorem 2.1. If Xθ ∩Xτr = ∅ and τr ∈ Θ, then θ is evolutionarily unstable.

If Xθ ∩Xτp = ∅ and τp ∈ Θ, then θ is evolutionarily unstable.

Proof. Let s = (θ, τr, ε), (x∗, y∗) ∈ BNE(θ, τr, 0). Note that Pr[θ|θ, 0] = 1,

Pr[τr|τr, 0] = 0. It follows that

x∗ ∈ arg max
x∈X

uθ(x, x
∗) (4)

which implies x∗ ∈ Xθ. Also,

y∗ ∈ arg max
y∈X

uτr (y, x∗) = arg max
y∈X

π(y, x∗). (5)

If x∗ ∈ arg maxy∈X π(y, x∗), then x∗ ∈ Xτr , contradicting Xθ∩Xτr = ∅. There-

fore, x∗ /∈ arg maxy∈X π(y, x∗), which implies that π(y∗, x∗) > π(x∗, x∗), hence
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Πτr (x∗, y∗, 0) > Πθ(x
∗, y∗, 0), and the first part of the theorem follows from the

continuity argument of Alger and Weibull (2013, Proof of Theorem 1).

Now, let s = (θ, τp, ε), (x∗, y∗) ∈ BNE(θ, τp, 0). Note that Pr[θ|θ, 0] = 1,

Pr[τp|τp, 0] = 1. (4) continues to hold so x∗ ∈ Xθ. Now,

y∗ ∈ arg max
y∈X

uτr (y, y∗) = arg max
y∈X

π(y, y). (6)

If x∗ ∈ arg maxy∈X π(y, y), then x∗ ∈ Xτp , contradicting Xθ ∩Xτp = ∅. There-

fore, x∗ /∈ arg maxy∈X π(y, y), which implies that π(y∗, y∗) > π(x∗, x∗), hence

Πτp(x∗, y∗, 0) > Πθ(x
∗, y∗, 0), and the second part of the theorem follows from

the continuity argument of Alger and Weibull (2013, Proof of Theorem 1).

3. Discussion

Theorem 2.1 shows that when both assortativity and preferences evolve, nei-

ther non-Nash behavior nor inefficient behavior can persist indefinitely in the

long run. This is not particularly troublesome: the world, after all, is a dynamic

and changing place. However, it is relevant to ask under what conditions the

results of Alger and Weibull (2013) will pertain. It is clear that a necessary con-

dition is that changes in assortativity take place on a much longer timescale than

changes in preferences.5 Unfortunately, such situations are difficult to conceive

and would not seem to be common. The examples in the paper under discussion

do not help here. The example of “Kin” (p.2286, op.cit.) is uncontroversial but

not germane as past behavior of close relatives would likely be observable, from

which their (pheno)type could be inferred. Besides, in very small groups, there

is a significant chance of a mutation attaining fixation via genetic drift, regard-

less of the direction of selection. The example of “Geography, Homophily and

Business Partnerships” (p.2287, op.cit.) is one where assortativity (as deter-

mined by the probability, p(n,N), of matching within the same group, p.2288,

5This is not required for similar work (Wilson and Dugatkin, 1997) where behavioral type

is observed and therefore individuals can intentionally assort by type.
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op.cit.) would be expected to vary and be subject to selection on a similar

timescale to preferences.

Finally, note that even if assortativity and preferences are determined at

different genetic loci and simultaneous mutation is rare, the implications of

Theorem 2.1 still hold. Given any fixed choice behavior in a population, there

is no selection for or against different degrees of assortativity, so genetic drift

will create clusters of rovers and clusters of parochials, thus providing hospitable

environments for the invasion of selfish or Kantian behavior.
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Pennings, P.S., Kopp, M., Meszéna, G., Dieckmann, U., Hermisson, J., 2008.

An analytically tractable model for competitive speciation. The American

Naturalist 171, E44–E71.

Servedio, M.R., 2010. Limits to the evolution of assortative mating by female

choice under restricted gene flow. Proceedings of the Royal Society B: Bio-

logical Sciences .

Wilson, D.S., Dugatkin, L.A., 1997. Group selection and assortative interac-

tions. American Naturalist , 336–351.

7


	Homo Moralis1.pdf
	Introduction
	Model and result
	Discussion


