
Economics Working Paper Series

2014 ‐ 04

Improving Likelihood-Ratio-Based Confidence 
Intervals for Threshold Parameters in Finite 

Samples  

Luiggi Donayre, Yunjong Eo  
and James Morley  

July 2016  



 
 

Improving Likelihood-Ratio-Based Confidence Intervals for 

Threshold Parameters in Finite Samples 

Luiggi Donayre ∗  Yunjong Eo † James Morley ‡ 

 
Abstract 

Within the context of threshold regressions, we show that asymptotically-valid likelihood-ratio-based 
confidence intervals for threshold parameters perform poorly in finite samples when the threshold effect is 
large. A large threshold effect leads to a poor approximation of the profile likelihood in finite samples such 
that the conventional approach to constructing confidence intervals excludes the true threshold parameter 
value too often, resulting in low coverage rates. 

 

We propose a modification to the standard likelihood-ratio-based confidence interval that has coverage rates 
at least as high as the nominal level, while still being informative in the sense of including relatively few 
observations of the threshold variable 
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1 Introduction

Threshold regression models and their various extensions have become standard for the specification of

nonlinear relationships between economic variables (Potter, 1995; Balke, 2000; Koop and Potter, 2004; Gon-

zalo and Pitarakis, 2013, among many others.)1. Although there have been important developments in the

asymptotic theory for inference in threshold regression models (Chan, 1993; Hansen, 1996; Chan and Tsay,

1998; Hansen, 2000; Yu, 2012), it is well-known that the finite-sample performance of confidence intervals

for the threshold parameter is poor in some settings (Enders, Falk and Siklos, 2007).

In this paper, we show that the performance of asymptotically valid likelihood-ratio-based confidence

intervals (CIs), as proposed by Hansen (1997, 2000), may be inadequate when the threshold effect is large.

In particular, a problem regarding the construction of CIs that are based on the inverted likelihood ratio

(ILR) relates to a step function approximation of the likelihood function at threshold values that are not

observed in the sample. Given this approximation, the CIs may exclude the true threshold parameter,

resulting in low coverage rates, even in large samples.

We propose two possible modifications of Hansen’s ILR approach to address the step function approxi-

mation: (i) a grid-search approach based on equally-spaced grid points and (ii) a conservative approach that

extends the CIs to the closest observations excluded by the standard ILR approach. We then conduct Monte

Carlo simulations to evaluate the performance of the original ILR approach and the proposed modifications,

using two different data-generating processes (DGPs) previously considered in the literature. For each ap-

proach, we evaluate the coverage rate, average length and average number of threshold values included in

the CIs.

Our results suggest that the standard ILR approach massively undercovers the true threshold parameter

when the threshold effect is large, even for sample sizes as large as n = 1, 000. This poor performance is

explained by the ‘sharp’ likelihood profile associated with a large threshold effect, which results in too few

possible threshold values being included in the CIs. The refined grid-search improves the performance by

including some of the non-observed, but possible threshold values, although the coverage rates are still far

below the nominal level in the most cases. Meanwhile, the conservative approach has coverage rates at least

as high as the nominal level, while still being informative in the sense of including relatively few observations

of the threshold variable.

Based on these results, we recommend researchers use the conservative approach when constructing CIs

for threshold parameters in practical applications.

1For a comprehensive review of threshold applications in economics, see Hansen (2011), Tong (2011), and Gonzalo and
Pitarakis (2013).
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2 Threshold Regressions

We consider a general class of threshold regressions. Following Hansen (2000), regression parameters switch

between two regimes according to

yi = θ′1xi + ei, if qi ≤ γ (1)

yi = θ′2xi + ei, if qi > γ (2)

for i = 1, . . . , n, where xi ∈ Rk is a vector of regressors; the threshold variable qi splits the sample into two

regimes; γ is the unknown threshold parameter; yi is generated by either (1) or (2) depending on the value

of qi relative to γ; and ei is a regression error. For expositional purposes, the threshold regression model (1)

- (2) can be rewritten in a single-equation form:

yi = θ′xi + δ′nxi(γ) + ei (3)

where θ = θ2, δn = (θ1 − θ2), xi(γ) = xidi(γ), di(γ) = 1{qi ≤ γ}, and 1{·} is the indicator function.2

An estimate of γ can be obtained through concentration. Conditional on γ, (3) is linear in θ and δ. The

conditional estimators θ(γ) and δ(γ) can be found by regressing y = (y1, . . . , yn)′ on X∗γ = [X Xγ ], where

X and Xγ are stacking matrices of the vectors x′i and xi(γ)′ in equation (3), respectively. As is standard in

the literature, γ is restricted to be in a bounded set Γ = [γ, γ] to avoid small-sample distortions. In practice,

γ and γ correspond to the first and last 15% of the vector of ordered threshold observations, respectively,

which are trimmed.

We consider two sets of possible threshold values over which to search for the optimal threshold estimate

and construct the confidence interval. In the first case, which is standard in the literature, the grid-search

procedure occurs over Γs = Γ∩{qi}ni=1, so that all elements in Γs are simply all observed values of q between

γ and γ. In the second case, the refined grid-search occurs over Γr = Γ ∩ qr where the elements in qr are

given by [γ, γ + ζ, γ + 2ζ, . . . γ], for ζ =
(γ−γ)
0.7n . In this way, the refined grid-search captures non-observed,

but possible threshold values from the threshold variable q.3

The sum of squared errors function for γ is given by

Sn(γ) = Sn(θ(γ), δ(γ), γ) = y′y − y′X∗γ (X∗
′

γ Xγ)−1X∗
′

γ y. (4)

and the estimate of γ is given by the value that minimizes (4):

γ̂ = arg min
γ∈Γg

Sn(γ). (5)

for g = s, r so that Γg = Γs for the standard grid-search procedure and Γg = Γr for the refined grid-search

2Assumptions made in this paper are equivalent to those in Hansen (2000) and we omit these for brevity.
3We trim the first and last 15% of the threshold observations for both grid-search procedures in our Monte Carlo simulations.
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procedure.

3 Confidence Intervals for Threshold Parameters

We evaluate the performance of two approaches to constructing confidence intervals for each of the grid-search

procedures described above. The two approaches are described in the following subsections.

3.1 Benchmark ILR Approach

Following Hansen (2000), we construct a (1− α) confidence interval for γ by inverting an α-level likelihood

ratio (LR) test of the hypothesis H0 : γ = γ0. Hansen (2000) shows that the LR statistic under the auxiliary

assumption that ei ∼ iidN(0, σ2) is given by

LRn(γ) = n
Sn(γ)− Sn(γ̂)

Sn(γ̂)
(6)

with Sn(γ) defined as in equation (4). It is well known that the distribution of the LR statistic in (6) is

non-standard.

The 1 − α ILR confidence set for the threshold parameter consists of all the possible values of γ ∈ Γg,

g = s, r for which the null hypothesis would not be rejected at the α level:

Cd = {γ : LRn(γ) ≤ CV1−α, γ ∈ Γg} (7)

where CV1−α is the critical value derived by Hansen (2000) and g = s, r. Note that the confidence set in

(7) may be disjoint. However, we can construct a convexified confidence interval by connecting all disjoint

segments, which we set as the benchmark confidence interval in this paper.

To illustrate the two different approaches to constructing confidence intervals, we display a hypothetical

LR profile in Figure 1. Let q(j) denote the j -th ordered possible threshold value among all qi ∈ Γg. Suppose

the l -th possible threshold value q(l) and the u-th possible threshold value q(u) are the boundaries of the ILR

confidence interval, defined as the minimum and maximum values in the ILR confidence set (7), respectively:

q(l) = min {qi : LRn(qi) ≤ CV1−α, qi ∈ Γs} (8)

q(u) = max {qi : LRn(qi) ≤ CV1−α, qi ∈ Γs} (9)

Then, the 1− α benchmark ILR confidence interval is given by

Cb = {γ : q(l) ≤ γ ≤ q(u)} (10)

where q(l) and q(u) are defined in (8) and (9), respectively. See Figure 1.
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Figure 1: Illustrated Example of Log-Likelihood Ratio Profile for the Threshold Parameter

CV1−α

LRn(γ)

γ
q(m)

= γ̂

q(m+1)q(l+1)q(l)q(l−1) q(u) q(u+1) q(u+2)

Note: A hypothetical LR profile is depicted. Given a finite number of observations of the threshold variable, the likelihood ratio is
evaluated discretely. Thus, for all qi ∈

[
q(j), q(j + 1)

)
, there is the same likelihood ratio value LRn(qi) = LRn

(
q(j)

)
, denoted by a

dashed line. The left endpoint of the interval q(j) is denoted by a solid point and the right endpoint q(j + 1) is denoted by a hollow
point. A critical value CV1−α is indicated by a blue dashed line.

Theoretically, because the confidence interval is constructed by completing the disjoint segments in (7),

the coverage rate of the benchmark (10) is expected to be greater than 1 − α, at least asymptotically in

the case of iid Gaussian errors (see Hansen (2000)). However, the empirical coverage rate can be far lower

(Gonzalo and Wolf, 2005; Enders, Falk and Siklos, 2007). This discrepancy motivates us to propose a

conservative version of the likelihood-ratio-based confidence interval in (10).

3.2 Conservative ILR Approach

The motivation for the conservative modification of the standard ILR approach stems from the fact that we

use a step function approximation of the likelihood function for possible values of the threshold that we do

not observe (i.e., any points of γ /∈ Γs) because Γs is a collection of discrete observations in the parameter

space of Γ in finite samples. Specifically, we cannot determine the actual likelihood ratio values for threshold

variables between q(u) and q(u + 1) and between q(l − 1) and q(l). However, it is likely that there are

some threshold parameter values γ́ ∈
(
q(u), q(u + 1)

)
such that LRn(γ́) ≤ CR1−α.4 If these values are not

included in the confidence interval, it may exclude the true threshold value and its coverage rate could be

4Similarly, it is possible that there are some threshold parameter values γ̀ ∈
(
q(l − 1), q(l)

)
such that LRn(γ̀) ≤ CR1−α

where q(l − 1) = max {qi : LRn(qi) > CV1−α, qi < q(l), qi ∈ Γs}.
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far lower than 1− α.

Indeed, the benchmark ILR approach attains unsatisfactory coverage rates because LR evaluations based

on {qi}ni=1 are poor approximations to the LR from the true DGP. In particular, we argue that the LR profile

evaluated at the discrete values of the observed threshold variable in the sample (a step function) is a bad

approximation to the asymptotic LR profile in finite samples.5 To overcome this issue, we modify the ILR

approach by means of a conservative approach.

Intuitively, the conservative approach accounts for non-observed, but possible thresholds whose LR values

are lower than the critical value by extending the benchmark ILR confidence interval to include the possible

threshold value less than, but closest to q(l) in (8) and the possible threshold value larger than, but closest

to q(u) in (9). Formally,

q(l − 1) = max {qi : qi ∈ Γs, qi < q(l)} (11)

q(u+ 1) = min {qi : qi ∈ Γs, qi > q(u)} (12)

for q(l) and q(u) defined in (8) and (9), respectively. Based on Figure 1, thus, we can define the conservative

confidence interval as follows:

Cc = {γ : q(l − 1) ≤ γ ≤ q(u+ 1)} (13)

where q(l− 1) and q(u+ 1) are defined in (11) and (12), respectively. Therefore, the conservative confidence

interval (13) includes all non-observable threshold values between q(l − 1) and q(l) and between q(u) and

q(u+ 1). Notice that, by construction, the conservative confidence interval Cc in (13) is always longer than

the benchmark ILR confidence interval.

4 Monte Carlo Experiments

To evaluate and contrast the finite sample performance of the different CIs, we examine the empirical

coverage rates, the average lengths, and the average number of threshold observations contained in the

CIs by means of Monte Carlo simulations. The coverage rate is computed as the frequency of Monte

Carlo simulations for which the constructed intervals contain the true threshold parameter. Its accuracy

is determined by comparing it to the nominal confidence level 1 − α. In all experiments, we construct

95% confidence intervals. The average length of the confidence interval is defined as the difference between

the upper and the lower boundaries of the confidence interval averaged across Monte Carlo simulations.

5When the threshold effect is large or fixed, the empirical LR profile is too ‘sharp’ and a sequence of LR tests for the possible
threshold values are rejected too often, leading to the inclusion of too few sample observations of the threshold variable being
included in the ILR confidence intervals. Too few observations in the confidence intervals means that there is not enough
information to approximate the LR profile and to correctly make inferences about the true threshold parameter. We confirm
this conjecture in our Monte Carlo simulations.
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Similarly, the average number of threshold observations is defined as the number of threshold observations

that the confidence interval contains averaged across Monte Carlo simulations. For ease of comparison, the

average lengths for all approaches are normalized by the length of the bounded parameter space Γ = [γ, γ]

for each sample, γ − γ, while the average number of threshold observations is expressed as a percentage of

the sample size. The sample sizes are set to n = 50, 100, 250, 500 and 1, 000 and we consider 1,000 Monte

Carlo replications for each experiment.6

We consider two different DGPs previously examined in the literature by Tong (1990) and Hansen (2000)

to evaluate the performance of the proposed approaches in different settings.7

4.1 Monte Carlo Experiment 1: Tong’s (1990) DGP

In the first experiment, we generate data according to the following self-exciting TAR (SETAR) model:

yi =

 α0 +
∑p
j=1 αjyi−j + εi, if yi−d ≤ γ

β0 +
∑p
j=1 βjyi−j + εi, if yi−d > γ

(14)

where εi ∼ N(0, 1) for i = 1, . . . , n. To reduce the computational burden, we focus on the simplest case

where p = d = 1 and set α0 = 0.7, α1 = −0.5, β0 = −1.8, β1 = 0.7 and γ = 0, which is also the DGP studied

by Tong (1990) and Gonzalo and Wolf (2005).

Table 1 shows empirical coverage rates, average lengths and average number of threshold observations

associated with the DGP described in (14) and different sample sizes. The benchmark and conservative

approaches computed using the standard grich-search are ILRb and ILRc, respectively. Those computed

using the refined grid-search are ILRrb and ILRrc , respectively. The results show that the benchmark

approach, ILRb, performs poorly in the sense that the coverage rates range from 0.558 to 0.653, far below the

nominal level for any sample size. The refined grid-search procedure helps by accounting for non-observable

threshold values, thus increasing the coverage rates of the ILRrb approach. This is evidenced by the larger

percentage of threshold observations included in the ILRrb approach relative to the ILRb approach for each

sample size. However, the improvement is only marginal and their coverage rates vary from 0.646 to 0.672.

Meanwhile, the conservative approach for both grid-search procedures, ILRc and ILRrc , produce coverage

rates that are higher than nominal levels, overcovering the true threshold parameter, from 0.987 to 0.996.

4.2 Monte Carlo Experiment 2: Hansen’s (2000) DGP

In the second experiment, we use two different DGPs considered by Hansen (2000). Specifically, the DGP

is described by equation (3) with iid data and xi = (1 zi)
′, ei ∼ N(0, 1), qi ∼ N(2, 1) and γ = 2. Following

Hansen (2000), two different regressors zi are considered: (i) zi = qi and (ii) zi ∼ iidN(0, 1). Partitioning

6Each series was generated for (n+ 200) observation with the first 200 observations discarded to avoid any distortions from
initial values.

7We also considered a third DGP examined by Chan and Tsay (1998). All approaches performed well in terms of coverage
rates and average lengths. Results are available from the authors upon request.
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δn = (δ1 δ2)′, we set δ1 = 0 and assess coverage rates and normalized average lengths allowing δ2 to vary.

Specifically, δ2 is set to 0.25, 0.50, 1.00, 1.50, and 2.00. The sample size n varies as before and each approach

is labeled in the same fashion as in Table 1.

The results are reported in panels (a) and (b) of Table 2 for the cases with zi = qi and zi ∼ iid N(0, 1),

respectively. In all cases, the refined grid-search approach generates confidence intervals with slightly higher

coverage rates relative to the standard grid-search approach, but the increase is only marginal. Therefore, our

discussion below focuses on the distinction between the benchmark, ILRb and conservative ILRc approaches,

since the performances of ILRrb and ILRrc are similar to those, respectively.

From panel (a), when the threshold effect is small (δ2 = 0.25, 0.50), all approaches slightly overcover for

most sample sizes, with the exception of the ILRb approach which slightly undercovers for n ≤ 100. In general

terms, the normalized average lengths and average number of threshold observations for all approaches are

not very different in small samples (n ≤ 100) for δ2 = 0.25. As the threshold effect δ2 becomes larger, the

ILRb approach produces the coverage rates far below the nominal level. For example, when δ2 = 2.00 the

coverage rates of the ILRb approach range from 0.136 to 0.161 while the ILRc approach always produces

the coverage rates greater than the nominal level, 0.996 to 1.000.

The coverage rate of the ILRc approach increases across sample sizes to the point of reaching almost

100% for δ2 = 2.00. This is explained by the increasing normalized average lengths relative to the ILRb

approach, which becomes even 7 or 8 times as long for δ2 = 2.00. Not only is the benchmark confidence

interval substantially shorter, but it also includes few elements. While the average number of threshold

observations monotonically decreases with the sample size, the conservative approach includes more than

twice as many threshold observations for δ2 = 2.00 (as percentage of the sample size). However, note that

in absolute terms the length difference is minor. For example, when δ2 = 2.00 and n = 250, the lengths for

ILRb and ILRc (normalized by the length of the middle 70% parameter space) are 0.002 and 0.016 while

the coverage rates are 0.139 and 0.998, respectively.

By contrast, the coverage rates of the benchmark approach fall with the threshold effect for all n.

Intuitively, the identification of the threshold parameter is very precise as the threshold effect δ2 increases.

Hence, the confidence intervals become very narrow and include very few points. In some cases, even just

one threshold value as inferred from the average number of threshold observations.8 This is consistent with

the ILRb approach exhibiting average lengths that are 7 times shorter than the conservative confidence

intervals, as discussed above.

Overall, these results suggest that, even when the estimation of the threshold becomes very precise for

large threshold effects, the conservative confidence intervals still contain enough possible values to include

the true threshold parameter. The results for the case with zi ∼ iid N(0, 1), reported in panel (b) of Table

2, are not much different, qualitatively, from those reported in panel (a). In general, the confidence intervals

8For example, the reported 2.79% average number of observations for n = 50 and δ2 = 2.00 corresponds to an average of
0.0279×50 = 1.40 threshold observations included in Hansen’s (2000) benchmark confidence intervals, while the 0.13% reported
for n = 1, 000 and δ2 = 2.00 corresponds to an average of 0.13× 1, 000 = 1.30 threshold observations.
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from the benchmark and conservative approaches exhibit accurate coverage probabilities for small threshold

effects, but the coverage rates of the benchmark approach fall below 95%. Meanwhile, the ILRc approach

overcovers, especially for large values of δ2 for the same reasons as explained above.

Finally, it is important to note that our results are different from those reported in Table II of Hansen

(2000). We are only able to replicate those results when evaluating the LR at the true threshold value in

the DGPs, which is unknown in practice. By contrast, for our results here, we evaluate the LR at the values

of the threshold variable observed in the sample when constructing the confidence intervals.

5 Concluding Remarks

Using Monte Carlo simulations, we have shown that asymptotically valid likelihood-ratio-based confidence

intervals may perform poorly, even for large samples, when the threshold effect is large. The coverage

rates of the benchmark confidence interval derived in Hansen (2000) are substantially below nominal levels.

Intuitively, a large threshold effect results in precise estimation of the threshold parameter, which leads to

the inclusion of too few possible threshold values in the confidence intervals. A conservative modification of

Hansen’s benchmark approach yields coverage rates that are higher than 95%, while still being informative

in the sense of including relatively few observations of the threshold variable.
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Appendix: Tables

Table 1: Coverage and average length of 95% confidence intervals: Tong (1990)

Coverage Rate Average Length Av. # of thresholds
n = 50 100 250 500 1,000 50 100 250 500 1,000 50 100 250 500 1,000
ILRb 0.653 0.612 0.612 0.580 0.558 0.167 0.045 0.014 0.006 0.003 10.29 3.31 1.89 0.55 0.28
ILRc 0.987 0.992 0.996 0.994 0.990 0.227 0.077 0.027 0.013 0.007 14.18 5.33 3.23 0.95 0.48
ILRrb 0.672 0.658 0.683 0.646 0.656 0.185 0.051 0.017 0.008 0.004 12.84 4.26 2.56 0.75 0.38
ILRrc 0.986 0.996 0.995 0.997 0.992 0.240 0.080 0.028 0.013 0.007 16.69 6.25 3.89 1.13 0.58

Note: The average lengths are normalized by the length of the bounded parameter space Γ = [γ, γ] for each sample
size. The non-normalized average lengths for ILRb are 0.556, 0.153, 0.047, 0.022, 0.011 for sample sizes 50, 100, 250,
500, and 1,000 respectively. The average number of threshold observations is expressed as a percentage of the sample
size. In our Monte Carlo simulations, we consider a SETAR model with a DGP:

yi =

{
0.70 − 0.50yi−1 + εi, if yi−1 ≤ 0
−1.80 + 0.70yi−1 + εi, if yi−1 > 0

(15)

where εi ∼ N(0, 1) for i = 1, . . . , n.
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Table 2: Coverage and average length of 95% confidence intervals: Hansen (2000)

(a) zi = qi

Coverage Rate Average Length Av. # of thresholds
n = 50 100 250 500 1,000 50 100 250 500 1,000 50 100 250 500 1,000

δ2 = 0.25
ILRb 0.943 0.952 0.960 0.970 0.976 0.885 0.859 0.675 0.420 0.174 59.42 55.95 40.54 23.22 9.27
ILRc 0.952 0.962 0.966 0.976 0.980 0.897 0.867 0.681 0.424 0.176 60.24 56.44 40.97 23.44 9.46
ILRrb 0.955 0.960 0.958 0.974 0.976 0.901 0.869 0.685 0.426 0.175 63.45 57.99 41.36 23.20 8.75
ILRrc 0.961 0.968 0.968 0.980 0.978 0.911 0.876 0.690 0.431 0.178 64.15 58.45 41.77 23.52 8.94

δ2 = 0.50
ILRb 0.907 0.937 0.949 0.957 0.958 0.701 0.528 0.193 0.053 0.023 45.88 31.69 10.74 3.33 1.59
ILRc 0.954 0.970 0.978 0.976 0.984 0.728 0.547 0.203 0.058 0.025 47.74 33.06 11.50 3.73 1.79
ILRrb 0.922 0.929 0.948 0.946 0.957 0.728 0.546 0.200 0.054 0.023 49.97 33.57 10.80 3.16 1.51
ILRrc 0.958 0.972 0.982 0.982 0.985 0.751 0.565 0.211 0.060 0.026 51.65 34.88 11.56 3.56 1.71

δ2 = 1.00
ILRb 0.763 0.745 0.765 0.778 0.774 0.265 0.082 0.022 0.011 0.005 17.24 5.58 1.76 0.86 0.42
ILRc 0.977 0.981 0.986 0.993 0.992 0.315 0.110 0.032 0.016 0.008 20.79 7.56 2.56 1.26 0.62
ILRrb 0.790 0.759 0.752 0.765 0.787 0.286 0.092 0.023 0.011 0.006 19.38 6.40 1.92 0.96 0.48
ILRrc 0.982 0.986 0.987 0.991 0.994 0.335 0.120 0.034 0.017 0.008 22.86 8.37 2.72 1.36 0.68

δ2 = 1.50
ILRb 0.403 0.400 0.391 0.396 0.385 0.061 0.021 0.007 0.003 0.002 5.35 2.17 0.82 0.41 0.20
ILRc 0.993 0.991 0.991 0.997 0.999 0.123 0.053 0.020 0.010 0.005 9.32 4.17 1.62 0.81 0.40
ILRrb 0.592 0.583 0.554 0.536 0.516 0.080 0.032 0.011 0.005 0.003 7.07 3.17 1.14 0.55 0.28
ILRrc 0.996 0.996 0.994 1.000 0.996 0.135 0.060 0.022 0.011 0.005 11.03 5.17 1.94 0.95 0.48

δ2 = 2.00
ILRb 0.150 0.161 0.139 0.144 0.136 0.014 0.007 0.002 0.001 0.001 2.79 1.36 0.52 0.26 0.13
ILRc 0.997 1.000 0.998 0.998 0.996 0.082 0.043 0.016 0.008 0.004 6.79 3.36 1.32 0.66 0.33
ILRrb 0.459 0.466 0.448 0.422 0.400 0.039 0.019 0.007 0.004 0.002 4.71 2.34 0.91 0.45 0.22
ILRrc 0.996 0.997 0.999 0.996 0.998 0.094 0.048 0.019 0.009 0.005 8.70 4.34 1.71 0.85 0.42

Note: The average lengths are normalized by the length of the bounded parameter space Γ = [γ, γ] for each sample
size. The non-normalized average lengths for ILRb are 0.029, 0.014, 0.005, 0.002, 0.001 for δ2 = 2.00 and sample sizes
50, 100, 250, 500, and 1,000 respectively. Other average lengths are available upon request. The average number of
threshold observations is expressed as a percentage of the sample size. In our Monte Carlo simulations, we consider
a threshold model with a DGP:

yi =

{
1 + zi + εi, if qi ≤ 2

1 + (1 + δ2)zi + εi, if qi > 2

where zi = qi ∼ N(2, 1) and εi ∼ N(0, 1) for i = 1, . . . , n.
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(b) zi ∼ N(0, 1)

Coverage Rate Average Length Av. # of thresholds
n = 50 100 250 500 1,000 50 100 250 500 1,000 50 100 250 500 1,000

δ2 = 0.25
ILRb 0.953 0.950 0.973 0.969 0.961 0.913 0.893 0.838 0.675 0.440 63.56 59.83 54.98 41.87 25.90
ILRc 0.958 0.957 0.973 0.970 0.964 0.923 0.900 0.842 0.679 0.442 64.22 60.27 55.26 42.13 26.08
ILRrb 0.964 0.955 0.973 0.967 0.965 0.925 0.899 0.844 0.679 0.443 66.50 61.44 55.20 41.01 24.41
ILRrc 0.968 0.960 0.974 0.969 0.967 0.933 0.905 0.847 0.682 0.445 67.05 61.84 55.47 41.26 24.59

δ2 = 0.50
ILRb 0.954 0.945 0.964 0.965 0.979 0.820 0.728 0.459 0.226 0.098 56.71 47.82 28.07 14.22 6.44
ILRc 0.964 0.956 0.975 0.974 0.983 0.840 0.743 0.469 0.231 0.101 58.01 48.83 28.77 14.62 6.64
ILRrb 0.954 0.951 0.966 0.971 0.974 0.834 0.737 0.463 0.228 0.099 59.70 48.76 27.19 13.06 5.72
ILRrc 0.968 0.956 0.974 0.976 0.986 0.851 0.750 0.473 0.234 0.102 60.89 49.73 27.88 13.45 5.92

δ2 = 1.00
ILRb 0.925 0.934 0.943 0.947 0.944 0.545 0.316 0.101 0.048 0.025 37.57 20.60 7.22 3.50 1.79
ILRc 0.964 0.971 0.973 0.983 0.983 0.585 0.343 0.111 0.053 0.027 40.48 22.50 8.02 3.90 1.99
ILRrb 0.928 0.932 0.932 0.927 0.943 0.554 0.320 0.102 0.048 0.025 38.83 20.37 6.74 3.24 1.66
ILRrc 0.968 0.970 0.975 0.986 0.988 0.593 0.347 0.113 0.054 0.027 41.65 22.27 7.54 3.64 1.86

δ2 = 1.50
ILRb 0.863 0.861 0.866 0.893 0.865 0.277 0.132 0.049 0.023 0.012 19.67 9.65 3.74 1.80 0.91
ILRc 0.978 0.986 0.988 0.992 0.989 0.331 0.158 0.059 0.028 0.014 23.50 11.64 4.54 2.20 1.11
ILRrb 0.887 0.858 0.874 0.883 0.867 0.285 0.133 0.049 0.024 0.012 20.46 9.58 3.65 1.76 0.89
ILRrc 0.981 0.990 0.991 0.993 0.990 0.338 0.161 0.061 0.029 0.015 24.26 11.57 4.45 2.16 1.09

δ2 = 2.00
ILRb 0.801 0.788 0.795 0.800 0.810 0.169 0.079 0.030 0.015 0.007 13.17 6.19 2.45 1.23 0.60
ILRc 0.984 0.986 0.986 0.990 0.989 0.223 0.107 0.041 0.021 0.010 17.14 8.19 3.25 1.63 0.80
ILRrb 0.801 0.802 0.796 0.764 0.790 0.179 0.083 0.032 0.016 0.008 14.12 6.52 2.55 1.26 0.61
ILRrc 0.987 0.998 0.991 0.990 0.994 0.234 0.111 0.043 0.021 0.010 18.08 8.52 3.35 1.66 0.81

Note: The average lengths are normalized by the length of the bounded parameter space Γ = [γ, γ] for each sample
size. The non-normalized average lengths for ILRb are 0.346, 0.160, 0.063, 0.032, 0.015 for δ2 = 2.00 and sample sizes
50, 100, 250, 500, and 1,000 respectively. Other average lengths are available upon request. The average number of
threshold observations is expressed as a percentage of the sample size. In our Monte Carlo simulations, we consider
a threshold model with a DGP:

yi =

{
1 + zi + εt, if qi ≤ 2

1 + (1 + δ2)zi + εt, if qi > 2

where qi ∼ N(2, 1), zi ∼ N(0, 1), and εi ∼ N(0, 1) for i = 1, . . . , n.
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