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Abstract

For games of contracting under perturbed best response dynamics, varying the perturbations
along two dimensions (uniform vs. logit, directed vs. undirected) gives four possibilities.
Three of these select di↵ering major bargaining solutions as stochastically stable. The fourth
possibility yields a new bargaining solution which exhibits significant nonmonotonicities and
demonstrates the interplay of two key drivers of evolutionary selection: (i) the ease of making
errors; (ii) the ease of responding to errors.
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1. Introduction

For games of contracting characterized by a convex bargaining set, we show that under

perturbed best response dynamics, by varying the perturbations along two simple dimensions

(uniform vs. logit, directed vs. undirected), any of the major bargaining solutions can emerge

as a stochastically stable convention. There are two populations, each corresponding to a

position in a contract game: a coordination game with zero payo↵s for miscoordination. Most

of the time, agents play best responses to the distribution of play of the other population.

However, from time to time an agent will make an error and play something other than

a best response. Error probabilities can be uniform – all errors are equally likely, or logit

– errors which incur a higher payo↵ loss for the agent making them are less likely to be

made. Young (1998a) showed that the best response dynamic with uniform errors leads to

the selection of the Kalai and Smorodinsky (1975) bargaining solution. Naidu, Hwang and

Bowles (2010) showed that if the support of the perturbation distribution is restricted to be

directed so that agents’ errors only involve demanding more, never less, then the Nash (1950)

bargaining solution is selected. The current paper extends the analysis of such models to
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Undirected Directed

Uniform Kalai-Smorodinsky Nash bargaining

Logit Q4 Egalitarian

Table 1: Stochastically stable bargaining solutions by error process.

payo↵-dependent errors. In doing so, it makes three distinct contributions to the literature:

a methodological contribution, an applied contribution, and an analytical contribution.

To combine state-dependent error probabilities with population dynamics, the paper

makes a methodological contribution. In contrast to the case of uniform errors, the most

probable transitions between conventions of contract games under the logit choice rule can

involve errors being made by both populations. It is shown that for contract games played

under a popular class of strategy revision rules, for large population size, the cost of such

transitions can be well approximated by the cost of the most probable transition which

involves errors by only a single population (Theorem 1). A su�cient condition on strategy

revision rules for such an approximation is that error probabilities depend log-linearly on

payo↵s. This condition is satisfied by the class of exponential revision rules, a popular and

flexible class of rules which includes the logit choice rule and exponential better reply rules.

Using these results, the paper makes an applied contribution to the literature on the

evolution of bargaining solutions. It is shown that if the logit choice rule is used with directed

errors, then the Egalitarian bargaining solution (Kalai, 1977) is selected. Moreover, the logit

choice rule with undirected errors selects a new solution, which we call the Q4 solution as it

corresponds to the remaining quadrant in table 1. Although it is developed from the same

set of ingredients as the existing solutions, the Q4 solution exhibits significantly di↵erent

properties. For example, holding the bargaining frontier close to the solution fixed, the Q4

solution is non-monotonic with respect to maximum obtainable payo↵s: an increase in a

player’s maximum payo↵ can lead to a decrease in the amount he receives. Moreover, the

solution can be non-monotonic with respect to stretches of the bargaining set parallel to

the axes. Even Nash’s bargaining solution, which is well known to breach the (individual)

monotonicity axiom of Kalai and Smorodinsky (1975), is monotonic with respect to such

stretches.

The paper makes an analytical contribution by highlighting the importance of interaction

between two drivers of selection in evolutionary models: (i) the ease of making errors; (ii) the

ease of responding to errors. Factor (i) enters directly through the error distribution. Factor

(ii) enters because multiple errors in a population can be required to shift the process away

from a convention, with the precise number of errors required depending on both the current
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convention and on which errors occur. That is, from di↵erent conventions, di↵erent numbers

of errors are required to induce some agent to best respond with an action other than the

one chosen at the given convention. Under uniform errors, any mistake is equally likely

in any state, so factor (i) plays no role in selection. As noted above, for large and equal

population sizes, the Kalai-Smorodinsky bargaining solution is selected in such a setting.

Logit errors are payo↵ dependent and so introduce factor (i). If both populations are of

size 1, then factor (ii) plays no role in selection, and logit errors select the Egalitarian

bargaining solution. Combining the two e↵ects via logit errors and large populations, we

obtain the unexpected result that the new solution does not necessarily lie between the Kalai-

Smorodinsky and Egalitarian solutions: the player who receives the greater share under the

Kalai-Smorodinsky solution can be the player who receives the lesser share under the Q4

solution.

That e↵ects (i) and (ii) can work in opposite directions is by no means obvious from the

existing literature. Consider the parallel literature on stochastic stability in Nash demand

games. Young (1993b) shows that in two player Nash demand games, the Nash bargaining

solution is stochastically stable. Agastya (1999) shows that if a cooperative game is modelled

as a generalized Nash demand game, then the stochastically stable states are states in the

core at which the maximum payo↵ over all players is minimized. Newton (2012b) shows

that, under some conditions, the addition of joint strategic switching to such models leads to

Rawlsian selection within the (interior/strong) core, maximizing the minimum payo↵ over

all players. For the assignment game (Shapley and Shubik, 1971), a cooperative game for

which the core has an empty interior so the methods of Newton (2012b) cannot be applied,

Nax and Pradelski (2013) have recently shown a maxmin selection result within the core.

Interestingly, although both papers attain similar results, these results arise in di↵erent

ways. Nax and Pradelski (2013) use logit errors: error probabilities depends log-linearly on

payo↵ di↵erences. Selection then comes from (i) how hard it is for a player to make errors.

Newton (2012b) uses uniform errors and sampling of opponents’ behavior: selection comes

from (ii) how hard it is for a player to respond to errors. In the papers cited above, these

e↵ects turn out to work towards a similar result. The current paper demonstrates that this

is not always the case and that the combination of e↵ects (i) and (ii) can create interesting

nonmonotonicities.

This paper adds to the literature on perturbed adaptive dynamics, specifically on best

response dynamics under various perturbations. The methodology, that of Freidlin and

Wentzell (1984), was introduced to economics by Young (1993a) and Kandori, Mailath and

Rob (1993). For any given stable state of an unperturbed dynamic, it is clear that there

exists some perturbed dynamic such that the stationary distribution of the process gives a
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probability close to one of the process being in that state.1 See Bergin and Lipman (1996);

van Damme and Weibull (2002) for more discussion of this kind of result. The point of the

current paper is that the most commonly used error processes (uniform and logit), with and

without an intuitive restriction on the domain of the errors, su�ce to select all three major

bargaining solutions: they are all part of the same evolutionary family. In addition, the family

has a fourth member which is in some ways alike, but in other ways totally unlike the existing

solutions. As well as previous results on processes within this family (Young, 1998a; Naidu

et al., 2010) which are included in the classification of the current paper, a related result in

Newton (2012a) incorporates coalitional behavior into perturbation structures, showing that

if random errors are uniform, but coalitional behavior occurs with higher probability than

random errors, then the Nash bargaining solution is selected.

Our results show that similar evolutionary processes to those used to justify common

bargaining solutions found in the literature can justify other bargaining norms with unex-

pected and interesting attributes. The paper is organized as follows. Section 2 introduces

the ideas of the paper with a simple example. Section 3 gives the evolutionary model and

defines the bargaining solutions. Section 4 gives the approximation result which is the main

methodological contribution of the paper. Section 5 uses this result to classify bargaining

solutions by the evolutionary perturbations which give rise to them. Section 6 examines the

properties of the new bargaining solution. Section 7 concludes.

2. Leading example

Consider the normal form game in figure 1. Note that there are three strict Nash equilib-

ria: (A
↵

, A

�

), (B
↵

, B

�

), (C
↵

, C

�

). We shall consider the evolution of play in three di↵ering

dynamic situations.

A

�

B

�

C

�

D

�

A

↵

7,5 0, 0 0, 0 0, 0
B

↵

0, 0 6,6 0, 0 0, 0
C

↵

0, 0 0, 0 5,7 0, 0
D

↵

0, 0 0, 0 0, 0 0,10

Figure 1: A two player normal form game.

1For example, define a perturbation structure such that there is probability " of transiting from any state
to a given stable state i of the unperturbed dynamic, and let the probability of leaving i be "2. Then, for
small ", close to all the probability mass of the stationary distribution will be on state i.
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2.1. Two players, logit errors.

Consider two players, ↵ and �, who correspond to the positions in the game in figure

1. Each period, one of the players is chosen at random to adjust his strategy. Most of the

time, a player so chosen plays a best response to the current action of the opposing player,

with each possible best response being chosen with equal probability if there is more than

one best response. However, with small probability, the chosen player will make an error

and switch to an action which is not a best response. Each possible error occurs with a

probability of order "

l, where " is some small number and l is the di↵erence between the

payo↵ from playing a best response and the payo↵ from making the error. For example, if

the current actions of the players are (A
↵

, A

�

) and player � is chosen to update his action,

then he will play action B

�

with a probability of order "

5�0 = "

5. Following this error, if

player ↵ is chosen to update his action, he can best respond with B

↵

, and the pure Nash

profile (B
↵

, B

�

) is reached. In a similar manner, (B
↵

, B

�

) can be reached from (C
↵

, C

�

).

However, to leave (B
↵

, B

�

), an error of probability of order "6 is required. This implies that

for small ", almost all of the weight of the stationary distribution of this Markov chain will

be on the state in which (B
↵

, B

�

) is played. The limiting stationary distribution as " ! 0

places all weight on this state: it is uniquely stochastically stable. Note that a single error is

all that is required to induce a di↵erent best response from the opposing player: selection is

entirely driven by how easy it is to make errors. This creates a bias towards egalitarianism.

2.2. Two populations of ten agents each, uniform errors.

Now assume that rather than a single player for each position of the game, there exist

two populations, each of which comprises 10 agents. One of the populations is associated

with position ↵ in the game, the other population with position �. Each period, a single

agent from one of the populations is chosen at random to adjust his strategy. Most of the

time, an agent so chosen plays a best response to the distribution of current actions of the

opposing population. With small probability, the chosen agent will make an error and switch

to an action which is not a best response. Each possible error occurs with a probability of

order ". That is, each possible error occurs with similar probability, independent of the

payo↵ loss incurred by making the error. Note that in the population setting, starting from

a state in which every agent plays actions corresponding to some Nash equilibrium of the

game, multiple errors by agents in one population can be necessary to induce an agent in

the opposing population to play a best response that di↵ers from the action corresponding

to the original Nash equilibrium. For example, starting from a state in which every agent

plays action A, at least 4 errors by ↵-agents where they switch to D

↵

are required to induce

a �-agent to best respond with D

�

. If every �-agent switches to D

�

, then when an ↵-agent
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is chosen to update his strategy, any action will be a best response. If the ↵-agents switch

to action C

↵

, then �-agents can best respond with C

�

, and the state in which every agent

plays C will be reached. A similar transition is possible from the state in which every agent

plays B to the state in which every agent plays C. However, from the state in which every

agent plays C, at least 5 errors will be necessary to induce a best response other than to

play C. Therefore, for small ", almost all of the weight of the stationary distribution of

this Markov chain will be on the state in which every agent plays C. This state is uniquely

stochastically stable. Note that in this process every error occurs with similar probability:

selection is entirely driven by how easy it is to respond to errors. This creates a bias favouring

populations who have some possibility of high payo↵s, such as the possibility of a payo↵ of

10 for �-agents in the game in figure 1.

2.3. Two populations of ten agents each, logit errors.

Now consider the process with two populations of 10 agents each, and with perturbations

occuring with probabilities of order "l as described above. It can be checked that the easiest

way to transition from every agent playing A to any state corresponding to one of the

other pure Nash equilibria is as follows. First, 3 of the ↵-agents make errors and play

D

↵

. These errors occur with probability of order "7 each. The payo↵ loss for a �-agent of

playing D

�

rather than A

�

is then 5 · 7/10 � 10 · 3/10 = 1

/2. Next, let all 10 of the �-agents

make errors and play D

�

. These errors occur with probability of order "1
/2 each. Following

this, when an ↵-agent is chosen to update his strategy, any action will be a best response.

Therefore the overall transition probability is of order ("7)3 · ("1
/2)10 = "

26. Note that these

lowest cost transitions involve errors by agents in both populations. One contribution of the

current paper is to show that for large populations, the calculation of transition costs can be

simplified by restricting attention to paths in which errors only occur in a single population.

From the state in which every agent plays B (C), there exists a transition to the state

in which every agent plays A in which 4 (5) ↵-agents make errors and play D

↵

, giving a

transition probability of order "

24 ("25). Therefore, for small ", almost all of the weight of

the stationary distribution of this Markov chain will be on the state in which every agent

plays A. This state is uniquely stochastically stable. Selection in this process is driven by

both how easy it is to make errors and by how easy it is to respond to errors. By combining

these two e↵ects, the outcome is better for ↵-agents than that selected by either of these

e↵ects acting on their own. The remainder of the paper will examine the interplay of these

two e↵ects in settings where the range of possible coordination outcomes is given by a convex

bargaining set.
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3. Evolution and bargaining

3.1. Bargaining Problem

Consider two positions, ↵ and �. Players in these positions bargain over which pair of

payo↵s is selected from a bargaining set. Let S ⇢ R2 be the bargaining set which is convex

and compact and a 2 R2 be the disagreement point: the payo↵s that players receive when

agreement is not reached. We suppose that a is normalized to (0, 0) which belongs to the

bargaining set. We assume that for each S there exists a decreasing, di↵erentiable, and

concave function, f
S

, such that (t, f
S

(t)) is the e�cient allocation in which ↵ and � players

receive t and f

S

(t), respectively. Thus, the maximum payo↵ that players ↵ and � can obtain

from bargaining are

s̄

↵

:= sup {t : f
S

(t) � 0} and s̄

�

:= sup {f
S

(t) : t � 0} ,

respectively. We shall also routinely omit the subscript from f

S

(.), writing f(.).

A bargaining solution maps bargaining problems to allocations. A bargaining solution

is essentially a rule by which surplus in a bargaining problem is allocated. The three bar-

gaining solutions most commonly used in economics are the Nash bargaining solution (Nash,

1950), the Kalai-Smorodinsky bargaining solution (Kalai and Smorodinsky, 1975), and the

Egalitarian bargaining solution (Kalai, 1977).

Definition 1. Let S be a bargaining set with a bargaining frontier given by f

S

(.). Denote

by ( t·, f
S

(t·) ) the solution associated to the bargaining solution under consideration.

Kalai-Smorodinsky solution

t

KS

s̄

↵

= f

S

(t

KS

)

s̄

�

.

Nash bargaining solution t

NB 2 argmax
0ts̄

↵

tf

S

(t).

Egalitarian solution t

E = f

S

(tE).

These solutions each uniquely satisfy distinct sets of intuitively appealing axioms. Such

axioms are further discussed in section 6. Furthermore, it has been shown that the Kalai-

Smorodinsky and Nash solutions can emerge from plausible models of adaptive behavior

(Young, 1998a; Binmore, Samuelson and Young, 2003; Naidu et al., 2010; Newton, 2012a).

One contribution of the current paper is to show that the same is true for the Egalitarian

solution.
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3.2. Evolutionary contracting

Consider two populations of agents � ↵ and � populations � of size N .2 Two agents,

one from each population, are matched to play a coordination game. The set of possible

outcomes on which coordination is possible corresponds to a bargaining set as described in

section 3.1. Similarly to previous literature on evolution and bargaining, we discretize the

bargaining set as follows. Let n 2 Z
+

, � = �

n

= n

�1

s̄

↵

, and I := {0, 1, 2, · · · , n} and suppose

that the two agents each play a strategy from the following sets, respectively:

player ↵ : {0, 1�, · · · , n�} , player � : {f(0), f(�), f(2�), · · · , f(n�)}.

To simplify notation, we will denote by i

↵

and i

�

strategies i� and f(i�), respectively.3

A strategy profile or a state of two populations is described by x := (x
↵

, x

�

), where x

↵

and x

�

are vectors giving the number of agents using each strategy. Thus, the state space ⌅

is

⌅ :=

(

(x
↵

, x

�

) :
X

l2I

x

↵

(l) = N, x

↵

(l) 2 N
0

,

X

l2I

x

�

(l) = N , x
�

(l) 2 N
0

)

More explicitly, we have (x
↵

, x

�

) = ((x
↵

(0), x
↵

(1), · · · , x
↵

(n)), (x
�

(0), x
�

(1), · · · , x
�

(n))),

where x

�

(2), for example, denotes the number of �-agents playing strategy 2
�

= f(2�).

We consider contract games (Young, 1998a), coordination games in which players who

demand the same outcome receive their associated payo↵s, and receive nothing otherwise.

That is, the payo↵s for a contract game are

(⇡
↵

(i
↵

, j

�

), ⇡

�

(j
�

, i

↵

)) =

(

(i�, f(i�)) if i = j

0 otherwise
.

To avoid notational clutter, we shall occasionally denote ⇡

↵

(i) := ⇡

↵

(i
↵

, i

�

) and ⇡

�

(i) :=

⇡

�

(i
�

, i

↵

). Agents from each population are matched to play the contract game and thus, the

expected payo↵ of an ↵ agent who plays strategy i

↵

is ⇡

↵

(i
↵

, x

�

) :=
P

l2I ⇡↵

(i
↵

, l) x
�

(l)/N ,

given that the fraction of the � population using strategy l is x
�

(l)/N. Similarly, the expected

payo↵ of a �-agent who plays strategy i

�

is ⇡
�

(i
�

, x

↵

) :=
P

l2I ⇡�

(i
�

, l) x
↵

(l)/N.

2Exposition is simplified by the assumption that the populations are of the same size. This is always the
case when the two populations represent roles played by di↵erent agents in the same population. That is,
each agent could be considered to appear twice: he will play one strategy when he plays as an ↵-player, and
another strategy when he plays as a �-player.

3Note that the discretization is uniform for ↵, but not for �. This can be reversed without changing
results, or, alternatively, the bargaining set can be approximated by the points of a square lattice with
nearest neighbor distance �.
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We consider a discrete time strategy updating process defined as follows. At each period,

an agent from either the ↵ population or the � population is randomly chosen and matched

to play the contract game with an agent from the other population. The chosen agent selects

a strategy (which will be used to play the game) based on his evaluation of the expected

payo↵s of the di↵erent strategies. The agents idiosyncratically experiment with non-optimal

strategies, or simply make mistakes. The probability of such mistakes will be parameterized

by a parameter ⌘, and larger values of ⌘ will correspond to higher mistake probabilities.

To study various behavioral rules of strategy revising agents, we suppose that the tran-

sition probabilities for the strategy updating process, P

⌘

, admit a real-valued function

V (x, y) satisfying

lim
⌘!0

�⌘ lnP ⌘(x, y) = V (x, y) (1)

where V is defined over the set of all x, y 2 ⌅ such that P

⌘̂(x, y) > 0 for some ⌘̂ > 0 (see

Beggs, 2005; Sandholm, 2010b). Here, P ⌘(x, y) is the transition probability from state x to

state y. The resistance of a transition from x to y, V (x, y), measures the rarity of transitions

from x to y. To determine the function V for a given P

⌘

, we sometimes use the following fact,

called a “largest-exponent wins” principle (See Laplace’s method in Dembo and Zeitouni,

1998, p.137 and remark there. See also Freidlin and Wentzell, 1984, pp.71-72).

Lemma 1. Suppose that f and g are functions on ⌅ and g is positive. Then we have

X

x2⌅

exp(⌘�1

f(x))g(x) ⇣ exp(⌘�1 max
x2⌅

f(x))

where a

⌘

⇣ b

⌘

means lim
⌘!0

⌘(log a
⌘

� log b
⌘

) = 0.

To specify transition probabilities more precisely, we first write as x�,l,l

0
the state induced

from x by a � population (� = ↵ or �) agent’s strategy change from l to l

0. That is, for

� = ↵, �, we have:

x

�,l,l

0

�

(i) :=

8

>

<

>

:

x

�

(i) if i 6= l, l

0

x

�

(i)� 1 if i = l

x

�

(i) + 1 if i = l

0

In the context of population dynamics, the typical form of the transition probability P

⌘(x, y)
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is as follows:

P

⌘(x, y) =

8

>

<

>

:

x

�

(l)

2N

p

⌘

�

(l0|l, x) if y = x

�,l,l

0
for some �, l, l

0

1�
P

�,l,l

0
x

�

(l)

2N

p

⌘

�

(l0|l, x) if y = x

0 otherwise

, (2)

where
P

l

0 p
⌘

�

(l0|l, x)  1. In equation (2), the factor x

�

(l)

/2N in the first line accounts for the

probability of randomly choosing a �- agent with strategy l. The term p

⌘

�

(l0|l, x) gives the

conditional probability that a chosen agent from population � will switch from strategy l

to strategy l

0 given that the state of the populations is x. We will specify this probability

shortly. The second line in the transition probability normalizes and the last line means

that the only transitions which are possible from x are to states x

�,l,l

0
. Specification (2)

defines a family of Markov chains parameterized by ⌘. This paper considers processes with

perturbations varying in two dimensions: the perturbations can be uniform or logit, and

they can be directed or undirected. The definitions of these concepts shall now be given.

3.3. (Generalized) Logit choice rule

Under the generalized logit choice rule, from state x, a strategy-revising agent who is

currently playing l, will switch to l

0 with a probability given by

p

⌘

�

(l0|l, x) := q

l

exp(⌘�1

⇡

�

(l0, x))
P

˜

l

q

˜

l

exp(⌘�1

⇡

�

(l̃, x))
(3)

where q
l

, l 2 I, are positive constants. When q

l

= 1 for all l 2 I, equation (3) gives the logit

choice rule which is well-known in the literature of evolutionary games (see Blume, 1993,

1996).4 The parameter ⌘ measures the degree of perturbation in best response rules and

can be interpreted as noise in observing others’ strategies and evaluating expected payo↵s,

the frequency of mistakes or experimentation in strategy revision, and so on. As ⌘ ! 0,

the probability of a strategy-revising agent playing anything other than a best response

approaches zero. From Lemma 1, it follows that the resistance V (x, x�,l,l

0
) of a transition

from x to x

�,l,l

0
equals

lim
⌘!0

�⌘ lnP ⌘(x, x�,l,l

0
) = max

˜

l

⇡

�

(l̃, x)� ⇡

�

(l0, x).

The interpretation of this is that the probabilities of errors which cause higher payo↵ losses

approach zero faster as ⌘ ! 0. Error probabilities are asymptotically log-linear in payo↵

4Alternatively, it could be the case that ql̃ = 1 for some l̃ and ql̃ ⇡ 0 otherwise. Such a behavioral rule
might involve a comparison of some target strategy with some fixed strategy (see Weibull, 1995).
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loss.

3.4. Uniform mistake rule

When errors are uniform, every error occurs with the same probability. That is, from

state x, a strategy-revising agent who is currently playing l, will switch to l0 with a probability

given by

p

⌘

�

(l0|l, x) :=

8

<

:

1

|argmax

l̃

⇡

�

(

˜

l,x)|(1� ✏) + 1

n+1

✏ if l0 2 argmax
˜

l

⇡

�

(l̃, x)

1

n+1

✏ otherwise

where ✏ = exp(�⌘

�1). It follows that the resistance V (x, x�,l,l

0
) of a transition from x to

x

�,l,l

0
equals

lim
⌘!0

�⌘ lnP ⌘(x, x�,l,l

0
) =

(

0 if l

0 2 argmax
˜

l

⇡

�

(l̃, x)

1 if l

0
/2 argmax

˜

l

⇡

�

(l̃, x)

3.5. Directed & Undirected errors

Let �
�

(x) be the set of strategies for an agent of type � = ↵, � which involve demanding

at least as much as the agent demands when best responding to the strategy distribution of

the other population.

�
�

(x) := {l : ⇡

�

(l, l) � ⇡

�

(l0, l0) for some l

0 2 argmax
˜

l

⇡

�

(l̃, x)}.

Undirected error processes retain the conditional probabilities p⌘
�

(l0|l, x) described above for

logit and uniform errors. Directed errors are when agents never demand less than their

best response, but can demand more. This fits with an interpretation of the perturbations

as idiosyncratic experimentation by agents to see if they can obtain a higher payo↵. The

conditional probabilities of switching for directed processes are given by:

p̂

⌘

�

(l0|l, x) :=
(

p

⌘

�

(l

0|l,x)P
l̃2�

�

(x) p
⌘

�

(l

0|l,x) if l0 2 �
�

(x)

0 otherwise

where p⌘
�

(l0|l, x) denotes the conditional probability for the corresponding undirected process.

3.6. Conventions and stochastic stability

The process with ⌘ = 0, or ✏ = 0, is the unperturbed process. The recurrent classes of

the unperturbed process are the absorbing states in which all ↵ and � agents coordinate

on the same strategy, and each agent type receives nonzero payo↵. We shall denote by

11



E

i

, i 2 {0, . . . , n}, the state in which all ↵-agents play �i and all �-agents play f(�i),

x

↵

(i) = N , x
�

(i) = N . Hence, the absorbing states of the process are precisely those in the

set ⇤ := {E
1

, . . . , E

n�1

}. Following Young (1993a), we refer to these states as conventions.

Let L := {1, . . . , n� 1} index the states in ⇤ = {E
i

}
i2L.

Stochastic stability analysis selects from amongst conventions by taking a limit of the

stationary distributions of perturbed processes as ⌘ ! 0. A preliminary step is to show that

such stationary distributions exist and are unique for any given positive value of ⌘.

Lemma 2. Each process, uniform or logit, undirected or directed, for given ⌘ > 0, has a

unique stationary distribution, which we denote µ

⌘

.

Proof. Note that for all x 2 ⌅, n
↵

2 �
↵

(x), so for all of our processes, from any x 2 ⌅, unless

x

↵

(n
↵

) = N , we have that P ⌘(x, x↵,l,n) > 0 for some l 6= n. In this way, the process reaches

a state with x

↵

(n
↵

) = N , from which n

�

is a best response for any �-agent. Therefore, from

any x 2 ⌅, with positive probability E

n

will be reached within 2N periods. As the state

space is finite, standard results in Markov chain theory5 imply that for all ⌘ > 0, P ⌘ has a

unique recurrent class and µ

⌘

exists and is unique.

By standard arguments (see Young, 1998b), the limit µ := lim
⌘!0

µ

⌘

exists, and for any

x 2 ⌅, µ(x) > 0 implies that x is in a recurrent class of the process with ⌘ = 0. In our

setting, this implies x 2 ⇤.

Definition 2. A state x 2 ⌅ is stochastically stable if µ(x) > 0.

In a similar way that V (·, ·) measures the rarity of single steps in the dynamic, we will use

a concept, overall cost, that measures the rarity of a transition between any two states over

any number of periods. Let P(x, x0) be the set of finite sequences of states {x1

, x

2

, . . . , x

T}
such that x1 = x, xT = x

0 and for some ⌘̂ > 0, P ⌘̂(x⌧

, x

⌧+1) > 0, ⌧ = 1, . . . , T � 1.

Definition 3. The overall cost of a transition between x, x

0 2 ⌅ is:

c(x, x0) := min
{x1

,...,x

T }2P(x,x

0
)

T�1

X

⌧=1

V (x⌧

, x

⌧+1).

If there is no positive probability path between x and x

0 then let c(x, x0) = 1. We

shall be interested in the cost of transitions between conventions. In the current setting,

this quantity is always finite. Denote the overall cost functions for the undirected-uniform,

undirected-logit, directed-uniform and directed-logit processes by c

U , cL, ĉU , ĉL respectively.

5See, for example, “Probability” by Shiryaev (1995, p.586, Theorem 4).
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4. Transition costs for exponential family: a boundary problem and a solution

For uniform error processes, any least cost transition from a given convention of the con-

tract game to some other convention is driven by errors within a single population. That

is, from some initial convention, errors occur in one of the populations, following which,

agents from the other population can best respond in a way which di↵ers from the initial

convention. Errors in the population which best responds di↵erently would be superfluous.

This logic does not translate to situations in which error costs are state dependent. It is

theoretically possible that on a path between conventions, errors in one population could

facilitate errors in the other population. Previous work does not explicitly study the impli-

cations of such transitions (e.g. Belloc and Bowles, 2013; Staudigl, 2012). It is shown in the

following example, that it is in fact possible for least cost transitions to require that both

populations make errors. Fortunately, it transpires (Theorem 1) that when population sizes

are large, such transitions can be ignored for the purpose of assessing stochastic stability.

Define the basin of attraction of a convention, the set of states from which the unperturbed

dynamic converges to that convention with probability 1.

Definition 4. The basin of attraction of E

i

is given by

D(E
i

) = {x 2 ⌅ : c(x,E
i

) = 0, c(x,E
j

) > 0 for all j 6= i}

For a given convention, E
i

, we seek to determine the lowest cost transition path to some

state outside of the convention’s basin of attraction, D(E
i

).

Example 1. Consider the logit dynamics. Suppose that we have the following game:

1
�

2
�

1
↵

5,4 0,0

2
↵

0,0 7,8

.

We suppose that N = 5. First we compute the minimum escaping cost from E

1

such that

D(E
2

) is reached by transitions by only one population. We have

⇠

N

⇡

↵

(1)

⇡

↵

(1) + ⇡

↵

(2)

⇡

⇡

�

(1) = 12,

⇠

N

⇡

�

(1)

⇡

�

(1) + ⇡

�

(2)

⇡

⇡

↵

(1) = 10.

Next, consider the following transitions:

� switching from 1
�

to 2
�

⇠

N

⇡

↵

(1)

⇡

↵

(1) + ⇡

↵

(2)

⇡

� 1 times and

↵ switching from 1
↵

to 2
↵

⇠

N

⇡

�

(1)

⇡

�

(1) + ⇡

�

(2)

⇡

times.
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Then this gives a path from E

1

to E

2

and the cost of the path is given by

✓⇠

N

⇡

↵

(1)

⇡

↵

(1) + ⇡

↵

(2)

⇡

� 1

◆

⇡

�

(1) +

⇠

N

⇡

�

(1)

⇡

�

(1) + ⇡

�

(2)

⇡

⇥


1

N

✓

N �
✓⇠

N

⇡

↵

(1)

⇡

↵

(1) + ⇡

↵

(2)

⇡

� 1

◆◆

⇡

↵

(1)� 1

N

✓⇠

N

⇡

↵

(1)

⇡

↵

(1) + ⇡

↵

(2)

⇡

� 1

◆

⇡

↵

(2)

�

= 2 ⇡
�

(1) + 2

✓

3

5
⇡

↵

(1) +
2

5
⇡

↵

(2)

◆

= 8.4

which is smaller than the minimum costs of transitions driven by a single population.

So we see that in Example 1, the least cost transition from E

1

to E

2

requires errors to

be made by agents in both populations. This is due to the behavior of the process close to

the boundary of the basin of attraction of E
1

. After �-agents make errors, the cost of errors

by ↵-agents is reduced. A single error by a �-agent has a lower cost than the consequent

reduction in the cost of two errors by ↵-agents. Two errors by �-agents reduce the cost

further still. However, after two errors have been made by �-agents, subsequent errors by

�-agents no longer have a linear e↵ect on the cost of an error by an ↵-agent due to the

zero lower bound on V (·, ·). Following two errors by �-agents, the cost of a third error by a

�-agent is higher than the cost of two errors by ↵-agents. A moment’s consideration leads

one to see that, for any given population size, examples can be constructed for which least

cost transitions involve errors by both populations.

Fortunately, for exponential revision protocols, a class that includes the logit choice rule,

we shall show that when the population size is large, starting from a convention E

i

, the least

cost transition path out of the basin of attraction of E
i

has a cost approximately equal to

the least cost such transition from the restricted class of paths which only involve a single

population making errors. The class of exponential revision protocols is defined (Sandholm,

2010b) as the processes satisfying

log

✓

p

⌘

�

(i|j, x)
p

⌘

�

(j|i, x)

◆

= ⌘

�1 (⇡(j, x
��)� ⇡(i, x

��)) .

where �� := ↵ for � = � and �

� := � for � = ↵. This is a flexible class of rules which includes

the Baker and Metropolis better reply dynamics, and the logit choice rule (see Appendix A).

Definition 5. Let

�!
c (., .) be a cost function restricted to minimize resistance over paths

satisfying (i) errors are only made by one of the populations, and (ii) only a single alternative

strategy is ever played in error. That is,

�!
c (x, x0) := min

{x1
,...,x

T }2�!P (x,x

0
)

T�1

X

⌧=1

V (x⌧

, x

⌧+1).
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where

�!P (x, x0) is the set of paths from x to x

0
such that for any {x1

, . . . , x

T} 2 �!P (x, x0),
there exists some � 2 {↵, �}, k, j, such that for any x

t

, x

t+1

such that V (xt

, x

t+1) > 0, we
have that x

t+1 = (xt)�,k,j.

For the remainder of the paper, to aid conciseness we use the following notation.

Definition 6. The relations ⇡ and . are defined such that, for a and b dependent on N ,

a ⇡ b if and only if for all ✏ > 0, there exists N̄ such that for all N > N̄ , a

N

2 (b
N

�✏, b

N

+✏).
Likewise, a . b if and only if for all ✏ > 0, there exists N̄ such that for all N > N̄ ,

a

N

 b

N

+ ✏.

The main theorem of this section can now be stated. Under exponential revision proto-

cols, including the logit choice rule, lowest cost transitions between conventions of contract

games can be approximated by the lowest cost transitions which involve errors being made

by agents in only one of the populations, and those agents making only one type of error.

Theorem 1. Let ⇤, indexed by L, be the set of strict Nash equilibria of a contract game.

Let |⇤| � 2. Let i 2 L be fixed. Let the strategy revision rule be an exponential revision

protocol. Then

1

N

min
j 6=i

c(E
i

, E

j

) ⇡ 1

N

min
j 6=i

�!
c (E

i

, E

j

) (4)

The proof (see Appendix B) relies on explicitly bounding transition costs from below.

This is achieved by showing that, from E

i

, there is always a least cost transition path to

outside of D(E
i

) that involves the first error on the path being repeated consecutively until

the state is close to the border of D(E
i

). The cost of this path segment bounds the total cost

of the path from below. Moreover, as N gets large, the cost of the path segment approaches

the cost of the least cost path involving errors in only a single population.

Using Theorem 1, we obtain a simple estimation of the least cost transition path away

from any convention.

Corollary 1. Consider a contract game. Let the strategy revision rule be an exponential

revision protocol. Then

1

N

min
j 6=i

c(E
i

, E

j

) ⇡ 1

N

min
j 6=i

⇡

↵

(i)

⇠

N

⇡

�

(i)

⇡

�

(i) + ⇡

�

(j)

⇡

^ 1

N

min
j 6=i

⇡

�

(i)

⇠

N

⇡

↵

(i)

⇡

↵

(i) + ⇡

↵

(j)

⇡

.

(5)

An almost immediate implication of Corollary 1 is that for two strategy, two player coordina-

tion games with two strict Nash equilibria, under the logit dynamic any stochastically stable

convention must correspond to a risk dominant Nash equilibrium. This result has previously

been arrived at by Staudigl (2012) using a di↵erent methodology based on optimal control

problems.

Results of this section in hand, we now return to our application.
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5. Application to contract games

In this section we characterize the stochastically stable conventions. The stochastically

stable convention for each process is associated with a bargaining solution. Transition costs

between conventions are estimated, following which, the stochastically stable conventions can

be characterized. Finally, the stochastically stable conventions are shown to approximate

bargaining solutions.

The following lemma gives the overall costs of transitions between conventions for undi-

rected processes. These transition costs do not depend on the destination convention, only

on the origin. This is because least cost transitions are caused by extreme actions by agents

in one of the populations and after enough such actions have occurred, the process can transit

to any convention for zero additional cost.

Lemma 3. For i, j 2 {1, . . . , n� 1}, i 6= j,

1

N

c

U(E
i

, E

j

) =
1

N

⇠

N

f(�i)

f(�i) + s̄

�

⇡

^ 1

N

⇠

N

�i

�i+ s̄

↵

⇡

, (6)

1

N

c

L(E
i

, E

j

) ⇡ 1

N

�i

⇠

N

f(�i)

f(�i) + s̄

�

⇡

^ 1

N

f(�i)

⇠

N

�i

�i+ s̄

↵

⇡

(7)

For cU(E
i

, ·), the expression to the left of the ^ and inside the d.e is the number of errors

that ↵-agents must make to induce a �-agent to best respond with an action other than

i

�

. The equivalent expression to the right of the ^ is the number of errors that �-agents

must make to induce an ↵-agent to best respond with an action other than i

↵

. For cL(E
i

, ·),
these costs are adjusted by the cost of the individual errors. For example, if every �-agent

is playing i

�

, the cost of an ↵-agent making a mistake and choosing an action other than i

�

is equal to �i, as the ↵-agent in question would obtain a payo↵ of 0, instead of �i which is

the payo↵ from best responding.

The next lemma gives overall costs of least cost transitions between states in ⇤ for directed

processes. For these processes, the destination convention does matter. Least cost transitions

are caused by agents from one of the populations demanding an incremental increase in their

payo↵s. That is, the lowest cost transition from a convention E

i

is to one of the adjacent

conventions E
i�1

, E

i+1

.
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Lemma 4. For i 2 {1, . . . , n� 1}, Z 2 {U,L},

1

N

min
j 6=i

ĉ

Z(E
i

, E

j

) ⇡ 1

N

ĉ

Z(E
i

, E

i�1

) ^ 1

N

ĉ

Z(E
i

, E

i+1

),

1

N

min
j 6=i

ĉ

U(E
i

, E

j

) =
1

N

⇠

N

i

2i� 1

⇡

^ 1

N

⇠

N

f(�i)

f(�(i+ 1)) + f(�i)

⇡

, (8)

1

N

min
j 6=i

ĉ

L(E
i

, E

j

) ⇡ 1

N

f(�i)

⇠

N

i

2i� 1

⇡

^ 1

N

�i

⇠

N

f(�i)

f(�(i+ 1)) + f(�i)

⇡

. (9)

Once again, the expressions inside the d.e on either side of the ^ in (8) are the number

of errors required to induce a best response which di↵ers from that of the initial convention.

Again, the logit expressions in (9) are adjusted for the cost of the individual errors. Note

that the expressions to the left hand side of the ^ in (6), (8) and (9) are decreasing in i,

and the expressions to the right hand side of the ^ are increasing in i. Furthermore, note

that for i = 1, the left hand side in (6), (8), (9) is larger than the right hand side, and the

converse is true for i = n� 1. Note that the expressions on neither side of the ^ in (7) are

monotonic, but both sides are concave in i.

An i-graph is a directed graph on L such that every vertex except for i has exactly one

exiting edge and the graph has no cycles. Let G(i) denote the set of i-graphs. For a graph

g, let (j ! k) 2 g denote an edge from j to k in g. Define:

V(i) := min
g2G(i)

X

(j!k)2g

c(E
j

, E

k

).

We know from Freidlin and Wentzell (1984, chap.6), Young (1993a) that:

µ(E
i

) > 0 , i 2 argmin
j2L

V(j).

This result will be used in our characterization theorem of section 5.2. The observant reader

will, however, have noticed that four stochastic processes and only three bargaining solutions

have been defined in the paper so far. As a final step before the characterization, we define

another bargaining solution.

5.1. The Q4 bargaining solution

We now proceed to define a fourth bargaining solution, the Q4 bargaining solution. The

reason we believe this solution to be interesting and relevant will become clear with Theorem

2 of the next section.

Definition 7. The Q4 bargaining solution.

t

Q4 := arg max
0ts̄

↵

t f(t)�(t), where �(t) :=
1

t+ s̄

↵

^ 1

f(t) + s̄

�
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That is, the Q4 bargaining solution maximizes an adjusted Nash product. Our assump-

tions on f(.) guarantee that t f(t)�(t) is strictly concave, so t

Q4 is unique. We will see

that the solution is characterized by a three part piecewise function, with one part di↵er-

ing considerably from the other two parts. The properties of the Q4 bargaining solution

are analyzed further and compared to existing bargaining solutions in section 6. First, the

characterization theorem of the paper is given.

5.2. Characterization theorem

The theorem presented in this section characterizes the selection results of the evolution-

ary processes discussed above. To reiterate, the processes are all perturbed best response

processes and di↵er only in their perturbation structure. The perturbations analyzed vary

along two dimensions: they can be undirected or directed, they can be uniform or logit.

First, a lemma is given which characterizes the stochastically stable states of the model for

given � and given large population size. The stochastically stable states are conventions

which maximize the expressions (6), (7), (8), (9).

Lemma 5. For large N , c 2 {cU , cL, ĉU , ĉL}, µ(E
i

) > 0 implies that j = i maximizes the

approximation of min
k2L\{j} c(Ej

, E

k

) given in (6), (7), (8), (9). When this maximizer is

unique, µ(E
i

) > 0 if and only if

i 2 argmax
j2L

min
k2L\{j}

c(E
j

, E

k

). (10)

This characterizes the stochastically stable states for the problem. The principle theo-

rem of the paper now approximates these states for large N and small �, linking them to

bargaining solutions. The theorem states that for a fine discretization (small �) and large

populations (large N), the stochastically stable states of our four processes correspond to

our four bargaining solutions. The content of the theorem is summarized by table 1 given

in the introduction to the paper. The results of the first row of table 1 (uniform errors) are

known from Young (1998a) and Naidu et al. (2010). The results of the second row (logit

errors) are, to the best of the authors’ knowledge, new.

Theorem 2. For any " > 0, there exists �̄ such that for all � < �̄, there exists N

�

2 N such

that for all N � N

�

, µ(E
i

) > 0 =) |�i� t

⇤| < ", where

t

⇤ =

8

>

>

<

>

>

:

t

KS

if P

⌘

is uniform-undirected.

t

Q4
if P

⌘

is logit-undirected.

t

NB

if P

⌘

is uniform-directed.

t

E

if P

⌘

is logit-directed.

Uniform and logit errors are by far the most common errors used in the stochastic stability

literature. Under uniform errors, the (order of the) probability of a given error is state
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independent, so selection is determined by how easy it is to cause a change in the best

response of one population when mutations occur in the other population. Directed errors

truncate the error distribution so that some errors are completely disallowed. This is one way

of varying the probabilities with which errors are made, and allowing the ease with which

errors are made to influence selection. A more gradual way is to use logit perturbations,

under which errors which are more costly (in terms of payo↵s) to the erring agent occur with

lower probability. It is gratifying that the three classic bargaining solutions are selected under

three of the four combinations covered by the theorem. However, the solution in our fourth

quadrant, the Q4 solution, is quite a di↵erent object: the two drivers of selection, (i) ease of

making errors, and (ii) ease of responding to errors, combine to create non-monotonicities

that give the solution unusual properties. These shall be discussed in section 6.

6. Properties of the Q4 solution

In this section we examine the properties of the Q4 bargaining solution. First, we rewrite

t

Q4 as

t

Q4 = arg max
0ts̄

↵

h

1

(t) ^ h

3

(t), (11)

where

h

1

(t) :=
tf(t)

t+ s̄

↵

, h

3

(t) :=
tf(t)

f(t) + s̄

�

Not coincidentally, h
1

, h
3

are the functions either side of the ^ in expression 7. We denote

the maximizers of these functions by t

1

, t
3

respectively.

t

l

:= arg max
0ts̄

↵

h

l

(t), l = 1, 3.

When h

1

(t) and h

3

(t) intersect for 0  t  s̄

↵

, that is for 1

2

 s̄

↵

s̄

�

 2, we let t
2

be the value

of t for which this intersection occurs. That is, t
2

solves

t

2

+ s̄

↵

= f(t
2

) + s̄

�

.

Remark 1. The Q4 bargaining solution solves

t

Q4 :=

8

<

:

t

1

if h

1

(t
1

) < h

3

(t
1

), (Case 1)

t

3

if h

3

(t
3

) < h

1

(t
3

) , (Case 3)

t

2

otherwise. (Case 2)
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The cases of the solution are numbered by the order in which they occur as the ratio
s̄

↵

/̄s

�

moves from high to low values. For high values of s̄

↵

/̄s

�

, the maximum of h
1

(·) lies

underneath the curve of h
3

(·). This is when Case 1 holds and is illustrated for a linear

bargaining frontier in figure 4. For low values of s̄

↵

/̄s

�

, the maximum of h
3

(·) lies underneath
the curve of h

1

(·) and we are in Case 3. For values of s̄

↵

/̄s

�

close to 1, the maximizer of (11)

is determined by the intersection of h
1

(·) and h

3

(·). The decomposition of Q4 in Remark 1

facilitates analysis, as Case 2 exhibits very di↵erent properties to Cases 1 and 3.

In table 2 we list the axioms satisfied by the four bargaining solutions in the paper.

E�ciency is achieved by every solution, and implies that if a solution gives t⇤ to Player ↵,

it gives f(t⇤) to Player �. Other axioms are as follows.

Definition 8. Let g, f be two bargaining frontiers, t

⇤
g

, t

⇤
f

their associated solutions.

IIA g � f, g(t⇤
g

)  f(t⇤
g

) =) t

⇤
g

= t

⇤
f

.

Invariance g(x) = f(ax), a 2 R =) t

⇤
g

= 1

a

t

⇤
f

.

Monotonicity g � f =) t

⇤
g

� t

⇤
f

.

Individual Monotonicity g � f, g(0) = f(0) =) t

⇤
g

� t

⇤
f

.

Stretch-monotonicity g(x) = f(ax), a 2 R, a < 1 =) t

⇤
g

� t

⇤
f

.

We include a non-standard axiom: stretch-monotonicity. This holds when a stretch of the

bargaining frontier parallel to the axis measuring player �’s payo↵s will (weakly) increase the

payo↵ of player �. Stretch-monotonicity is weaker than individual monotonicity, which is in

turn weaker than monotonicity. Furthermore, stretch-monotonicity is implied by invariance,

and is therefore satisfied by all of the existing major bargaining solutions. It can be seen in

table 2 that the Q4 bargaining solution is highly irregular in that it does not comply with

many of the axioms.

Axiom Nash K-S Egalitarian Q4

Symmetry Yes Yes Yes Yes

E�ciency Yes Yes Yes Yes

IIA Yes No Yes No

Invariance Yes Yes No No

Monotonicity No No Yes No

Individual Monotonicity No Yes Yes No

Stretch-monotonicity Yes Yes Yes No

Table 2: Axioms satisfied by bargaining solutions.

The presence of s̄
↵

and s̄

�

in the Q4 solution means that IIA is violated. In Case 1 and

Case 3, the Q4 solution is similar to the Nash solution, but adjusted to take into account
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the best possible outcome for one of the players. If s̄
↵

> s̄

�

and the conditions for Case 1

are satisfied, then Player ↵ does worse than he does under the Nash solution. Moreover, an

increase in s̄

↵

results in player ↵ achieving a higher payo↵: his payo↵ is increasing in his

best possible outcome. These facts can be seen by comparing the first order condition for

the Nash bargaining solution:

t

NB

f

0(tNB) + f(tNB) = 0

to the first order condition for the Q4 solution in Case 1:

t

Q4
f

0(tQ4) +
s̄

↵

t

Q4 + s̄

↵

f(tQ4) = 0.

The increase of Player ↵’s payo↵ in his best possible outcome di↵ers from the similar e↵ect

in the Kalai-Smorodinsky solution. The e↵ect in the latter depends on the ratio of s̄
↵

and

s̄

�

, whereas in Case 1 of the Q4 solution, changes in s̄

�

have no direct e↵ect. Symmetrically,

in Case 3 the solution depends on f(.) and s̄

�

, but not directly on s̄

↵

.

When s̄

↵

and s̄

�

are relatively close to one another and the solution is in Case 2, player

�’s payo↵ does not necessarily increase with s̄

�

, and can even decrease. In fact, the solution

is an Egalitarian solution with a notional disagreement point of (s̄
�

, s̄

↵

). The disagreement

point is wholly notional as it lies outside of the bargaining set. The players equalize their

losses from this notional disagreement point. Somewhat bizarrely, this notional disagreement

point for a player is equal to the maximum attainable payo↵ of the other player (see figure

2). This creates nonmonotonicities: it can be seen immediately from the expression for the

solution in Case 2, and the illustration in figure 2, that holding the bargaining frontier fixed

close to the current solution, an improvement in the best possible outcome for a player will

result in his achieving a lower payo↵.

Proposition 1. Considering t

Q4

as a function of s̄

↵

, s̄

�

, and f(.) in the neighborhood of the

solution, we have that in Case 1,

@t

Q4

@s̄

↵

> 0, in Case 2,

@t

Q4

@s̄

↵

< 0, in Case 3,

@t

Q4

@s̄

↵

= 0.

Moreover, we can make a stronger statement about non-monotonicity. We shall shortly

see by means of an example that stretch-monotonicity is violated by the Q4 bargaining

solution. Consequently, the Q4 bargaining solution satisfies neither individual monotonicity

nor invariance.6

6It may be argued that invariance should be understood as a simple rescaling of payo↵s, and that therefore
error probabilities should also be rescaled. The authors agree that should everything be rescaled, then
invariance will result. However, invariance as an axiom is more than just a statement about rescaling. It is
also a normative statement about how wealth a↵ects bargaining power. It is this interpretation of invariance
that justifies an analysis of rescaled payo↵s without a corresponding rescaling of error probabilities.
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Figure 2: Case 2 of the Q4 solution, also illustrating Egalitarian and Kalai-Smorodinsky solutions for
comparison.

6.1. Example: linear bargaining frontier

The case of a linear bargaining frontier is now analyzed. The frontier is given by the

equation f(t) = s̄

�

� t

s̄

�

s̄

↵

. Conditions under which each case of the solution pertains and

explicit solutions for each case are given in table 3. An increase in s̄

↵

is equivalent to a

stretch of the bargaining frontier parallel to the horizontal axis. It can be seen that when

Case 2 pertains, an increase in s̄

↵

results in a reduction in t

⇤, even though the section of

the bargaining frontier where the solution lies does not remain constant under the stretch.

Figure 3 shows how, fixing s̄

�

, the payo↵ of Player ↵ varies with s̄

↵

. Plots of the least

Case Condition Solution

1 s̄

↵

>

⇣

3

p
2

2

� 1
⌘

s̄

�

t

Q4 = (
p
2� 1)s̄

↵

2
⇣

3

p
2

2

� 1
⌘�1

s̄

�

 s̄

↵


⇣

3

p
2

2

� 1
⌘

s̄

�

t

Q4 = (2s̄

�

�s̄

↵

)s̄

↵

s̄

↵

+s̄

�

3 s̄

↵

<

⇣

3

p
2

2

� 1
⌘�1

s̄

�

t

Q4 = (2�
p
2)s̄

↵

Table 3: Explicit expressions for the Q4 bargaining solution when the frontier is linear.

resistance exit from a convention (t, f(t)) driven by the mistakes of each agent type under

all four of our error specifications (that is, plots of the expressions in equations (6), (7), (8),

(9)) are given in figure 4 and 5 for t ranging from zero to s̄

↵

. It can be observed that for

three of the specifications, the least resistances for transitions induced by the errors of any

given agent type are monotone functions of t. Thus, the solution lies at the intersection of
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Figure 3: tQ4 by s̄↵, keeping s̄� = 1.

the two lines. For the undirected-logit specification the least resistances are non-monotonic.

Two e↵ects compete: the ease with which errors are made, and the ease of responding to

errors. When either of these things are too easy, least resistances are low. The solution

will now not necessarily lie at the intersection of the two lines. When the ratio s̄

↵

/̄s

�

di↵ers

significantly from 1, the maximum of one of the curves lies below the other curve. This is

Case 1 and Case 3 of our analysis, and Case 1 is illustrated in figure 4. When both maxima

of the curves lie above the other curve, then the solution is the intersection of the curves.

This is Case 2 of our analysis, and is illustrated in figure 5.

7. Discussion

This paper studies interactions by which standard axiomatic bargaining solutions emerge

from the non-cooperative play of minimally forward looking individuals. It develops a method

of determining minimum transition costs under processes for which mutation probabilities

are log-linearly state dependent. Since Theorem 1 holds trivially for uniform mistake models,

this result can be regarded as a useful generalization of the existing method of computing

minimum transition costs. This method is used to study perturbed adaptive play of contract

games – coordination games over points in a discretized bargaining set. The analysis high-

lights the interaction of two forces that drive evolutionary selection, namely (i) the ease of

making errors, and (ii) the ease of responding to errors. Three major bargaining solutions are

justified by plausible behavioral rules. The logit choice rule and other exponential strategy

revision protocols give rise to a new bargaining solution with interesting features: the Q4

solution.

An important feature of the Q4 solution is that it arises from any exponential revision

protocol. The logit choice rule requires that an agent compare his expected payo↵s from all
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Figure 4: Least resistances by t for a linear frontier, s̄↵ = 1.5, s̄� = 1.
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Figure 5: Least resistances by t for a linear frontier, s̄↵ = s̄� = 1.
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possible strategies. Thus, the informational requirements of the logit choice rule are great

when there are numerous alternatives from which to choose. However, the class of exponential

revision protocols includes some rules with very limited informational requirements, such as

better reply rules, by which, in any given period, an agent only compares the expected payo↵

from his current strategy to that of a single alternative strategy (see Sandholm, 2010a).

That the Q4 solution emerges from every member of this popular class of dynamics is a

result which contrasts with popular misconceptions of the “anything can happen” result of

Bergin and Lipman (1996). Log-linear error probabilities with full support su�ce to select

Q4, irrespective of the finer details of the dynamic.

It can be asked whether intuitively appealing axioms can be found which uniquely char-

acterize the Q4 solution. Such an attempt would be complicated by the piecewise nature of

the Q4 solution. When players’ best possible outcomes di↵er considerably, the Q4 solution

is an adjusted Nash bargaining solution. When best possible outcomes are similar, the Q4

solution is similar to the Egalitarian solution, equalizing the losses of each player from a

notional payo↵ equal to the best possible outcome of the opposing player. Therefore, any

axiomatic characterization is likely to be similarly hybrid.
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Appendix A. Examples of revision rules

Here we present some revision rules under which Theorem 1 holds (see Appendix B).

Better Reply (Baker) Dynamic p

⌘

�

(l0|l, x) / exp(⌘

�1
⇡

�

(l

0
,x))

exp(⌘

�1
⇡

�

(l

0
,x))+exp(⌘

�1
⇡

�

(l,x))

Better Reply (Metropolis) Dynamic p

⌘

�

(l0|l, x) / exp(⌘

�1
⇡

�

(l

0
,x))

exp(⌘

�1
⇡

�

(l

0
,x))_exp(⌘�1

⇡

�

(l,x))

Incomplete Logit p

⌘

�

(l0|l, x) = exp(⌘

�1
⇡

�

(l

0
,x))P

l̃2C

exp(⌘

�1
⇡

�

(

˜

l,x))

where {l, l0} ✓ C ⇢ S

Fixed comparison p

⌘

�

(l0|l, x) / exp(⌘

�1
⇡

�

(l

0
,x))

exp(⌘

�1
⇡

�

(l

0
,x))+exp(⌘

�1
M)

for some M > 0

Then using lemma 1, we can find the following V functions for the Baker and Metropolis,

logit, and fixed comparison dynamics respectively. Baker, Metropolis and logit with full

support are examples of exponential revision protocols (Sandholm, 2010b).

V (x, x�,i,j) = ⇡

�

(i, x) _ ⇡

�

(j, x)� ⇡

�

(j, x) = [⇡
�

(i, x)� ⇡

�

(j, x)]
+

V (x, x�,i,j) = max
˜

l2C
⇡

�

(l̃, x)� ⇡

�

(j, x)

V (x, x�,i,j) = [M � ⇡

�

(j, x)]
+

.

Appendix B. Proof of Theorem 1 and Corollary 1

This section gives su�cient conditions for Theorem 1 and Corollary 1 to hold. These condi-

tions are satisfied by exponential revision protocols. To express transitions by agents from

one strategy to another more succinctly, we write

e

↵

i

:= ((0, · · · , N, · · · , 0), (0, · · · , 0, · · · , 0)), N in ith position

e

�

j

:= ((0, · · · , 0, · · · , 0), (0, · · · , N, · · · , 0)), N in jth position.

Throughout this section we consider transitions from E

i

to some other convention for fixed

i. We define

⌅
�

:=

(

x

�

2 Rn :
X

i

x

�

(i) = N

)

and it is easy to see that ⌅ = ⌅
↵

⇥ ⌅
�

.

We consider V functions which satisfy the following properties:

C1: Irrelevance of own population

V (x, x�,k,l) = V (y, y�,k,l) for x
�

= y

�

, � = ↵, �.
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C2: A�ne Linearity

For all i, j, �, there exists a�ne linear functions v�,i,j : ⌅
�

� ! R and constants �i,j

�

> 0

and sets C i

�

✓ {0, . . . , n} such that

V (x, x�,i,j) =

8

>

<

>

:

0 if x 2 {y 2 ⌅ : y
�

�(i)  N � �

i,j

�

, y

�

�(i) + y

�

�(j) = N

�

�}
v

�,i,j(x
�

�) if x 2 {y 2 ⌅ : y
�

�(i) > N � �

i,j

�

} and j 2 C

i

�

1 if x 2 {y 2 ⌅ : y
�

�(i) > N � �

i,j

�

} and j /2 C

i

�

.

C3: Coordination

For all i, j, k, �,

v

�,i,j(e��
i

) = v

�,i,k(e��
i

),

where v

�,i,j is increasing w.r.t. x
��(i) and decreasing w.r.t. x

��(j), and v

�,i,j(e��
j

) <

0 < v

�,i,j(e��
i

).

Condition 1 merely requires that play occurs between two populations, for which payo↵s

of each population depend on the strategy profile of the opponent population. Condition

2 requires that costs of transition vary linearly within the basin of attraction of each Nash

equilibrium (described by �

i,j

�

) and thus coincide with some a�ne function v

�,i,j. Condition

3 is satisfied when the underlying game is a contract game. Property C2 implies that we

can define

�̄

i,j

↵

= ✓̄

ij

:= max

⇢

✓ 2 N: v�,i,j
✓✓

1� ✓

N

◆

e

↵

i

+
✓

N

e

↵

j

◆

> 0

�

(B.1)

�̄

i,j

�

= ⇣̄

ij

:= max
n

⇣ 2 N: v↵,i,j
⇣⇣

1� ⌘

N

⌘

e

�

i

+
⌘

N

e

�

j

⌘

> 0
o

.

Rules that satisfy C1-C2, and satisfy C3 when payo↵s are determined by an underlying

coordnation game include the logit choice rule, the Baker dynamic, the Metropolis dynamic,

generalized logit, and logit with limited domain of choice (See Appendix A).

Using the a�ne linearity of v, we have

v

�,i,j

✓✓

1� ✓

N

◆

e

↵

i

+
✓

N

e

↵

j

◆

> 0 =)
✓

1� ✓

N

◆

v

�,i,j(e↵
i

) +
✓

N

v

�,i,j(e↵
j

) > 0.

Observe that C2 implies that v�,i,j(e↵
i

) > 0 and v

�,i,j(e↵
j

) < 0. It follows that

✓̄

ij

:=

⇠

N

v

�,i,j(e↵
i

)

v

�,i,j(e↵
i

)� v

�,i,j(e↵
j

)

⇡

� 1, and ⇣̄

ij

:=

&

N

v

↵,i,j(e�
i

)

v

↵,i,j(e�
i

)� v

↵,i,j(e�
j

)

'

� 1.
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When V is given by the logit (or Baker) dynamic, we have

v

�,i,j(e↵
i

) = ⇡

�

(i), v

�,i,j(e↵
j

) = �⇡

�

(j).

Theorem 3. Suppose that V satisfies C1-C3. Let i be given. Then

1

N

min
j

c

N(E
i

, E

j

) ⇡ 1

N

min
j2Ci

↵

v

↵,i,j(e�
i

)✓̄
ij

^ 1

N

min
j2Ci

�

v

�,i,j(e↵
i

)⇣̄
ij

.

Using Theorem 3, Theorem 1 and Corollary 1 can be proven.

Proof of Theorem 1. It follows from (B.1) and C2 that 1

/N ✓̄

ij

⇡ 1

/N (✓̄
ij

+1) and that for

j 2 C

i

↵

, v↵,i,j(e�
i

)(✓̄
ij

+ 1) is the cost of a path of transitions from E

i

to ⌅ \D(E
i

) in which

the only errors involve ↵ players switching to j. As this is true for any j 2 C

i

↵

, and a similar

statement applies for v�,i,j(e↵
i

)(⇣̄
ij

+ 1), the proof is complete.

Proof of Corollary 1. Observe that

v

↵,i,j(x
�

) =
x

�

(i)

N

⇡

↵

(i)� x

�

(j)

N

⇡

↵

(j) and v

�,i,j(x
↵

) =
x

↵

(i)

N

⇡

�

(i)� x

↵

(j)

N

⇡

�

(j)

�

i,j

↵

:= ✓̄

ij

=

⇠

N

⇡

�

(i)

⇡

�

(i) + ⇡

�

(j)

⇡

� 1 and �

i,j

�

:= ⇣̄

ij

=

⇠

N

⇡

↵

(i)

⇡

↵

(i) + ⇡

↵

(j)

⇡

� 1

satisfies C2.

The idea of the proof of Theorem 3 is as follows. To estimate the minimum bound for

the lowest cost transitions, we study the minimization problem of the cost function over all

possible paths escaping E
i

. Estimation of such minima is complicated when the cost function

of a given path loses linearity at the boundary of the basin of attraction, as is illustrated

by Example 1. To overcome this problem, we explicitly estimate the size of the basin of

attraction (Lemma 6) and construct a “truncated” path which has the same or lower cost

than the original path, retaining linearity (Lemma 7).

For a path � = (x
1

, x

2

, · · · , x
L

), we write V (�) :=
P

L�1

l=1

V (x
l

, x

l+1

). We let

D̄(E
j

) := {x 2 ⌅ : there exists a path � from x to E

j

such that V (�) = 0}

✓

i

:= min
�

✓̄

ij

: j 2 S

 

, ⇣

i

:= min
�

⇣̄

ij

: j 2 S

 

.

We shall use the notation (↵, k, l : ✓) to denote a number ✓ of ↵-agents switching, in suc-

cession, from action k to action l. Similarly, let (�, k0
, l

0 : ⇣) denote a number ⇣ of �-agents

switching from action k to action l. Suppose that a path escaping E

i

, � = (x
1

, x

2

, · · · , x
L

),

30



consists of the following transitions

(↵, k
1

, l

1

: ✓
1

) ! (↵, k
2

, l

2

: ✓
2

) ! (�, k0
1

, l

0
1

: ⇣
1

) ! (↵, k
3

, l

3

: ✓
3

) !

· · · ! (�, k0
L

0 , l
0
L

0 : ⇣
L

0) ! (↵, k
L

, l

L

: ⇣
L

),

such that x
1

= E

i

, x

1

, · · · , x
L�1

2 D̄(E
j

)c and x

L

2 D̄(E
j

).

Lemma 6. Suppose that V satisfies C1-C3. Let {v�,i,k}
k

be given by C2. Then the follow-

ing statements hold.

(1) Let y be a state in � immediate after the transition (↵, k
m̃

, l

m̃

; ✓
m̃

). If v�,i,k(y
↵

)  0 for

some k, then

P

{m:k

m

=i and mm̃} ✓m � ✓

i

(2) Let y be a state in � immediate after the transition (�, k0
q̃

, l

0
q̃

; ⇣
q̃

). If v↵,i,k(y
�

)  0 for

some k, then

P

{q:k0
q

=i and qq̃} ⇣q � ⇣

i

(3)

P

{m:k

m

=i} ✓m � ✓

i

or

P

{q:k0
q

=i} ⇣q � ⇣

i

Proof. We first show that (1) holds. First we establish that if y

↵

(i) > N � ✓

i

, then

v

�,i,k(y
↵

) > 0 for all k. Let y 2 ⌅ such that y
↵

(i) > N � ✓

i

. If y = (e↵
i

, y

�

), then from C2,

v

�,i,k(y
↵

) > 0 for all k and we are done. Thus suppose that y
↵

(i) 6= N. We define

c

j

:=
y

↵

(j)

N � y

↵

(i)
.

for j = 1, 2, · · · , i� 1, i+ 1, · · · , n. Then

X

j 6=i

c

j

= 1 and

y

↵

= c

1

(N � y

↵

(i), 0, · · · , 0, y
↵

(i), 0, · · · , 0) + c

2

(0, N � y

↵

(i), · · · , 0, y
↵

(i), 0, · · · , 0)

+ c

n

(0, · · · , 0, y
↵

(i), 0, · · · , N � y

↵

(i))

=
X

j 6=i

c

j

(
y

↵

(i)

N

e

↵

i

+
N � y

↵

(i)

N

e

↵

j

).

By C2 and C3,

v

�,i,k(y
↵

) = v

�,i,k(
X

j 6=i

c

j

(
y

↵

(i)

N

e

↵

i

+
N � y

↵

(i)

N

e

↵

j

)) =
X

j 6=i

c

j

v

�,i,k(
y

↵

(i)

N

e

↵

i

+
N � y

↵

(i)

N

e

↵

j

)

> v

�,i,k(
y

↵

(i)

N

e

↵

i

+
N � y

↵

(i)

N

e

↵

k

) > 0

where the first inequality follows from the fact that v

�,i,k(x) is decreasing in x

↵

(k). This

shows that if y
↵

(i) > N � ✓

i

, v�,i,k(y
↵

) > 0 for all k. Thus if v�,i,k(y
↵

)  0 for some k,

y

↵

(i)  N � ✓

i

. Let y be the state in � immediately after (↵, k
m̃

, l

m̃

; ✓
m̃

). If ✓
m

’s are the
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number of transitions by ↵-agents prior to y, then

y

↵

(i) = N �
X

{m:k

m

=i,

mm̃}

✓

m

+
X

{m:l

m

=i,

mm̃}

✓

m

So

X

{m:k

m

=i,

mm̃}

✓

m

= N � y

↵

(i) +
X

{m:l

m

=i,

mm̃}

✓

m

� N � y

↵

(i) � N � (N � ✓

i

) = ✓

i

.

Thus if v�,i,k(y
↵

)  0 for some k,

P

{m:k

m

=i,

mm̃}
✓

m

� ✓

i

.Then (2) follows similarly. (3) follows

from the fact that if y = x

L

2 D̄(E
j

), then V (y, y↵,i,k) = 0 for some k or V (y, y�,i,k
0
) = 0 for

some k

0
. Thus from (1) and (2), (3) follows.

Consider again a path � from E

i

to D̄(E
j

). We seek a lower bound for V (�). To do

this we ignore terms V (x, x↵,k,l)✓ for k 6= i (or V (x, x�,k

0
,l

0
)⇣ for k

0 6= i) which represent

transitions from k 6= i to l. Then we bound the remaining terms from below. If x is the

state in � immediately after (↵, k
m̃

, l

m̃

; ✓
m̃

), then by C3

V (x, x�,i,l) = v

�,i,l(x
↵

) � v

�,i,l(ym̃
↵

), where y

m̃

↵

(i) = N�
X

{m:k

m

=i, mm̃}

✓

m

, y

m̃

↵

(l) =
X

{m:k

m

=i, mm̃}

✓

m

.

Let

r

m

(⌘
1

, · · · , ⌘
q

m

) := v

↵,i,l

m(yqm
�

), u

q

(�
1

, · · · , �
m

q

) := v

�,i,l

0
q(ymq

↵

).

Then, omitting any terms related to transitions other than those from i, V (�) is bounded

below by

'(✓, ⇣) := r

1

✓

1

+u

1

(✓
1

)⇣
1

+· · ·+r

m

q̃

(⇣
1

, · · · , ⇣
q̃�1

)✓
m

q̃

+u

q̃

(✓
1

, · · · , ✓
m

q̃

)⇣
q̃

+· · ·+r

L

(⇣
1

, · · · , ⇣
L

0)✓
L

.

(B.2)

We will consider the following minimization problem:

min{'(✓, ⇣) : 0  ✓

m

 ✓̄

k

m

,l

m

, 0  ⇣

q

 ⇣̄

k

0
q

,l

0
q

for all m = 1, · · ·L, q = 1, · · · , L0
, (B.3)

r

m

� 0 for all m and u

q

� 0 for all q,
L

X

m=1

✓

m

� ✓

i

}.

Similar problems can be defined for � functions whose last term has a u

L

0(.) rather than a
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Figure B.6: Illustration of the truncation lemma.

r

L

(.).

Lemma 7 (Truncation). Consider the minimization problem given by (B.2) and (B.3).

Let (✓⇤, ⇣⇤) be the optimal choices. If u

q̃

(✓⇤) = 0 in (B.2), for

�(✓, ⇣) := r

1

✓

1

+ u

1

(✓
1

)⇣
1

+ · · ·+ r

m

q̃

(⇣
1

, · · · , ⇣
q̃�1

)✓
m

q̃

,

we have

'(✓⇤, ⇣⇤) � min{�(✓, ⇣) : 0  ✓

m

 ✓̄

k

m

,l

m

, 0  ⇣

q

 ⇣̄

k

0
q

,l

0
q

, r

m

� 0, u
q

� 0

for all 1  m  m

q̃

, 1  q  q̃ � 1,
X

{m:mm

q̃

}

✓

m

� ✓

i

}.

A similar result holds if r

m̃

(⇣⇤) = 0 in (B.2).

Proof. From Lemma 6, if u
q̃

(✓⇤) = 0,
P

{m:mm

q̃

} ✓
⇤
i

� ✓

i

. Thus for r = 1, 2, 3, 4 we have

'

r

(✓⇤, ⇣⇤) � r

1

✓

⇤
1

+ u

1

(✓⇤
1

)⇣⇤
1

+ · · ·+ r

m

q̃

(⇣⇤
1

, · · · , ⇣⇤
q̃�1

)✓⇤
m

q̃

� min{�(✓, ⇣) : 0  ✓

m

 ✓̄

k

m

,l

m

, 0  ⇣

q

 ⇣̄

k

0
q

,l

0
q

, r

m

� 0, u
q

� 0

for all 1  m  m

q̃

, 1  q  q̃ � 1,
X

{m:mm

q̃

}

✓

m

� ✓

i

}.

Proof of Theorem 3. We let

c̄

N

:= min
j2Ci

↵

v

↵,i,j(e�
i

)(✓̄
ij

+ 1) ^ min
j2Ci

�

v

�,i,j(e↵
i

)(⇣̄
ij

+ 1)

c

N

:= min
j2Ci

↵

v

↵,i,j(e�
i

)✓̄
ij

^ min
j2Ci

�

v

�,i,j(e↵
i

)⇣̄
ij

We will show that c̄

N

� min
j

c

N(E
i

, E

j

) � c

N

. We suppose that � is a path from E

i

to
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D(E
j

) and that the final step in the path is a transition by an ↵-agent (the other case

follows similarly). Consider a ' function based on � and the minimization problem given

by B.3 before Lemma 7. Let (✓⇤, ⇣⇤) be the optimal choices. If r
m

(⇣⇤) = 0 for some m, or

u

q

(✓⇤) = 0 for some q, we can apply Lemma 7 and start over. Hence we suppose that at

(✓⇤, ⇣⇤), r
m

(✓⇤, ⇣⇤) > 0, u
q

(✓⇤, ⇣⇤) > 0 for all m,q. First, suppose that
P

m

✓

⇤
m

> ✓

i

. Recall

that ✓
m

is associated with switches from i to l

m

, and ⇣

m

is associated with switches from i

to l

0
m

. Because of a�ne linearity, we must have that (1) ✓⇤
m

= 0 or ✓̄
il

m

, (2) ⇣⇤
q

= 0 or ⇣̄
il

0
q

for

all m, q, and (3) at least one ✓

⇤
m̃

= ✓̄

il

m̃

.

if ✓⇤
1

= ✓̄

il1 , '̃(✓⇤, ⇣⇤) � v

↵,i,l1(e�
i

)✓̄
il1 > v

↵,i,l1(e�
i

)✓
i

if ✓⇤
1

= 0, ⇣⇤
1

= ⇣̄

il

0
1
, '̃(✓⇤, ⇣⇤) � v

�,i,l

0
1(e↵

i

)⇣̄
il

0
1
> v

↵,i,l

0
1(e↵

i

)⇣
i

if ✓⇤
1

= 0, ⇣⇤
1

= 0, ⇣⇤
2

= ⇣̄

il

0
2

'̃(✓⇤, ⇣⇤) � v

�,i,l

0
2(e↵

i

)⇣̄
il

0
2
> v

↵,i,l

0
2(e↵

i

)⇣
i

...
...

if ✓⇤
1

= 0, ✓⇤
2

= 0, · · · , ✓⇤
m̃

= ✓̄

il

m̃

⇣

⇤
1

= 0, ⇣⇤
2

= 0, · · · , ⇣⇤
q

m̃

= 0 '̃(✓⇤, ⇣⇤) � v

↵,i,l

m̃(e�
i

)✓̄
il

m̃

> v

↵,i,l

m̃(e�
i

)✓
i

(B.4)

Thus we obtain the desired lower bound c

N

. Next, suppose that
P

m

✓

⇤
m

= ✓

i

. Further divide

into two cases: (i) ✓

⇤
m

< ✓

i

for all m and (ii) ✓

⇤
m̃

= ✓

i

for some m̃. Consider case (i). In

this case there are ✓

⇤
m̃

and ✓

⇤
m̃

0 such that 0 < ✓

⇤
m̃

, ✓

⇤
m̃

0 < ✓

i

. Since
P

m

✓

m

= ✓

i

is linear with

respect to ✓

m

’s, the a�ne linearity of ' w.r.t. ✓

m

implies that either (✓⇤
m̃

+ o, ✓

⇤
m̃

0 � o) or

(✓⇤
m̃

� o, ✓

⇤
m̃

0 + o) for small o gives lower or equal ' than ✓

⇤. A lower ' value contradicts

optimality of ✓⇤
m

. If the new value is equal, repeat the argument until some ✓⇤
m

= ✓

i

for some

m. Now consider case (ii). If ✓⇤
m̃

= ✓

i

, then evaluating as in (B.4), we obtain the desired

lower bound.

Concerning the upper bound, let j

⇤
↵

and j

⇤
�

be the states to which the direct escaping

costs are minimal, that is j

⇤
↵

solves min
j

v

↵,i,j(e�
i

)✓̄
ij

, and j

⇤
�

solves min
j

v

�,i,j(e↵
i

)⇣̄
ij

. The

upper bound follows by either choosing a path consisting solely of ✓̄
ij

⇤
↵

+ 1 transitions by

↵-agents from i to j

⇤
↵

, or a path comprising ⇣̄

ij

⇤
�

+ 1 transitions by �-agents from i to j

⇤
�

.
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Appendix C. Proofs of other Lemmas and Theorems

Proof of Lemma 3. If, for i, j 2 {1, . . . , n�1}, a sequence {x0

, . . . , x

T}, x0 = E

i

, xT = E

j

,

is such that
P

T�1

⌧=0

V (x⌧

, x

⌧+1) = c(E
i

, E

j

). For � = ↵, �, define

⌧

�

= min{⌧ : V (x⌧

, x

⌧+1) = 0, x⌧+1 = (x⌧ )�,j,k, k 6= i} ^ T.

It must be that

(N � x

⌧

�

↵

(i))s̄
�

� x

⌧

�

↵

(i) f(�i),

where the left hand side is an upper bound on ⇡

�

(j
�

, x

⌧

�

↵

), j 6= i, and the right hand side

equals ⇡
�

(i
�

, x

⌧

�

↵

). Rearranging, we obtain

N � x

⌧

�

↵

(i) �
⇠

N

f(�i)

f(�i) + s̄

�

⇡

=: ⇠
↵

.

Similarly,

N � x

⌧

↵

�

(i) �
⇠

N

�i

�i+ s̄

↵

⇡

=: ⇠
�

.

If ⌧
�

< ⌧

↵

, then at least ⇠
↵

↵-agents need to have made errors before time ⌧

�

. Similarly, if

⌧

↵

< ⌧

�

, then at least ⇠
�

�-agents need to have made errors before time ⌧

↵

.

Uniform-undirected

For ⌧ = 0, . . . , ⇠
↵

, let x

⌧+1

↵

(0) = x

⌧

↵

(0) + 1, noting that V (x⌧

, x

⌧+1) = 1. For ⌧ = ⇠

↵

+

1, . . . , ⇠
↵

+ N , let x

⌧+1

�

(0) = x

⌧

�

(0) + 1, noting that V (x⌧

, x

⌧+1) = 0. For ⌧ = ⇠

↵

+ N +

1, . . . , N + N , let x

⌧+1

↵

(0) = x

⌧

↵

(0) + 1, noting that V (x⌧

, x

⌧+1) = 0. Note that x

2N = E

0

.

We have shown that c(E
i

, E

0

)  ⇠

↵

. For ⌧ = N + N + 1, . . . , 3N , let x⌧+1

↵

(j) = x

⌧

↵

(0) + 1,

noting that V (x⌧

, x

⌧+1) = 0. For ⌧ = 3N + 1, . . . , 2N + 2N , let x

⌧+1

↵

(j) = x

⌧

↵

(j) + 1,

noting that V (x⌧

, x

⌧+1) = 0. We have shown that c(E
0

, E

j

) = 0. Therefore c(E
i

, E

j

) 
c(E

i

, E

0

) + c(E
0

, E

j

)  ⇠

↵

. A similar construction shows that c(E
i

, E

j

)  ⇠

�

. As at least ⇠
↵

or ⇠

�

errors are required before ⌧ = min{⌧
↵

, ⌧

�

}, it must be that c(E
i

, E

j

) � min{⇠
↵

, ⇠

�

}.
The above construction shows that this is also an upper bound on c(E

i

, E

j

).

Logit-undirected

Applying Corollary 1 and noting that minima are obtained at j
↵

= 0 and j

�

= n we have

�

�

�

�

1

N

min
j

c

N(E
i

, E

j

)� 1

N

�i

⇠

N

f(�i)

f(�i) + s̄

�

⇡

^ 1

N

f(�i)

⇠

N

�i

�i+ s̄

↵

⇡

�

�

�

�

< ✏.
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Now note that this approximation can be exactly attained for transitions to either E

0

or

E

n

. For example, if ↵-agents make ⇠

↵

errors to play 0
↵

, then each of these transitions has a

cost of �i, and the transitions su�ce to reach E

0

in the same manner as in the proof of the

uniform-undirected case. From E

0

, any E

j

can be reached at zero cost, so we can state the

stronger result that for all j 6= i

�

�

�

�

1

N

c

N(E
i

, E

j

)� 1

N

�i

⇠

N

f(�i)

f(�i) + s̄

�

⇡

^ 1

N

f(�i)

⇠

N

�i

�i+ s̄

↵

⇡

�

�

�

�

< ✏.

Proof of Lemma 4. If, for i, j 2 {1, . . . , n�1}, a sequence {x0

, . . . , x

T}, x0 = E

i

, xT = E

j

,

is such that
P

T�1

⌧=0

V (x⌧

, x

⌧+1) = c(E
i

, E

j

). and letting ⌧

↵

, ⌧
�

, be defined as in the proof of

Lemma 3, it must be that, when ⌧

�

< ⌧

↵

,

(N � x

⌧

�

↵

(i))f(�(i+ 1)) � x

⌧

�

↵

(i) f(�i),

where the left hand side is an upper bound on ⇡

�

(j
�

, x

⌧

�

↵

), j 6= i, as �
↵

(x⌧ ) = {i+ 1, . . . , n}
for ⌧ < ⌧

↵

. The right hand side equals ⇡
�

(i
�

, x

⌧

�

↵

). Rearranging, we obtain

N � x

⌧

�

↵

(i) �
⇠

N

f(�i)

f(�(i+ 1)) + f(�i)

⇡

=: ⇠̂
↵

.

Similarly, when ⌧

↵

< ⌧

�

,

N � x

⌧

↵

�

(i) �
⇠

N

i

2i� 1

⇡

=: ⇠̂
�

.

Uniform-directed

For ⌧ = 0, . . . , ⇠
↵

, let x

⌧+1

↵

(i + 1) = x

⌧

↵

(i + 1) + 1, noting that V (x⌧

, x

⌧+1) = 1. For

⌧ = ⇠

↵

+ 1, . . . , ⇠
↵

+ N , let x

⌧+1

�

(i + 1) = x

⌧

�

(i + 1) + 1, noting that V (x⌧

, x

⌧+1) = 0. For

⌧ = ⇠

↵

+N + 1, . . . , 2N , let x⌧+1

↵

(i + 1) = x

⌧

↵

(i + 1) + 1, noting that V (x⌧

, x

⌧+1) = 0. Note

that xN+N = E

i+1

. We have shown that c(E
i

, E

i+1

)  ⇠

↵

. A similar construction shows that

c(E
i

, E

i�1

)  ⇠

�

. As at least ⇠
↵

or ⇠
�

errors are required before ⌧ = min{⌧
↵

, ⌧

�

}, it must be

that c(E
i

, E

j

) � min{⇠
↵

, ⇠

�

}. The above construction shows that this bound is attained for

some j 2 {i� 1, i+ 1}.
Logit-directed

Applying Corollary 1 and noting that minima are obtained at j
↵

= i+ 1 and j

�

= i� 1 we
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have
�

�

�

�

1

N

min
j

c

N(E
i

, E

j

)� 1

N

f(�i)

⇠

N

i

2i� 1

⇡

^ 1

N

�i

⇠

N

f(�i)

f(�(i+ 1)) + f(�i)

⇡

�

�

�

�

< ✏.

Now note that this approximation can be exactly attained for transitions to either E
i�1

or

E

i+1

. For example, if ↵-agents make ⇠
↵

errors to play (i+1)
↵

, then each of these transitions

has a cost of �i, and the transitions su�ce to reach E

i+1

in the same manner as in the proof

of the uniform-undirected case.

Proof of lemma 5. Let i maximize the relevant one of (6), (7), (8), (9). For c = c

U

, c

L,

let g = {j ! i : j 2 L, j 6= i}. For c = ĉ

U

, ĉ

L, let g = {j ! j + 1 : j 2 L, j < i} [ {j !
j � 1 : j 2 L, j > i}. Note that k ! l 2 g implies that min

j2L c(Ek

, E

j

) ⇡ c(E
k

, E

l

). Also

note that by our choice of i, for all k 6= i, min
j2L c(Ek

, E

j

) . min
j2L c(Ei

, E

j

). This implies

that V(i) . V(j) for all j 2 L if and only if i is a maximizer of the relevant expression. So

V(i)  V(j) for all j 2 L implies that i is a maximizer.

Proof of Theorem 2. To prove the Theorem we use the following two lemmas.

Lemma 8. Suppose that ' is a real valued function and S is a finite set. Then there exists

N̂ such that for all N > N̂

argmax
t2S

1

N

dN'(t)e = argmax
t2S

'(t).

The proof of the above lemma readily follows from the pointwise convergence of 1/N dN'(t)e
to '(t).

Lemma 9. Suppose ' is a continuous function which admits a unique maximum. Sup-

pose '

�

such that '

�

converges uniformly to ' as � ! 0 and t

⇤ 2 argmax'(t) and

i

⇤ 2 argmax
i

'

�

(i�). Then for all ✏ > 0, there exists �̄ > 0 such that for all � < �̄, we

have |i⇤� � t

⇤| < ✏.

Proof. By the definitions of t⇤ 2 argmax
t

'(t) and i

⇤ 2 argmax
i

'

�

(i�), we have '(t⇤) �
'(i⇤�) and '

�

(i⇤�) � '

�

(t). Let ✏ > 0. By uniform convergence we can choose � < �̄, such

that |'
�

(t⇤)� '(t⇤)| < ✏ and |'
�

(i⇤�)� '(i⇤�)| < ✏. For � < �̄, we have '(i⇤�)  '(t⇤) 
'

�

(t⇤) + ✏  '

�

(i⇤�) + ✏ < '(i⇤�) + 2✏. Thus we have that

For all ✏̃ > 0, there exists �̄ such that for all � < �̄,we have |'(t⇤)� '(i⇤�)| < ✏̃. (C.1)

Without loss of generality we suppose that i⇤� < t

⇤ and let ✏ > 0 be given. Then for ✏ > 0

we can choose ⇢̄ such that for all ⇢ < ⇢̄

'(t⇤)� ⇢ < y < '(t⇤) implies |'�1(y)� t

⇤| < ✏, (C.2)
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where '

�1 is the inverse function for ' defined in a neighborhood of t⇤ except t⇤. Now let

✏ > 0. Choose ⇢̄ satisfying (C.2) first. Then for ✏̃ = ⇢ < ⇢̄, choose �̄ satisfying (C.1). Then

for ⇢ and for � < �̄, we have |'(i⇤�)� '(t⇤)| < ⇢. Also since ⇢ < ⇢̄, by (C.2) we have |i⇤��t

⇤|
< ✏. Thus we show that for all ✏ > 0, there exists �̄ > 0 such that for all � < �̄, we have

|i⇤� � t

⇤| < ✏.

Note that for large enough N the values taken by the expressions of the form dae ^ dbe
in (6), (7), (8), (9) equal da ^ be. Lemma 8 then implies that for large N we can ignore

the ceiling function in (6), (7), (8), (9) when determining the stochastically stable states.

Replacing �i by t in expressions (6), (7) and taking the limit as � ! 0 gives

f(t)

f(t) + s̄

�

^ t

t+ s̄

↵

(C.3)

t

f(t)

f(t) + s̄

�

^ f(t)
t

t+ s̄

↵

(C.4)

respectively. Using Lemma 9, and noting that these functions are maximized at t

KS, tQ4,

respectively, we have the results for the cases of uniform-undirected and logit-undirected

pertubations. For the case of logit-directed perturbations, the expression in (9) takes the

form a(t) ^ b(t) after the ceiling function has been removed. Continuity of f(·) implies that

there exist " > 0, �̂ > 0 such that for all � < �̂, a(t) > b(t) for all t < ", and a(t) < b(t) for

all t > s̄

↵

� ". Therefore, the following function equals (9) at all t = �i, i = 1, . . . , n� 1.

'

�

(t) =

8

>

<

>

:

b(t) if t < ".

a(t) ^ b(t) if "  t  s̄

↵

� ".

a(t) if t > s̄

↵

� ".

Note that '
�

converges uniformly to ' as � ! 0, where

'(t) =
f(t)

2
^ t

2
.

This expression is maximized at t

E so by Lemma 9 we have the result for logit-directed

perturbations.

For the case of uniform-directed pertubations, we cannot apply Lemma 9, since the

function in the cost expression does not converge to a function with a unique maximum. To

address this case, we observe that Lemma 8 implies that for large N

i

⇤ 2 argmax
i

�i

2�i� �

^ f(�i)

f(�(i+ 1)) + f(�i)
.
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Writing t = �i and noting that the LHS of the ^ is decreasing in t, and the RHS is increasing

in t, it can be seen that �i⇤ can be approximated by t̃ given by

t̃

2t̃� �

=
f(t̃)

f(t̃+ �) + f(t̃)
, t̃

f(t̃+ �)� f(t̃)

�

+ f(t̃) = 0

which approaches the first order condition for tNB as � ! 0. Hence �i⇤ ! t

NB (See detailed

argument in Naidu et al., 2010).
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