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Abstract

This paper studies stochastic stability methods applied to processes on general state

spaces. This includes settings in which agents repeatedly interact and choose from

an uncountable set of strategies. Dynamics exist for which the stochastically stable

states differ from those of any reasonable finite discretization. When there are a finite

number of rest points of the unperturbed dynamic, sufficient conditions for analogues

of results from the finite state space literature are derived and studied. Illustrative

examples are given.

Keywords: Learning, stochastic stability, general state space

JEL: C71, C72, C73

1. Introduction

The occurence of social learning and the convergence of agents’ behavior via pro-

cesses of adaptive behavior is well-documented within economics (e.g. Chong et al.,

2006; Selten and Apesteguia, 2005). The possibility of multiple resting points for

such processes naturally leads one to question which of these stable states is more

plausible from an economic perspective. Strongly influenced by evolutionary game

theory (Smith and Price, 1973), a literature has grown that analyses the robustness

of stable states of social learning dynamics to random errors made by players in their

choice of action (Kandori et al., 1993; Young, 1993a). These ideas have been ap-

plied to a variety of economic situations, including bargaining (Binmore et al., 2003;

Naidu et al., 2010), Nash demand games (Young, 1993b; Agastya, 1999), exchange
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audience at the Econometric Society Australasian Meetings for helpful comments. The author is the
recipient of a Discovery Early Career Researcher Award funded by the Australian Research Council.
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economies (Serrano and Volij, 2008), local interaction on networks and the persistence

of altruistic behavior (Eshel et al., 1998).

A common approach when assessing the robustness of stable states of social learn-

ing dynamics has been that pioneered by Kandori et al. (1993) and Young (1993a),

building on the work of Freidlin and Wentzell (1984). Agents are assumed to make

errors independently and when they do make an error are assumed to play a strategy

chosen at random from a distribution with full support on a finite set of strategies.

This imposes a mathematical structure on the process that leads to clear and appeal-

ing characterization results.

Unfortunately, such results cannot be straightforwardly applied when agents’ have

non-finite sets of strategies.3 Even assuming the convergence of the underlying social

learning dynamic, the addition of random errors can lead to behavior which hinders

efforts to obtain a clear cut characterization of the long run pattern of play. This

paper takes up the task of analysing the problems and intricacies which arise and,

when there are a finite number of rest points of the underlying dynamic, determines a

set of sufficient conditions which enable existing results to be applied to models with

continuous state spaces. These conditions include a continuity requirement on error

distributions and players’ responses as a function of the current state, an asymptotic

stability condition and a condition which ensures a specific type of discontinuity does

not occur at rest points of the underlying dynamic. Examples are given showing how

no subset of the conditions is sufficient on its own.

Fortunately, all of these conditions are satisfied for many common models found

in economics. Typical error distributions of the kind described above coupled with

the continuous best responses found in many models of industrial organization will

often satisfy all of the conditions. This study applies the theory to linear quadratic

games and to population models in the style of Kandori et al. (1993).

A related paper is that of Feinberg (2006) which also looks at discrete time,

continuous state space processes. However, the paper in question imposes the strong

condition that the perturbed process be governed by transition probabilities that are

continuous functions of the current state of the process. The bulk of the analysis in

3An early paper in the literature (Foster and Young, 1990) has an infinite state space and a
continuous time dynamic in which perturbations are modelled as a Wiener process. However, it
differs markedly from the majority of the literature, in which the error distributions are irrelevant
to the stability results as long as they have full support.
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the current paper concerns situations where this is not the case. Moreover, Feinberg

considers a particular unperturbed dynamic and state space, whereas the current

paper is more general in its scope. Schenk-Hoppé (2000) adapts the results of Freidlin

and Wentzell (1984) and Ellison (2000) for use in finding stochastically stable states

in a continuous strategy oligopoly model equipped with an imitation dynamic.

By considering finite state spaces, Young (1993a) dispenses with the need for

regularity assumptions found in treatments of perturbed dynamics by Freidlin and

Wentzell (1984); Kifer (1988, 1990). Specifically, all finite state spaces are compact,

continuity requirements become unnecessary, and the probability of non-convergence

to some stable state in given finite time need no longer be bounded by a function of

error probabilities. The treatment of the current paper incorporates some finiteness

in that the set of orders of magnitude of one step transition probabilities is taken

to be finite. This allows us to use weaker continuity requirements on transition

probabilities. We also dispense with compactness assumptions on the state space.

From an economics perspective this enables, for example, the use of the Cartesian

plane as the state space and the use of error probabilities which are independent

across players.

The paper is organized as follows. Section 2 introduces the ideas of the paper

via two motivating examples. Section 3 describes the processes of interest, gives

convergence results, looks at transition probabilities between stable states, and defines

a useful regularity property, showing how this property allows the problems associated

with infinite state spaces to be circumvented. Section 4 gives sufficient conditions for

this property to hold and discusses each of the conditions, giving examples of the

problems which arise if any condition fails to hold. Section 5 gives examples. Section

6 solves an example from Section 2 for which our regularity condition fails to hold.

Section 7 concludes. Formal proofs are relegated to the appendix.

2. Motivating examples

This paper focuses on situations where agents follow some rule when deciding

how to behave. The rule can be deterministic or random, cautious or hasty, imitative

or best responding: any kind of behavioral bias or irregularity can be represented.

Usually the rule is adaptive in the sense that an agent’s behavior is intended to

improve his lot. What really matters is that the rule has the Markov property: the

past per se does not affect the future, although features of the present shaped by
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the past, including memories, are allowed to do so. We analyse situations where

behavior over time will converge towards one of a number of stable states. As long

as there is some probability of convergence to more than one stable state, this is

predictively awkward. The possibility of random errors or idiosyncratic play justifies

the introduction of perturbed versions of the process which help in obtaining long run

predictions. There is a well-developed literature which deals with these problems for

finite state spaces4, so the first question that must be addressed is whether there is

benefit to be had from dealing directly with processes on general state spaces, rather

than with finite discrete approximations.

2.1. Discretization can fail to represent the original process accurately

There is not always a suitable finite discretization of a process available. To

illustrate, we present the following example. Consider a Markov process with state

space X = [0, 1] ⊂ R endowed with the Euclidean distance metric. Let the process be

governed by the Markov kernel P (., .). The Markov kernel is a generalized analogue

of transition probabilities on Markov chains. P (x,A) gives the probability with which

the process moves from state x to any state within a set of states A. For notational

ease, for y ∈ X, we identify P (., y) := P (., {y}). Let P (x, x2) = 1. This process

has a set of stable states Λ = {0, 1}: from x∗ ∈ Λ, P (x∗, x∗) = 1. We examine a

perturbed variant of the process in which each period, with probability 1 − ε the

unperturbed process is followed, and with probability ε the new state is drawn from

the uniform distribution U [[0, 1]]. This perturbed process has an invariant measure πε

which converges to a measure with all weight on {0} as ε→ 0: the set of stochastically

stable5 states is {0}.
Any discretized state space and process should satisfy some properties in order for

it to be a reasonable representation of the original process. We suggest the following

as reasonable restrictions on the discretized state space X∆ ⊆ X and the discretized

unperturbed process P∆(., .): (a) From a state x ∈ X∆, if a set A ⊆ X is reached

with positive probability under the original process, then the closest states to A in X∆

(under the original metric) are reached with positive probability under the discretized

4See also Bergin and Lipman (1996); van Damme and Weibull (2002); Beggs (2005).
5The use of the term ‘stochastic stability’ in the economics literature refers almost exclusively

to states with positive weight under some limiting measure. Other uses of the term appear in the
literature on dynamic processes. This paper follows the economic usage.
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process P∆(., .); (b) If, from a state x ∈ X∆, under the original process the set of

states in X which are closer to z ∈ X∆ than to any other point in X∆ is never

reached with positive probability, then z is never reached with positive probability

under the discretized process; (c) Stable states of the original process are states of

the discretized process and therefore stable states of the discretized process by (b).

We take as a discretization of the perturbation (the uniform distribution on X)

any distribution on X∆ that places positive probability on all states in X∆. Now,

for any finite discretization satisfying our conditions, as ε→ 0, the limit of πε places

positive probability on all states in {0, 1}: discretizing the process has given us one

additional stochastically stable state.6

Finding the stochastically stable states of the original process in this section turns

out to be simple. The reason for this is that far enough along any convergent path

to a stable state, the probability under the perturbed process of moving to the basin

of attraction of another given stable state is of constant order of ε. For example,

from any convergent path to 0 under the unperturbed process P (., .), at any given

future period t the probability under the perturbed process of being in the basin of

attraction of state is 1 is of order ε∞ = 0. There do not exist convergent paths to 0

with escape probabilities of different orders of ε. We shall define Property C as the

absence of multiple paths which converge to the same stable state and have different

orders of escape probability. When Property C holds, we show that variants of results

used heavily in the finite state space stochastic stability literature can be used. An

important part of the current paper gives sufficient conditions under which Property

C holds.

2.2. Multiple convergent paths

The next example can be considered as a model in which there are two possible

focal points for a social norm. There are n agents who contribute some real amount

of effort towards the provision of a public good. If at least some threshold number

of agents contribute at least some focal amount (which we take to be 1), then agents

converge towards that level of contribution. Otherwise they converge towards a zero

6It may be remarked that, for this example, there exist sequences of finite discretizations such
that the limit (of the sequence of discretizations) of the limits (as ε → 0) of πε converges to the
stochastically stable states of the original process. Such a sequence does not always exist, as is
apparent from the example in Section 2.2.
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contribution. Consider a state space X = [0, xmax]
n ⊂ Rn

+, xmax > 1, n ∈ N. Let

x = (x1, . . . , xn) ∈ X denote a representative element. Define I(x) as the set of

players who contribute at least 1 in a given state x:

I(x) = {i ∈ {1, . . . , n} : xi ≥ 1}.

For some k < n, k ∈ N, we define P (., .) as follows:

If |I(x)| < k then P
(
x,
x

2

)
= 1

If |I(x)| ≥ k then P

(
x,
x+ 1n

2

)
= 1.

The process has stable states Λ = {0n, 1n}. We examine a perturbed variant of the

process in which each period, with probability 1 −
∑n

i=1 ε
i the unperturbed process

is followed, and with probability εi the new state is drawn from the distribution:

Gi(x, .) ∼ U [{x̄ ∈ X : (|{r : xr = x̄r}| = n− i)}].

That is, with probability εi, exactly i agents randomly choose their contribution

from a uniform distribution on [0, xmax]. There exist convergent paths to 1n with

|I(x)| ∈ {k, k + 1, . . . n}. From a convergent path to 1n for which |I(x)| = k, a move

to the basin of attraction of 0n in a single period is an event with probability of

order ε. From a convergent path to 1n for which |I(x)| = n, a move to the basin

of attraction of 0n in a single period is an event with probability of order εn−k+1.

Property C does not hold. The only stochastically stable state of this process turns

out to be 0n. Showing that this is the case is complicated by Property C not holding,

so recourse to more general methods is necessary (see Section 6). For completeness,

we note that if k < n− k+ 1, then any reasonable finite discretization of the process

leads to 1n being selected as the unique stochastically stable state.

3. A general model of perturbed adaptive behavior

A very general model is presented: the unperturbed dynamic can be any Markov

process on any separable metric space, the only assumption being the nonemptiness

of, and convergence of the process to, a set of stable states. The perturbed model

then allows a broad class of perturbations which includes independent random errors
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such as are found in the traditional stochastic stability literature, but also allows

correlated errors and any type of state dependent behavior.7

3.1. Quantitative characterization

The first step is to model an unperturbed dynamic which gives the behavior of

agents in the absence of random perturbations. Let Φ be a Markov process on a

separable metric space X with kernel P (x,A), x ∈ X, A ∈ B(X), where B(X) is the

Borel σ-algebra.

Definition 1. The set of stable states is defined:

Λ := {x ∈ X : P (x, x) = 1}.

Assumption 1.

Λ 6= ∅, Λ is closed.

Definition 2. The basin of attraction Wi of x∗i ∈ Λ is:

Wi :=
{
x ∈ X : for every open V ⊃ {x∗i }, P t(x, V )→ 1 as t→∞

}
.

Define W :=
⋃
iWi. Let W δ

i := Wi ∩ Bδ(x
∗
i ) and W δ :=

⋃
iW

δ
i , where Bδ(x)

is the open ball of radius δ centred at x. We now introduce an assumption which

guarantees that wherever you start in the state space you end up arbitrarily close to

some element of Λ — the unperturbed process Φ converges to a stable state. This

assumption is necessary to the purpose of this paper, which is to give tools by which

to select from several stable states. If convergence were not assumed, then equilibrium

selection would become a secondary issue.

Assumption 2 (Convergence).

∀ δ > 0, x ∈ X, ∃Tδx such that P t(x,W δ) = 1 for all t ≥ Tδx.

7For example, perturbations could include coalitional behavior such as that found in Newton
(2012), depend on relative payoffs as in Blume (1993), or show some degree of intentionality as in
Naidu et al. (2010).
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Note, from any x ∈ X, it is assumed that convergence occurs in bounded time.

Boundedness is unnecessary when state spaces are finite as analysis in such a case

can proceed without a distinction being drawn between stable and unstable states.8

Φ can be taken to represent some unperturbed dynamic which describes the evo-

lution of the strategies of players in a game, with each entry in a vector x ∈ X

describing the strategy chosen by a player in some previous time period. In this con-

text the kernel P (x,A) can be taken to be some sort of (not necessarily continuous)

best response or imitation dynamic. Let {Φε}ε, ε ∈ (0, 1), be a family of Markov

processes on the state space X with kernels Pε(x,A). Define:

Pε(x,A) =

(
1−

M∑
i=1

εi

)
P (x,A) +

M−1∑
i=1

εiGi(x,A) + εMGM(A)

where M ∈ N, Gi(x, .), GM(.) are probability measures on B(X). For A ∈ B(X),

Gi(., A) are non-negative B(X)-measurable functions on X. As a sum of B(X)-

measurable functions, Pε(., A) is B(X)-measurable. Note that Pε(x,X) = 1 is satis-

fied. {Φε}ε is a subset of the class of Puiseux Markov processes. It is not necessary

for the powers of ε to be integers, but here they are assumed so for expositional ease.

Note that perturbations according to Gi occur with probabilities that approach zero

at rate εi as ε is taken to zero.9

As all of our measures have B(X) as their domain and all our functions are B(X)-

measurable, we can use the property that an integral over a sum of measures is equal

to the sum of integrals over those measures10 to show (Lemma 1 in the appendix) that

any transition probability over a finite number of periods has an order of magnitude

given by ε to some integer. That is, for any x ∈ X, A ∈ B(X), T ∈ N+, if P T
ε (x,A) >

0, then

lεr < P T
ε (x,A) ≤ (M + 1)T εr

8Inertia can still be modeled under processes satisfying Assumption 2, but it will always be a
finite amount of inertia. For example a state (x, n) /∈ Λ could proceed with positive probability to
a state (x, n+ 1) /∈ Λ up to (x, n̄) for some, possibly very large, n̄ ∈ N.

9Setting ε = e
−1
η , the processes in this paper satisfy: limη→0 η logPη(x, U) = − infy∈U ρ(x, y) for

open sets U and a function ρ(., .) : X × X → R. ρ(., .) is not necessarily continuous and so does
not necessarily satisfy the conditions of Kifer (1990). For example, independent error models do not
satisfy continuity of ρ(., .).

10See Fremlin (2001), 234H(c).
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for some positive real l and non-negative integer r. This fact is used heavily in proving

the results of the paper.

In the most common models of stochastic stability, which we refer to as inde-

pendent error models (Young, 1993a; Kandori et al., 1993), the state is composed

of strategy profiles, each player has an independent probability of making an error

with probability ε and players who make errors play strategies chosen from a given

distribution with full support. Such a process satisfies the definition above.11 We now

show that for any given value of ε, Φε has a unique invariant measure. This measure

is predictive in the sense that it gives the frequencies with which given sets of states

will be observed in the long run.

Proposition 1. Φε has a unique invariant probability measure πε.

Proposition 2. For all x ∈ X,

sup
A∈B(X)

|P t
ε(x,A)− πε(A)| → 0 as t→∞.

The independence of GM(.) from x makes GM(.) an irreducibility measure. That

is, from any x ∈ X, any A ∈ B(X) such that GM(A) > 0 will eventually be reached by

the process. The presence of the GM(.) term in Pε(., .) is sufficient, but not necessary,

for the existence of a unique invariant measure and ergodicity. In fact, for several

examples later in the paper, the analysis is independent of GM(.).

3.2. Invariant measures when perturbations are rare

In the preceding subsection it was shown that Φε has a unique invariant measure πε

which depends on ε. In order to predict long term behavior under small perturbations

it helps to analyse the limit as ε → 0. As stochastic stability is primarily used as

a tool of equilibrium selection, we desire that, as ε gets small, πε place arbitrarily

small probability mass on sets of states which are not close to the stable states of

the unperturbed process. Assumption 2 does not guarantee this (see counterexample

in Appendix B.1). Hence we impose the following assumption, that restricts the

perturbed dynamic so that, from some point in the state space, the process far enough

in the future is likely to be close to a stable state.

11Independent error models do not have Pε(x,A) continuous in x for any given A ∈ B(X) and so
do not satisfy the assumptions of Feinberg (2006).
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Assumption 3 (Perturbed stability).

∀ δ > 0, ∃x ∈ X, εδ, rδ > 0 s.t. lim
t→∞

P t
ε(x,W

δ) > 1− εrδ for all ε < εδ.

Ergodicity implies that the condition of Assumption 3 holding for some x implies that

it holds for all x. Note that if the Tδx in Assumption 2 are independent of x, then

Assumption 3 is automatically satisfied.12,13

Proposition 3. For any η ∈ (0, 1], A ∈ B(X) such that Λ ∩ cl(A) = ∅ there exists ε̂

such that πε(A) < η for all ε < ε̂.

Corollary 1. If π is a limiting measure (in the sense of weak convergence of mea-

sures) of πε as ε → 0, then π is an invariant measure of the unperturbed process

Φ.

So, the addition of perturbations to the model can be seen as a way of selecting

between the alternative invariant measures of the unperturbed process. We now move

to find conditions under which processes on a general state space can be analyzed

using similar tools to those used in the finite state space literature. The following

assumption is made:

Assumption 4.

|Λ| <∞.

Cases for which |Λ| = ∞ can sometimes be analyzed using a careful application

of the results of Freidlin and Wentzell (1984).14 Note that |Λ| < ∞ implies that

Λ = {x∗1, . . . x∗ν} for some ν ∈ N. Limiting invariant measures in many examples turn

out to place all of the probability mass on a single stable state, predicting that in the

long run the process should be observed to be at or near that state almost all of the

time.

Definition 3. Stable states x∗ ∈ Λ with π(x∗) > 0 are called stochastically stable.

12As for t ≥ Tδx, small enough ε, we have P tε(x,W δ) ≥ (1 −
∑M
i=1 ε

i)TδxPTδx(x,W δ) = (1 −∑M
i=1 ε

i)Tδx > (1−Mε)Tδx > 1− 2TδxMε > 1− ε 1
2 .

13Note that the proof of Proposition 3 is the only place in this paper where Assumption 3 is used.
14See Section 6, the appendix, and Schenk-Hoppé (2000) for an introduction to the ideas involved.
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The rest of the paper devotes itself to the question of how to find stochastically

stable states and the analysis of intricacies that can arise due to having an infinite

state space.

3.3. Transition probabilities between stable states

In order to find stochastically stable states it will be necessary to determine the

magnitudes of the transition probabilities between the basins of attraction of different

stable states. These magnitudes are given as powers of ε. The following Bachmann-

Landau asymptotic notation expresses the idea of f being bounded below by g.

f(ε) ∈ Ω(g(ε))⇔ ∃k > 0, ε̄ s.t. ∀ ε < ε̄, kg(ε) ≤ |f(ε)|

Define:

V (x∗k, x
∗
j) := inf

{
i : ∀x ∈ Wk,

(
∃t : P t

ε(x,Wj) ∈ Ω(εi)
)}
∧∞

V −(x∗k, x
∗
j) := inf

{
i : ∀δ > 0, ∃x ∈ W δ

k :
(
∃t : P t

ε(x,Wj) ∈ Ω(εi)
)}
∧∞

which can be interpreted as resistances measuring the difficulty of moving from the

basin of attraction of x∗k to the basin of attraction of x∗j . V (x∗k, x
∗
j) and V −(x∗k, x

∗
j)

measure respectively the most unlikely and easiest way in which a move from close to

x∗k to Wj could occur. The values of V (x∗k, x
∗
j) and V −(x∗k, x

∗
j) will depend on which

error distributions Gi are used along paths between neighborhoods of the two stable

states. As paths occur with probabilities of order εr for positive integers r, it follows

that V and V −, when finite, must take integer values.

Before proceeding further, some notation is required. Fδ(t) is the set of states

which under the unperturbed dynamic do not converge to W δ within t periods. V̄i is

simply the maximum finite value from the V −(x∗i , .) functions.

Definition 4.

Fδ(t) := {x ∈ X : P t(x,W δ) < 1}, V̄i := max
j:V −(x∗i ,x

∗
j )<∞

V −(x∗i , x
∗
j).

The definition of Fδ(t) together with Assumption 2 implies that for any x ∈ X, for

large enough t, x /∈ Fδ(t). For very large t, Fδ(t) can be understood as the set of

states with very large convergence times Tδx.
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The following assumption dictates that from starting points close to any stable

state x∗k, the process cannot be more likely to transit to states from which convergence

times are arbitrarily large than it is to transit to the basin of attraction of any other

stable state x∗j for which V −(x∗k, x
∗
j) < ∞. It further prohibits unboundedly large

convergence times for states arbitrarily close to stable states. This and Assumption 2

are stronger than convergence assumptions made in the finite state space literature.

However, these assumptions are not redundant: the extension of ‘mistake counting’

methods of determining stochastic stability to general state spaces (Proposition 4)

does not hold without Assumptions 2 and 5. Counterexamples given in Appendix B

demonstrate that even when state spaces are countable (but not finite), results can

fail when these assumptions are dropped.

Assumption 5 (Fast Convergence). There exists δ̂ such that for all δ < δ̂,

∃Tδ+ : ∀x∗i ∈ Λ, x ∈ W δ
i , @t : P t

ε(x, Fδ(Tδ+)) ∈ Ω(εV̄i−1),

and W δ̂ ∩ Fδ(Tδ+) = ∅.

Note that if there is a uniform bound on convergence times, that is the Tδx in As-

sumption 2 do not depend on x, then setting Tδ+ = Tδx, we have that Fδ(Tδ+) = ∅, so

Assumption 5 is satisfied. This will always be the case when the state space is finite.

A regularity property is now defined that allows a single magnitude of transition

probability to characterize transitions from states within the basin of attraction of,

and close to, one stable state to the basin of attraction of another stable state. We

shall further require that the appropriate orders of transition probabilities can occur

within a bounded number of periods T 15, and that there exists some uniform lower

bound on transition probabilities for given ε.16

Definition 5 (Property C). Property C is said to hold when

(C1) V (x∗k, x
∗
j) = V −(x∗k, x

∗
j) for all x∗k, x

∗
j ∈ Λ, and

15This will eliminate the possibility of the existence of an infinite sequence {x(i)}i∈N converging
to x∗k such that limi→∞min{t ∈ N+ : P tε(x(i),Wj) ∈ Ω(εV (x∗k,x

∗
j ))} → ∞. If such a sequence existed,

there could exist a distribution on Wk such that on entering Wk according to this distribution the
process would have infinite expected waiting time until an escape probability of order Ω(εV (x∗k,x

∗
j ))

is possible.
16This eliminates the possibility of the existence of an infinite sequence {x(i)}i∈N converging to

x∗k such that limi→∞ sup{l ∈ R++ : PTε (x(i),Wj) ≥ lεV (x∗k,x
∗
j )} → 0.
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(C2) For V (x∗k, x
∗
j) 6= ∞, for all δ̃ > 0, there exist δkj > 0, Tkj(δ̃) ∈ N+, l > 0 such

that ∀x ∈ W δkj
k , P

Tkj(δ̃)
ε (x,W δ̃

j ) > lεV (x∗k,x
∗
j ).

The convergence of the process to stable states (Assumptions 2 and 3) ensures

that, for small ε, the process spends almost all of the time close to stable states.

Property C allows a single value to characterize the order of magnitude of transition

probabilities between these small neighborhoods of stable states. A strengthening

of convergence assumptions (Assumption 5) enables us to equate these probabilities

to the probabilities which govern the related process which is only observed when

the state is close to a stable state.17 As there are a finite number of stable states,

the problem of determining the stochastically stable states is reduced to a discrete

problem: the sets W δ
k for which πε(W

δ
k ) 9 0 as ε → 0 are determined solely by the

values of V (., .). Analogues of results from the finite state space stochastic stability

literature can then be used.

3.4. Characterization restated for infinite state spaces

Let L = {1, . . . , ν} index the states in Λ. A graph on L is an i-graph if each j 6= i

has a single exiting directed edge, and the graph has no cycles. Let G(i) denote the

set of all i-graphs. Define:

V(i) = min
g∈G(i)

∑
(k→j)∈g

V (x∗k, x
∗
j),

Lmin = {i ∈ L : V(i) = min
j∈L
V(j)}.

Note that it is possible that V(i) = ∞ for some, but not all, i ∈ L. An analogue of

the key result of Young (1993a) and Kandori et al. (1993) can now be stated.

Proposition 4. If Assumptions 1-5 and Property C hold then:

π(x∗i ) > 0⇔ i ∈ Lmin

The proof analyzes the process restricted to small neighborhoods of stable states.

The invariant probability measure of the restricted process is a restriction and scaling

17This step is formalized in Lemma 6 in Appendix A and counterexamples showing the importance
of Assumptions 2 and 5 to Lemma 6 are given in Appendix B.
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of the invariant measure of the original process. For fixed ε, from any state, any

of these neighborhoods which have positive invariant measure can be reached with

positive probability in bounded time. This allows the construction of a finite state

space Markov chain with invariant measure equal to the invariant measure of the

restricted process. Property C gives that the order of the transition probabilities of

this chain are precisely εV (.,.), and the finite problem can be solved.18

4. Sufficient conditions for Property C

Given the usefulness of Property C in allowing the use of an analagous character-

ization to that in the finite state space literature, a natural question to ask is under

what conditions it holds and whether or not these conditions are plausible and com-

monly satisfied. The next proposition concerns itself with finding sufficient conditions

for Property C.

Proposition 5 gives conditions for Property C that can be satisfied by independent

error models of stochastic stability. This is important as such models are commonly

found in the literature. Firstly, a continuity requirement is placed on the unperturbed

dynamic and the error distributions. For the unperturbed dynamic, this requirement

is implied by the weak Feller property P (y, .)⇒ P (x, .) as y → x, corresponding in a

game theoretic context to continuity of the response correspondence of the underlying

game. For the error distributions, the requirement is satisfied by independent error

models. Secondly, asymptotic stability is imposed in the neighbourhoods of some

stable states. Thirdly, a condition is given which restricts the behaviour of the process

at a stable state according to the behaviour of the process at nearby states. Following

the statement of the proposition, a series of examples illustrates the role of each

condition.

First, define an attainability property for each x∗ ∈ Λ which holds when there is a

positive probability of ending up spending time in the basin of attraction of x∗ when

the initial state is distributed according to GM(.).

18As a consequence of Proposition 4, “radius-coradius” results (Ellison, 2000, citing a no longer
available paper of Evans, 1993), which follow immediately from the i-graph characterization of
stochastically stable states, will also hold when appropriately restated.
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Definition 6 (Attainable stable states). For a given stable state x∗i , let

Bi = {x ∈ X : ∃t s.t. P t
ε(x,Wi) > 0}.

Note that Bi is independent of ε, as any transition which has positive probability for

some ε > 0, has positive probability for all ε > 0. Define the set of attainable stable

states A = {x∗i ∈ Λ : GM(Bi) > 0}. Note that x∗i ∈ Λ \ A implies πε(Wi) = 0.

Proposition 5. Under Assumptions 1-5, if the following conditions hold then Prop-

erty C holds.

(i) For all A ∈ B(X) open, x1 ∈ X, there exist δAx1 > 0, ξAx1 > 0, such that if

x2 ∈ X satisfies d(x1, x2) < δAx1 then:

P (x1, A) > 0⇒ P (x2, A) > ξAx1

Gi(x1, A) > 0⇒ Gi(x2, A) > ξAx1 , i = 1, . . . ,M − 1

(ii) For all x∗i ∈ A, there exists δ̃ > 0 such that W δ̃
i is open.

(iii) For all x∗j , x
∗
k ∈ Λ, ∃ t:

P t
ε(x
∗
k,Wj) ∈ Ω(εV

−(x∗k,x
∗
j ))

A sketch of the proof is as follows. Take a finite path from x∗k to Wj. Condition (iii)

ensures that no easier path to Wj exists from any points in Wk which are close enough

to x∗k. Condition (i), used iteratively (Lemma 8 in the appendix), shows that from

points close to x∗k, similar paths can be followed with similar probabilities. Condition

(ii) ensures that paths which are similar enough to the original path must enter Wj.

The rest of this section consists of stylized examples designed to demonstrate how

Property C can fail if any of the conditions of Proposition 5 do not hold.

4.1. Example: (i) does not hold for the unperturbed dynamic

Define X = [0, 1]3. Let the unperturbed process Φ represent a game played

repeatedly by 3 players with strategy spaces [0, 1]. Each period each player plays a

best response to the actions of the other two players in the previous period. Define

15



Figure 1: Example: (i) does not hold for P (., .).

Ci =
(

3
4

1
2i
, 1

2i

]
. Define C =

⋃∞
i=1Ci. Let Bi =

(
1
2

1
2i
, 3

4
1
2i

]
, B =

⋃∞
i=1Bi. Let best

response correspondences be symmetric and anonymous:

BR(a, b) =



Ci+1, if a ∈ Ci, b /∈ Cj for some i, j

Ci+1, if a ∈ Ci, b ∈ Cj for some i, j, i ≥ j

1, if a ∈ (1
2
, 1], b /∈ C

Bi+1, if a ∈ Bi, b ∈ Bj for some i, j, i ≥ j

0, if a = 0, b ∈ B ∪ {0}.

Note that x∗0 = (0, 0, 0) and x∗1 = (1, 1, 1) are the only stable states of the unper-

turbed dynamic. Let the perturbed process Φε be such that each player independently

with probability ε plays an action chosen randomly from [0, 1] instead of playing a

best response. V (x∗0, x
∗
1) = 3. V −(x∗0, x

∗
1) = 1. There is in effect one convergent path

to x∗0 via states in B×B×B from which it is easy to escape and another convergent

path via states in C × C × C from which it is difficult to escape. As ε→ 0, πε ⇒ π

where π((0, 0, 0)) = 1.

Intuitively, (i) not holding for P (., .) carries the implication that even when two

states are extremely close to one another there is no guarantee that similar random

shocks will lead to similar responses by the players. It is always possible to choose two

states x1, x2 arbitrarily close to one another such that from x1 a single player choosing

a given random action would lead to completely different short run behaviour of the

process to that which would occur if from x2 exactly the same player chose exactly

the same random action.

4.2. Example: (i) does not hold for error distributions

Let X = [0, 1]. Let there be two stable states x∗k = 0, x∗j = 1, let Wi ⊃ Bδ(x
∗
i ) for

some δ, i = j, k, so (ii) is satisfied. For x ∈ Wk, let P (x, x/10) = 1. The error process

guarantees that (iii) is satisfied:

G1(x, x) = 1, if the first non-zero digit in the decimal expansion of x is 1.

16



G1(x,Wj) = 1, otherwise

G2(Wj) = G2(Wk) =
1

2

Then V −(x∗k, x
∗
j) = 1 and V (x∗k, x

∗
j) = 2 no matter whether or not (i) is satisfied by

P (., .).

4.3. Example: (ii) does not hold

Figure 2: Example: (ii) does not hold.

Define X = [0, 1]2. Let (x, y) describe an element of the state space. Let:

P

(
(x, y),

(
x

2
, y + min

{
1

2
, y

}
(1− y)

))
= 1

then there are 2 stable states, x∗k = (0, 1) and x∗j = (0, 0). Let:

A = {(x, y) ∈ X : y = 0}

G1(x,A) =
1

2
for x ∈ U := {(x, y) ∈ X : x+ 2y ≥ 2} ,

and let G1(x, .) be uniform on X otherwise. Let G2(A) = 1. Then (i) and (iii) hold

but V −(x∗k, x
∗
j) = 1 and V (x∗k, x

∗
j) = 2. Intuitively, although (i) implies that from any

17



point close to x∗k but not in U it is possible to reach any point arbitrarily close to

x∗j with a probability of order ε, (ii) not holding means that this is not sufficient for

convergence to x∗j and the process ends up reconverging towards x∗k.

4.4. Example: (iii) does not hold

Figure 3: Example: (iii) does not hold. Although convergent paths to (0, 0) within A only require
an order of ε transition to reach Wj , convergent paths within B require an order of ε2 transition.
So Wj cannot always be reached with Ω(ε) probabilities.

Define X = [0, 1]× [−1, 1]. Let (x, y) describe an element of the state space. Let:

P
(

(x, y),
(x

2
,
y

2

))
=

max
{

0, 3
5
− x, 1

2
− y
}

max
{

0, 3
5
− x, 1

2
− y
}

+ max
{

0,min
{
x− 2

5
, y
}}

P

(
(x, y),

(
x+ 1

2
,
y + 1

2

))
=

max
{

0,min
{
x− 2

5
, y
}}

max
{

0, 3
5
− x, 1

2
− y
}

+ max
{

0,min
{
x− 2

5
, y
}}

then there are 2 stable states, x∗k = (0, 0) and x∗j = (1, 1). Note that under the

unperturbed dynamic the process will in each period move in a straight line towards

one of the stable states. Let:

G1((x, y), .) ∼ U [{(x′, y′) : x′ = x or y′ = y}]

G2(.) ∼ U [X]

18



Then (i) and (ii) hold but V −(x∗k, x
∗
j) = 1 and V (x∗k, x

∗
j) = 2. Although there exists

a convergent path to x∗k from which Wj can be reached with a probability of order ε

(such as those in Area A in Figure 3), the limit x∗k does not have this property and so

we cannot rule out the existence of convergent paths with lower escape probabilities

(such as those in Area B in the figure).

5. Economic examples

5.1. Linear quadratic games

We apply the theory to two player games with strategies yi ∈ R+ and the following

payoff functions:

ui(yi, yj) = aiy
2
i + biyiyj + ciyi + diyj, ai, bi < 0; ci > 0; ai, bi, ci, di ∈ R.

This class of games includes public goods problems with strategic substitutes and

Cournot duopolies with linear demand and quadratic costs. Oechssler and Riedel

(2001) showed that under the replicator dynamic with symmetric payoff functions

such games converge to the interior equilibrium in which players play yinti =
bicj−2ciaj
4aiaj−bibj

19.

We assume a multiplicity of equilibria: yinti > 0 so that xI = (yint1 , yint2 ) is a Nash equi-

librium; 4aiaj < bibj so that corner equilibria exist: xc1 = (ycnr1 , 0), xc2 = (0, ycnr2 ),

ycnri = −ci
2ai

. Let the unperturbed dynamic be a Markov process on X = R2
+ in which

each period one player best responds to the current action of the other player, fol-

lowing which the other player best responds to the new action of the first player. Let

the metric on X be Euclidean distance. The best response of player i to yj is

BRi(yj) = max

{
−biyj − ci

2ai
, 0

}
Φ has kernel:

P ((yi, yj), (BRi(yj), BRj(BRi(yj)))) =
1

2
, i = 1, 2.

This gives:

WI = {xI}, Wci = {(yi, yj) : yi > yinti , yj < yintj },

19yinti = −c
2a+b under symmetry.
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Note that P (., .) satisfies condition (i) of Proposition 5. We analyse two possible

perturbed dynamics.

5.1.1. Uniform local perturbations

For some small ς > 0, define:

G1((y1, y2), .) ∼ U [Bς((y1, y2))]

Gn((y1, y2), .) =

∫
X

G1((y1, y2), dx)Gn−1(x, .), n = 2, . . . ,M − 1

GM((0, 0)) = 1.

These Gn(., .), GM(.) satisfy condition (i) of Proposition 5. GM(.) is not necessary

for the results of this section, although it is of interest to note that any Markovian

dynamic with some small, bounded below, probability of an ‘armageddon’ event will

satisfy the conditions for ergodicity. A = {xc1, xc2} and it is clear that for some

δ > 0, W δ
ci are open so condition (ii) is also satisfied. For almost all values of ς, for

any escape path from a state close to xci to W δ
cj there is a similar path from xci itself

to W δ
cj, so condition (iii) is generically satisfied20,21. Now, for large enough M , the

order of perturbations required to move from near xci to Wcj is given by:

V (xci, xcj) =

⌈
min

{
yintj

ς
,
ycnri − yinti

ς

}⌉
and applying Proposition 4 we obtain:

Proposition 6.

min
{
yintj , ycnri − yinti

}
≥ min

{
yinti , ycnrj − yintj

}
⇐⇒

∃ ς̂ such that ∀ ς < ς̂, ∃ M̂ such that ∀M > M̂, π(xci) > 0.

20The exception to this is when an expression for V (xci, xcj) would be an integer even before the
ceiling function is applied.

21Thus Assumption 5 is satisfied as for any δ,γ > 0, for large enough t, Fδ(t) ⊆ {(y1, y2) :
mini∈{1,2} d(yi, y

int
i ) < γ}. So for small enough δ and γ, correspondingly large t̃, x ∈ W δ

i , we have

that P tε(x, Fδ(t̃)) is of the order of εV (x∗i ,x
∗
j ) for all t.
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5.1.2. Proportional perturbations

For some k ∈ (0, 1), define:

G1((y1, y2), .) ∼ U [[ky1, y1]× [ky2, y2]]

Gn((y1, y2), .) =

∫
X

G1((y1, y2), dx)Gn−1(x, .), n = 2, . . . ,M − 1

GM((0, 0)) = 1.

Similarly to above, conditions (i),(iii),(iv) are satisfied. Now, for large M ,22

V (xci, xcj) =


log
(
yinti

ycnri

)
log k


and applying Proposition 4 we obtain:

Proposition 7.

ycnri

yinti

≥
ycnrj

yintj

⇐⇒ ∃ k̂ : ∀ k > k̂, ∃ M̂ such that ∀M > M̂, π(xci) > 0.

5.2. Sampling a population

Take a two player symmetric matrix game in which a player has a set N of possible

actions, |N | = n. Let there be a continuum of agents on the unit interval. The state

space is defined as the proportions in which each action is played at a point in time:

X is the unit (n − 1)-simplex. In period t, independently of his previous actions,

with probability 1− α any given agent plays the same action as at time t− 1. With

probability α he randomly and uniformly samples a finite number k of the actions of

players in period t−1 before playing a best response to the mixed strategy which has

each action being played with a probability equal to its proportion in his sample. If

multiple best responses exist we assume that they are chosen with equal probability.

Denote the distribution of such best responses to an action profile x by BR(x). Then:

P (x, x̃) = 1, x̃ := (1− α)x+ αBR(x).

22V (xci, xcj) is the lowest integer V such that kV ycnri < yinti .
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Note that as the probability of drawing any given sample is continuous in x, P (x, .)

is itself continuous and does not violate condition (i) of Proposition 5. We restrict

attention to games for which this process satisfies Assumption 2. It is trivial to

construct games which do not satisfy Assumption 2 under this process, for example

the 2 by 2 matrix of zeroes.

Any stable state x∗ is close to a Nash equilibrium of Γ in the following sense:

Proposition 8. For any ξ > 0, there exists k̄ ∈ N+ such that if k > k̄, for any

x∗ ∈ Λ there exists a symmetric Nash equilibrium xNE of Γ such that |x∗−xNE| < ξ.

The perturbations are defined as follows. For some small ς > 0, define:

G1(x, .) ∼ U [Bς(x)]

Gn(x, .) =

∫
X

G1(x, dy)Gn−1(y, .), n = 2, . . . ,M − 1

GM(.) ∼ U [X]

These Gn(., .), GM(.) satisfy condition (i) of Proposition 5. GM(.) is not necessary for

the results of this section.

Proposition 9. If xNE is a strict symmetric pure Nash equilibrium then:

xNE ∈ A and xNE is asymptotically stable.

L R
L a, a b, c
R c, b d, d

Figure 4: A two player strategic game. (L,L) and (R,R) assumed to be strict Nash equilibria.

In a game such as that of Figure 4 in which there are two strict symmetric Nash

equilibria, by Proposition 9 both of these Nash equilibria correspond to stable states

in A such that the basin of attraction includes some open ball centred on the Nash

equilibrium. Close to the mixed Nash equilibrium, for large enough k, there is one

stable state which is not in A. Hence condition (ii) of Proposition 5 is satisfied. Let

(p, 1 − p) be the equilibrium strategy of the mixed Nash equilibrium. Then as long
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as neither p nor 1 − p is an integer multiple of ς, condition (iii) is also satisfied.23,24

Identical arguments to those in Young (1998) then give:

Proposition 10. In a 2 by 2 game with two symmetric strict pure Nash equilibria,

one of which is risk dominant, the risk dominant equilibrium is uniquely stochastically

stable for small enough ς for large enough M .

6. What if Property C does not hold?

Analysis is less straightforward if Property C does not hold. In some cases, how-

ever, a simple argument can still be used to find stochastically stable states. In the

example in Section 2.2, Conditions (i), (ii) and (iii) of Proposition 5 all fail at state

1n. Property C does not hold as V −(1n, 0n) = 1 whereas V (1n, 0n) = n − k + 1.

However, the state space can still be partitioned into a finite collection of disjoint

sets such that, under Pε(., .), any of the sets can be reached from any x ∈ X with a

probability bounded below by a strictly positive number. Such a partition is:

X = X0 ∪Xk ∪Xk+1 . . . ∪Xn

where for i = k, . . . , n:

Xi = {x ∈ X : |I(x)| = i}

and

X0 = {x ∈ X : |I(x)| < k}

Bounds can be found for the transition probabilities between these sets. Freidlin and

Wentzell (1984) style tree arguments can then be used. The ‘flow’ of probability mass

from Xi to Xi−1 for i = k+1, . . . , n, and from Xk to X0 can be shown to be of order ε,

so a tree of order εn−k+1 rooted at X0 can be constructed. Any tree not rooted at X0

must include an edge leaving X0 of order εk. Taking limits of the invariant measures

23If p = 2ς, from (0, 1) it takes an order ε3 event to move to the basin of attraction of (1, 0), but
from (ξ, 1− ξ), ξ ∈ (0, ς), an order ε2 event is all that is required.

24Assumption 5 can then be seen to be satisfied by a similar argument to that in Section 5.1 (see
Footnote 21).
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then gives the conclusion that all probability mass in the limit is concentrated in X0

and therefore, by Proposition 3, on 0n.

Proposition 11. In the example of Section 2.2 the unique stochastically stable state

is 0n.

Given the simple nature of the counterexamples in Section 4, a similar analysis

to the above can be carried out. In Example 4.1, W0 can be partitioned into states

that converge within C × C × C, those that converge within B × B × B, and those

that attain x∗0. In Example 4.2, Wk can be partitioned into states whose first digit is

1 and states whose first digit is not 1. In Example 4.3, Wk can be partitioned into

the two areas on either side of the dotted line in Figure 2. In Example 4.4, Wk can

be partitioned into states with y > 0 and those with y ≤ 0.

7. Concluding remarks

This paper has demonstrated how commonly used stochastic stability methods can

be applied to settings with infinite state spaces, corresponding to situations in which

economic agents choose from infinite strategy sets. It includes sufficient conditions for

the straightforward application of existing results in the literature to such settings.

Moreover, the analysis of the complications that can arise with general state spaces

aids understanding of the problems of which one should be aware when applying ideas

of robustness to random perturbations to processes which do not satisfy all of our

conditions.

Another approach when seeking to find stochastically stable states for games with

infinite strategy sets is to discretize the strategy space and the transition kernel. This

is not always simple and can lead to problems such as the absence of simple closed

form best response functions and nonexistence of equilibrium. Difficulties can be

met when passing to the limit of any discretization as it becomes fine. Moreover,

examples in this paper show that any discretization satisfying plausible criteria can

lead to the selection of different equilibria to those selected when the analysis is carried

out directly on the original state space and process. Sometimes it may be better to

analyze stochastic stability whilst remaining in a non-finite world. This paper gives

tools with which to aid that endeavour.
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Appendix A. Proofs

Definition 7. A measure ϕ on B(X) is an irreducibility measure and Φε is ϕ-

irreducible if for all x ∈ X, whenever ϕ(A) > 0, there exists some t > 0, possibly

depending on both A and x, such that P t
ε(x,A) > 0.

Definition 8. A set A ∈ B(X) is petite if there exist a nontrivial25 measure ν and a

probability distribution a on Z+ such that ∀x ∈ A,∑
t

a(t)P t
ε(x, .) ≥ ν(.)

A ∈ B(X) is νt̃-small if there exist such ν, a, with a(t̃) = 1 for some t̃ ∈ Z+.

Definition 9. The process is said to be strongly aperiodic if there exists a ν1-small

set A ∈ B(X) with ν1(A) > 0.

Definition 10. For A ∈ B(X), τA := min{t ≥ 1 : Φt
ε ∈ A} ∧∞.

Proof of Proposition 1. GM(.) is an irreducibility measure on B(X) as for any A ∈
B(X) with GM(A) > 0 we have Pε(x,A) ≥ εMGM(A) > 0 for all x ∈ X. Let-

ting a(1) = 1, ν(.) = εMGM(.) we see that the set X is petite as for all x ∈ X,

Pε(x, .) ≥ εMGM(.) = ν(.). As X is the entire state space, τX ≡ 1. Combined with

irreducibility and petiteness of X this implies the existence of a unique invariant

probability measure πε for Φε.
26

Proof of Proposition 2. Take some A ∈ B(X) with GM(A) > 0. For all x ∈ A,

Pε(x,A) ≥ εMGM(A) > 0. Letting ν1(.) = εMGM(.), we see that A is ν1-small.

Therefore the process is strongly aperiodic. This and the uniqueness and finiteness

of πε imply the result.27

Proof of Proposition 3. As Λ ∩ cl(A) = ∅, there exists δ such that W δ ∩ cl(A) = ∅.
By Assumption 3 there exists x, εδ, rδ such that

lim
t→∞

P t
ε(x,W

δ) > 1− εrδ for all ε < εδ.

25A measure which is not everywhere zero.
26Meyn and Tweedie (1994), Theorem 3.2.
27Meyn and Tweedie (2009), Theorem 13.0.1.
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By Proposition 2, |P t
ε(x,W

δ)− πε(W δ)| → 0 as t→∞, so πε(W
δ) > 1− εrδ . So, for

small enough ε, πε(W
δ) > 1− η, and we have

πε(A) ≤ πε(cl(A)) ≤ 1− πε(W δ) < 1− (1− η) = η.

Proof of Corollary 1. For n ∈ N, let

Bn = {x ∈ X : d(x,Λ) > 2−n}, B̄n = {x ∈ X : d(x,Λ) ≥ 2−n}.

For all n ∈ N, B̄n is closed, so B̄n = cl(B̄n). As B̄n ∩ Λ = ∅, Proposition 3 implies

πε(B̄n) → 0 as ε → 0. So, as Bn ⊆ B̄n, πε(Bn) → 0 as ε → 0. Bn is open, so by the

definition of weak convergence, it must be that π(Bn) = 0. As Λ is closed, we have

that

X \ Λ =
∞⋃
n=1

Bn, and therefore π(X \ Λ) = π

(
∞⋃
n=1

Bn

)
≤

∞∑
n=1

π(Bn) = 0

So the only states in X which can have positive probability under π are in Λ.

To aid conciseness, denote G0(x, .) := P (x, .) and GM(x, .) := GM(.). Denote, for

qt ∈ {0, 1, . . . ,M}, t = 1, . . . , T ,

G(q1,...,qT )(x, .) :=

∫
X

Gq1(x, dy1)

∫
X

Gq2(y1, dy2) . . .

∫
X

GqT−1
(yT−2, dyT−1)GqT (yT−1, .)

(A.1)

Observe that for small ε, 1/2 < (1− ε− . . .− εM) < 1. For the rest of this section, we

assume that this holds. We have

Pε(x, .) ≤
M∑
q=0

εqGq(x, .) ≤ 2Pε(x, .)
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with the second inequality strict for any Pε(x,A) > 0. Similarly,

P T
ε (x, .) =

∫
X

Pε(x, dy1)

∫
X

Pε(y1, dy2) . . .

∫
X

Pε(yT−2, dyT−1)Pε(yT−1, .) ≤∑
q1,...,qT

∫
X

εq1Gq1(x, dy1)

∫
X

εq2Gq2(y1, dy2) . . .

∫
X

εqT−1GqT−1
(yT−2, dyT−1)εqTGqT (yT−1, .)

=
∑

q1,...,qT

εq1+...+qTG(q1,...,qT )(x, .) ≤ 2TP T
ε (x, .). (A.2)

Lemma 1. For x ∈ X, A ∈ B(X), T ∈ N+, P T
ε (x,A) > 0, let r = min{q1 + . . . +

qT |G(q1,...,qT )(x,A) > 0}. Then, for some l > 0 independent of ε,

lεr < P T
ε (x,A) ≤ (M + 1)T εr.

Proof. Considering a term in (A.2) such that q̃1 + . . .+ q̃T ≤ r, we have

P T
ε (x,A) >

1

2T
G(q̃1,...,q̃T )(x,A) εq̃1+...+q̃T ≥ l εr, for l =

1

2T
G(q̃1,...,q̃T )(x,A).

If q1 + . . . + qT ≥ r for all strictly positive terms in (A.2), then as there are at most

(M + 1)T such terms,

P T
ε (x,A) ≤

∑
q1,...,qT

εq1+...+qT ≤ (M + 1)T εr.

Lemma 2. (i) x∗j ∈ A ⇐⇒ ∀x∗k ∈ Λ, V (x∗k, x
∗
j) <∞.

(ii) x∗j /∈ A =⇒ ∀x∗k ∈ A, V (x∗k, x
∗
j) =∞.

(iii) x∗j ∈ A =⇒ ∀δ, x ∈ X, Prx(τW δ
j
<∞) = 1.

Proof. Let Bj be as in Definition 6. Let x∗j ∈ A. Then GM(Bj) > 0. Let

BTδn
j := {x ∈ Bj : ∀t ≥ T, P t

ε(x,W
δ
j ) > 1/2tn}.

Fix δ > 0. By Definition 6, x ∈ Bj implies that P t1
ε (x,Wj) > 0 for some t1. This
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implies that for large enough t2, n,

P t2
ε (x,W δ

j ) ≥
(

1

2

)t2−t1 ∫
Wj

P t1
ε (x, dy)P t2−t1(y,W δ

j ) >

(
1

2

)t2
P t1
ε (x,Wj) >

1

2t2
1

n
,

where the second inequality comes from bounded convergence as Assumption 2 implies

that for y ∈ Wj, P
t2−t1(.,W δ

j )→ 1 pointwise as t2 →∞. So x ∈ Bt2δn
j .

The above implies Bj = ∪T∈N+∪n∈N+B
Tδn
j . This union is countable, so GM(Bj) >

0 implies that GM(BTδn
j ) > 0 for some T , n. So, for all x ∈ X, Pε(x,B

Tδn
j ) >

εMGM(BTδn
j ) > 0. For x ∈ BTδn

j , P T
ε (x,W δ

j ) > 1/2Tn. Combining, for all x ∈ X,

P T+1
ε (x,W δ

j ) > εMGM(BTδn
j )1/2Tn > 0. Hence it follows, by the definition of V (., .),

that for all x∗k ∈ Λ, V (x∗k, x
∗
j) ≤ M(T + 1) < ∞. The uniform lower bound on

P T+1
ε (.,W δ

j ) implies that τW δ
j
<∞ with probability 1.

Let x∗i be such that V (x∗k, x
∗
i ) <∞ for all x∗k ∈ Λ. Let δ = δji from the definition

of Property C. For all x ∈ W δji
j , by Property C and V (x∗j , x

∗
i ) <∞, there exists t such

that P t
ε(x,Wi) > 0, so B

Tδjin
j ⊆ Bi for all T , n, implying GM(Bi) > 0 and x∗i ∈ A.

By contraposition, if x∗i /∈ A, it must be that V (x∗j , x
∗
i ) =∞.

Definition 11. Fix δ̄, Tδ̄+, so that for all x∗k, x
∗
j ∈ A, x ∈ W δ̄

k ,

(i) @t : P t
ε(x,Wj) ∈ Ω(εV

−(x∗k,x
∗
j )−1), (ii) δ̄ < δkj,

(iii) δ̄, Tδ̄+ satisfy Assumption 5.

To see that Definition 11 makes sense, note that (i) can be satisfied due to the

definition of V −. For (ii), δkj is as in the definition of Property C. Further define:

T := max
k,j:x∗k,x

∗
j∈A

Tkj(δ̄) + Tδ̄+.

Lemma 3. For all t ≥ T , x∗k, x
∗
j ∈ A, there exist l > 0, ε̄ such that for all x ∈ W δ̄

k ,

ε < ε̄,

lεV (x∗k,x
∗
j ) < P t

ε(x,W
δ̄
j ) ≤ (M + 1)tεV (x∗k,x

∗
j ). (A.3)
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Proof. By Definition 11(ii), δ̄ < δkj, so Property (C2) implies that for all x ∈ W δ̄
k ,

P
Tkj(δ̄)
ε (x,W δ̄

j ) > l εV (x∗k,x
∗
j ). (A.4)

By Definition 11(iii), δ̄, Tδ̄+ satisfy Assumption 5, hence W δ̄
j ∩Fδ̄(Tδ̄+) = ∅. Then, as

t ≥ T implies t− Tkj ≥ Tδ̄+, we have, for all x ∈ W δ̄
j ,

P
t−Tkj(δ̄)
ε (x,W δ̄

j ) ≥ (1/2)t−Tkj(δ̄) P t−Tkj(δ̄)(x,W δ̄
j )︸ ︷︷ ︸

=1 as t−Tkj(δ̄)≥Tδ̄+

= (1/2)t−Tkj(δ̄), (A.5)

Combining (A.4) and (A.5), we have the first inequality in (A.3). Consider the

expansion of P t
ε(x,W

δ̄
j ) in the form (A.2). If there exists a strictly positive term with

q1 + . . . + qt ≤ V (x∗k, x
∗
j)− 1, then by Lemma 1 we have P t(x,W δ̄

j ) > lεV (x∗k,x
∗
j )−1, so

P t(x,W δ̄
j ) ∈ Ω(εV (x∗k,x

∗
j )−1). Together with Property (C1) this implies P t(x,W δ̄

j ) ∈
Ω(εV

−(x∗k,x
∗
j )−1), contradicting Definition 11(i). So all strictly positive terms have

q1 + . . .+ qt ≥ V (x∗k, x
∗
j) and by Lemma 1 we have P t(x,W δ̄

j ) ≤ (M + 1)tεV (x∗k,x
∗
j ).

Define Φ̂ε as the Markov process with kernel P̂ε(., .) = P T
ε (., .). This process also

has invariant measure πε. Define:

τ̂A(k) := min{t > τ̂A(k − 1) : Φ̂t
ε ∈ A}; τ̂A(0) = 0.

Let W̄ δ =
⋃
i:x∗i∈A

W δ
i and define Φ̃ε as the process Φ̂ε only observed when it lies in

W̄ δ̄, Φ̃t
ε = Φ̂

τ̂
W̄ δ̄ (t)
ε . It follows from Lemma 2(iii) that Prx(τ̂W̄ δ̄(t) < ∞) = 1. Then

the invariant measure of Φ̃ε is given by:

π̃ε(.) =
πε(.)

πε(W̄ δ̄)
.

Denote:

AP̂
t
ε(x,B) := Prx(Φ̂

t
ε ∈ B, τ̂A(1) ≥ t); x ∈ X; A,B ∈ B(X).

The kernel of Φ̃ε is given by:

P̃ε(x,A) =
∞∑
t=1

W̄ δ̄ P̂ t
ε(x,A), A ∈ B(W̄ δ̄).
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Lemma 4. There exists ε̄ such that for all ε < ε̄, x /∈ Fδ̄(Tδ̄+),

Prx(τ̂W δ̄ > t|τFδ̄(Tδ̄+) > tT ) < ε
t
2 . (A.6)

Proof. For conciseness, write F = Fδ̄(Tδ̄+). Note that∫
X\F

Pε(., dy1)

∫
X\F

Pε(y1, dy2) . . .

∫
X\F

Pε(yT−2, dyT−1)Pε(yT−1, X \ (F ∪W δ̄))

≤
∫
X

Pε(., dy1)

∫
X

Pε(y1, dy2) . . .

∫
X

Pε(yT−2, dyT−1)Pε(yT−1, X \ (F ∪W δ̄))

= PTε (., X \ (F ∪W δ̄)) ≤ PTε (., X \W δ̄) (A.7)

and that for x /∈ F ,

PTε (x,X \W δ̄) = 1− PTε (x,W δ̄) ≤ 1− (1− ε− . . .− εM︸ ︷︷ ︸
>1−Mε

)T PT (x,W δ̄)︸ ︷︷ ︸
=1

≤ 1− (1−Mε)T < 1− (1− 2TMε) = (2TMε) < ε
3
4 . (A.8)

Now see that,

Prx(Φ̂nε /∈W δ̄, n = 1, . . . , t; Φmε /∈ F,m = 1, . . . , tT )

=

∫
X\F

Pε(., dy1)

∫
X\F

Pε(y1, dy2) . . .

∫
X\F

Pε(yT−2, dyT−1)

∫
X\(F∪W δ̄)

Pε(yT−1, dyT )

∫
X\F

. . .

. . .

∫
X\(F∪W δ̄)

Pε(y(t−1)T−1, dy(t−1)T )∫
X\F

Pε(y(t−1)T , dy(t−1)T+1) . . .

∫
X\F

Pε(ytT−2, dytT−1)Pε(ytT−1, X \ (F ∪W δ̄))︸ ︷︷ ︸
<ε

3
4 by (A.7) and (A.8)

< ε
3
4

∫
X\F

Pε(., dy1)

∫
X\F

Pε(y1, dy2) . . .

∫
X\F

Pε(yT−2, dyT−1)

∫
X\(F∪W δ̄)

Pε(yT−1, dyT )

∫
X\F

. . .

. . .

∫
X\(F∪W δ̄)

Pε(y(t−1)T−1, dy(t−1)T )

= ε
3
4

∫
X\F

Pε(., dy1)

∫
X\F

Pε(y1, dy2) . . .

∫
X\F

Pε(yT−2, dyT−1)

∫
X\(F∪W δ̄)

Pε(yT−1, dyT )

∫
X\F

. . .

. . . Pε(y(t−1)T−1, X \ (F ∪W δ̄))

< . . . < ε
3
4 t. (A.9)

where the strict inequalities result from the repeated use of (A.7) and (A.8). Observe that for x /∈ F ,

P (x, F ) = 0 and therefore P (x,X \ F ) = 1, (A.10)
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or the definition of F would be contradicted. Furthermore, using (A.10),

Prx(Φmε /∈ F,m = 1, . . . , tT )

=

∫
X\F

Pε(., dy1)

∫
X\F

Pε(y1, dy2) . . .

∫
X\F

Pε(ytT−2, dytT−1)Pε(ytT−1, X \ F ))

≥
∫
X\F

1

2
P (., dy1)

∫
X\F

1

2
P (y1, dy2) . . .

∫
X\F

1

2
P (ytT−2, dytT−1)

1

2
P (ytT−1, X \ F ))︸ ︷︷ ︸

=1 by (A.10)

=

(
1

2

)tT ∫
X\F

P (., dy1)

∫
X\F

P (y1, dy2) . . .

∫
X\F

P (ytT−2, dytT−1)

=

(
1

2

)tT ∫
X\F

P (., dy1)

∫
X\F

P (y1, dy2) . . . P (ytT−2, X \ F )︸ ︷︷ ︸
=1 by (A.10)

= . . . =

(
1

2

)tT
. (A.11)

Using the definition of conditional probability, (A.9) and (A.11),

Prx(τ̂W δ̄ > t|τF > tT ) = Prx(Φ̂nε /∈W δ̄, n = 1, . . . , t|Φmε /∈ F,m = 1, . . . , tT )

=
Prx(Φ̂nε /∈W δ̄, n = 1, . . . , t; Φmε /∈ F,m = 1, . . . , tT )

Prx(Φmε /∈ F,m = 1, . . . , tT )
.

<
ε

3
4 t

( 1
2 )tT

=

(
ε

3
4

( 1
2 )T

)t
< ε

t
2 .

Lemma 5. For all x∗i ∈ Λ, there exists ε̄ such that for all ε < ε̄, x ∈ W δ̄
i ,

Prx(τFδ̄(Tδ̄+) ≤ t̃) ≤ t̃(M + 1)t̃εV̄i . (A.12)

Proof.

Prx(τFδ̄(Tδ̄+) ≤ t̃) ≤
t̃∑
t=1

P t
ε(x, Fδ̄(Tδ̄+)) ≤

t̃∑
t=1

(M + 1)tεV̄i ≤ t̃(M + 1)t̃εV̄i .

where the second inequality follows from Lemma 1 and Assumption 5.

Lemma 6. Let t̃ > 2 maxx∗k,x∗j∈A V (x∗k, x
∗
j). Then, for all x∗k, x

∗
j ∈ A, there exist l > 0,

ε̄ such that for all x ∈ W δ̄
k , x /∈ ∪l:x∗l /∈ABl, ε < ε̄,

lεV (x∗k,x
∗
j ) < P̃ε(x,W

δ̄
j ) < (t̃(M + 1)t̃T + 1 + t̃T (M + 1)t̃T )εV (x∗k,x

∗
j ). (A.13)
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Proof.

P̃ε(x,W
δ̄
j ) =

∞∑
t=1

W̄ δ̄ P̂ t
ε(x,W

δ̄
j ) > P̂ε(x,W

δ̄
j ) = P T

ε (x,W δ̄
j ) ≥ lεV (x∗k,x

∗
j )

where the final inequality uses Lemma 3. Note that x ∈ W δ̄
k , x /∈ ∪l:x∗l /∈ABl, x

∗
i /∈ A

implies P t
ε(x,W

δ̄
i ) = 0 for all t, hence Prx(τ̂W̄ δ̄ > t̃) = Prx(τ̂W δ̄ > t̃). Furthermore,

using the law of total probability, Lemmas 3, 4, 5, and Property C, we have

P̃ε(x,W
δ̄
j ) =

∞∑
t=1

W̄ δ̄ P̂ t
ε(x,W

δ̄
j ) ≤

t̃∑
t=1

W̄ δ̄ P̂ t
ε(x,W

δ̄
j ) + Prx(τ̂W̄ δ̄ > t̃)

<
t̃∑
t=1

P̂ t
ε(x,W

δ̄
j ) + Prx(τ̂W δ̄ > t̃|τFδ̄(Tδ̄+) > t̃T )Prx(τFδ̄(Tδ̄+) > t̃T )

+ Prx(τ̂W δ̄ > t̃|τFδ̄(Tδ̄+) ≤ t̃T )Prx(τFδ̄(Tδ̄+) ≤ t̃T ) [by law of total probability]

≤
t̃∑
t=1

P̂ t
ε(x,W

δ̄
j ) + Prx(τ̂W δ̄ > t̃|τFδ̄(Tδ̄+) > t̃T ) + Prx(τFδ̄(Tδ̄+) ≤ t̃T )

< t̃(M + 1)t̃T εV (x∗k,x
∗
j ) + ε

t̃
2 + t̃T (M + 1)t̃T εV̄k [by Lemmas 3, 4, 5 respectively]

≤ t̃(M + 1)t̃T εV (x∗k,x
∗
j ) + εV (x∗k,x

∗
j )︸ ︷︷ ︸

as t̃>2V (x∗k,x
∗
j )

by statement
of lemma.

+t̃T (M + 1)t̃T εV (x∗k,x
∗
j )︸ ︷︷ ︸

as V̄k≥V −(x∗k,x
∗
j )

=V (x∗k,x
∗
j )

by defn of V̄k
and (C1)

Lemma 7 (Freidlin and Wentzell, 1984, Lemmas 3.1, 3.2). Assume there exists a

partition of X into finitely many disjoint sets {Xi|i ∈ L}, |L| = ν, such that, for all

i, j ∈ L,

∃cij > 0 s.t. inf
x∈Xi

Pε(x,Xj) ≥ cij.

For given invariant measure πε(.), let:

pij :=
1

πε(Xi)

∫
Xi

Pε(x,Xj)πε(dx)
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For g ∈ G(i), define:

vol(g) :=
∏

(j→k)∈g

pjk; Qi :=
∑
g∈G(i)

vol(g)

then:

πε(Xi) =
Qi∑ν
j=1Qj

.

Subsequent proofs use the following additional items of Bachmann-Landau asymp-

totic notation, which express the ideas of f being bounded by g above, and both above

and below respectively:

f(ε) ∈ O(g(ε))⇔ ∃k > 0, ε̄ s.t. ∀ ε < ε̄, |f(ε)| ≤ kg(ε)

f(ε) ∈ Θ(g(ε))⇔ ∃k1, k2 > 0, ε̄ s.t. ∀ ε < ε̄, k1g(ε) ≤ |f(ε)| ≤ k2g(ε)

Proof of Proposition 4. Let L̃ := {j ∈ L : x∗j ∈ A}. Let Ṽ(.) be as V(.), only defined

on L̃ instead of on L. Partition W̄ δ̄ into {W δ̄
i }i∈L̃ and define, for i, j ∈ L̃:

p̃ε,ij :=
1

π̃ε(W δ̄
i )

∫
W δ̄
i

P̃ε(x,W
δ̄
j )π̃ε(dx)

For x∗i , x
∗
j ∈ A, the bounds on P̃ε(x,W

δ
j ) in Lemma 6 imply that p̃ε,ij ∈ Θ(εV (x∗i ,x

∗
j )).

Define vol(.) and Qi as in Lemma 7 with pij = p̃ε,ij. Note that for x∗j /∈ A, by Lemma

2(ii), V(j) =∞, and by the definition of A, πε(W
δ̄
j ) = 0.

i ∈ Lmin ⇔ V(i) ≤ V(j) ∀j ∈ L⇔ Ṽ(i) ≤ Ṽ(j) ∀j ∈ L̃

⇔ ∃g′ ∈ G(i) : vol(g′) ∈ Θ(εṼ(i)) and ∀j ∈ L̃, ∀g ∈ G(j), vol(g) ∈ O(εṼ(i))

⇔ ∃Ṽ(i) ∈ N0 : Qi ∈ Θ(εṼ(i)),
∑
j∈L̃

Qj ∈ Θ(εṼ(i))

⇔ lim
ε→0

π̃ε(W
δ̄
i ) > 0⇔ lim

ε→0
πε(W

δ̄
i ) = π(W δ̄

i ) > 0⇔ π(x∗i ) > 0.

Lemma 8. Under Condition (i) of Proposition 5, for x ∈ X, A ∈ B(X), A open,

33



T ∈ N+, there exist δAx, ξAx, such that for all y ∈ BδAx(x),

G(q1,...,qT )(x,A) > 0 =⇒ G(q1,...,qT )(y, A) > ξAx.

Proof. For T = 1, the statement of the lemma is simply Condition (i). We shall

prove the lemma by induction on T . Assume it is true for T = t − 1. Now, as X is

a separable metric space and hence strongly Lindelhöf, the support of Gq1(x, .) is a

Borel set with measure 1 under Gq1(x, .). Thus we can integrate over the support of

Gq1(x, .) rather than over the entire space.

G(q1,...,qt)(x,A) > 0 =⇒
∫

suppGq1 (x,.)

Gq1(x, dy)G(q2,...,qt)(y, A) > 0

which implies there exists y1 ∈ suppGq1(x, .) such that G(q2,...,qt)(y1, A) > 0. Then, by

the inductive hypothesis, there exist δAy1 , ξAy1 , such that y ∈ E1 := BδAy1
(y1) implies

that G(q2,...,qt)(y, A) > ξAy1 .

Also, by the definition of support, y1 ∈ suppGq1(x, .) implies that Gq1(x,E1) > 0.

Hence, by Condition (i), there exist δE1x, ξE1x such that for all w ∈ E0 := BδE1x
(x),

Gq1(w,E1) > ξE1x.

So, for all w ∈ E0,

G(q1,...,qt)(w,A) ≥
∫
E1

Gq1(w, dy)G(q2,...,qt)(y, A) > ξAy1

∫
E1

Gq1(w, dy)

= ξAy1Gq1(w,E1) > ξAy1ξE1x =: ξAx.

Proof of Proposition 5. We know from Condition (iii) that there exists T1 such that

P T1
ε (x∗k,Wj) ∈ Ω(εV

−(x∗k,x
∗
j )). Let δ̃ satisfy Condition (ii). By Lemma 1 there exist

q1 + . . .+ qT1 ≤ V −(x∗k, x
∗
j) such that the term G(q1,...,qT1)

(x∗k,Wj) in the expansion of

P T1
ε (x∗k,Wj) given by expression (A.2) is strictly positive.

Expanding G(q1,...,qT1
)(x
∗
k,Wj) as per expression (A.1), we see that the similar ex-

pansion ofG(q1,...,qT1
)(x
∗
k,Wj\Fδ̃(t)) differs only in the final term, which isGqT1

(yT1−1,Wj\
Fδ̃(t)) rather than GqT1

(yT1−1,Wj). Now, for all z ∈ Wj, there exists t such that
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z /∈ Fδ̃(t), so 1Wj\Fδ̃(t)(z)→ 1Wj
(z) as t→∞. So by bounded convergence

GqT1
(yT1−1,Wj \ Fδ̃(t)) =

∫
X

1Wj\Fδ̃(t)(z)GqT1
(yT1−1, dz)

t→∞−−−→
∫
X

1Wj
(z)GqT1

(yTkj−1, dz) = GqT1
(yT1−1,Wj).

(A.14)

This holds for all yT1−1 ∈ X, so GqT1
(.,Wj \Fδ̃(t)) converges pointwise to GqT1

(.,Wj).

Using bounded convergence repeatedly on the integrals in the expansion ofG(q1,...,qT1
)(x
∗
k,Wj\

Fδ̃(t)) given by (A.1), we see that G(q1,...,qT1
)(x
∗
k,Wj \ Fδ̃(t)) → G(q1,...,qT1

)(x
∗
k,Wj) as

t→∞, so we can choose T2 large enough that G(q1,...,qT1
)(x
∗
k,Wj \ Fδ̃(T2)) > 0.

By Lemma 1 we then have P T1
ε (x∗k,Wj \ Fδ̃(T2)) ∈ Ω(εV

−(x∗k,x
∗
j )). For all z ∈

Wj \ Fδ̃(T2), t ≥ T2, P t(z,W δ̃
j ) = 1. So, for T = T1 + T2, P T

ε (x∗k,W
δ̃
j ) ∈ Ω(εV

−(x∗k,x
∗
j )).

Expanding P T
ε (x∗k,W

δ̃
j ) as in (A.2), there must be a strictly positive termG(q1,...,qT )(x

∗
k,W

δ̃
j )

in the expansion such that q1 + . . .+ qT ≤ V −(x∗k, x
∗
j) or Lemma 1 gives a contradic-

tion to P T
ε (x∗k,W

δ̃
j ) ∈ Ω(εV

−(x∗k,x
∗
j )). So, by Lemma 8, there exist δkj, ξ such that for

z ∈ Bδkj(x
∗
k), G(q1,...,qT )(z,W

δ̃
j ) > ξ and therefore

P T
ε (z,W δ̃

j ) ≥ εq1+...+qT G(q1,...,qT )(z,W
δ̃
j ) > εV

−(x∗k,x
∗
j ) ξ. (A.15)

This shows that for some l > 0, for all x ∈ W
δkj
k , P T

ε (x,W δ̃
j ) > lεV

−(x∗k,x
∗
j ). So, by

definition of V (., .), we have V (x∗k, x
∗
j) ≤ V −(x∗k, x

∗
j). As V (x∗k, x

∗
j) ≥ V −(x∗k, x

∗
j) by

definition, we have V (x∗k, x
∗
j) = V −(x∗k, x

∗
j), so (C1) holds.

Now, δ̃ can be chosen arbitrarily small and still satisfy Condition (ii), so we can
assume δ̃ < δ̂, where δ̂ is as in Assumption 5. Now, by Assumption 5, for any
δ̃′ < δ̃ we can choose Tδ̃′+ such that Fδ̃′(Tδ̃′+) ∩ W δ̃

j = ∅. Hence, for all x ∈ W δ̃
j ,

P Tδ̃′+(x,W δ̃′
j ) = 1. Therefore, for T ′ = T + Tδ̃′+, for all x ∈ W δkj

k ,

PT
′

ε (x,W δ̃′

j ) =

∫
X

PTε (x, dy)P
Tδ̃′+
ε (y,W δ̃′

j ) ≥
∫
W δ̃
j

PTε (x, dy)P
Tδ̃′+
ε (y,W δ̃′

j )

≥
∫
W δ̃
j

PTε (x, dy)

(
1

2

)Tδ̃′+
PTδ̃′+(y,W δ̃′

j )︸ ︷︷ ︸
=1 as y/∈Fδ̃′ (Tδ̃′+)

=

(
1

2

)Tδ̃′+
PTε (x,W δ̃

j )︸ ︷︷ ︸
>ε

V−(x∗k,x
∗
j )
ξ

by (A.15)

>

(
1

2

)Tδ̃′+
εV
−(x∗k,x

∗
j ) ξ,

This shows that for some l′ > 0, for all x ∈ W δkj
k , P T ′

ε (x,W δ̃′
j ) > l′εV

−(x∗k,x
∗
j ), so (C2)

holds.
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Proof of Proposition 8. Assume the statement is incorrect for some ξ > 0. There

must be an infinite sequence of stable states {x∗(k)}k corresponding to increasing

values of k such that none of these stable states are within ξ of any Nash equilibrium.

As the sequence is bounded it contains a convergent subsequence. Restrict attention

to such a subsequence. Denote its limit by x̄∗. As x̄∗ is not a Nash equilibrium at

least one of the actions played is not a best response to the true distribution of play.

Assume that action i is one of these actions. x̄∗i > 0. Then there exist k, η > 0, such

that for all k > k, x∗i (k) > η. Note that as x∗(k) is a stable state, BRi(x
∗(k)) = x∗i (k).

There exists γ such that for all x such that |x − x̄∗| < γ, best responses to the

true distribution of x are a subset of the best responses to the true distribution of x̄∗.

Define fk(σ) as the distribution of samples σ at x∗(k). As k →∞, fk(σ) approaches

in distribution the probability measure with point mass on x̄∗. This implies:

∀η ∃k̄ : ∀k > k̄,
∑

σ/∈Bγ(x̄∗)

fk(σ) < η,

which implies:

BRi(x
∗(k)) < η.

and we have a contradiction.

Proof of Proposition 9. Assume that xNEi = 1. Let xt be such that xti = 1 − ξ, ξ ∈
(0, 1). There exists s ∈ R such that if i is not a unique best response to the strategy

σ then:∑
j 6=i

σj ≥ s.

The proportion of players changing strategy who will sample such a σ is:

ξ̃ =
k∑

j=dkse

(
k

j

)
ξj(1− ξ)k−j ∈ Θ(ξdkse).

Assuming k is large enough that dkse ≥ 2, there exists ξ̄ such that:

∀ ξ < ξ̄, ξ̃ < ξ.
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So for any xt ∈ Bξ̄(x
NE) we have that xti = 1− ξ for some ξ < ξ̄ and:

xt+1
i ≥ (1− α)xti + α(1− ξ̃) = (1− α)(1− ξ) + α(1− ξ̃) > 1− ξ = xti.

So we have convergence to xNE from an open ball centered on xNE, so xNE ∈ Λ.

This open ball is reached with positive probability from anywhere in the state space

so xNE ∈ A.

Proof of Proposition 11. For i = k + 1, . . . , n, x ∈ Xi:

Mε > Pε(x,Xi−1) ≥ ε
i

n

1

xmax
,

therefore pi,i−1 ∈ Θ(ε). Also, for x ∈ Xk:

Mε > Pε(x,X0) ≥ ε
k

n

1

xmax
,

and pk,0 ∈ Θ(ε). So there exists a 0-graph g̃ with vol(g̃) ∈ Θ(εn−k+1). Therefore

Q0 ∈ Θ(εn−k+1). For x ∈ X0, i 6= 0:

Pε(x,Xi) ∈ O(εk)

so any i-graph, i 6= 0, has vol(g̃) ∈ O(ε(n−k)+k) = O(εn). Therefore Qi ∈ O(εn).

Using the formula for πε(Xi) in Lemma 7, we see that πε(Xi) → 0 as ε → 0 for all

i 6= 0. So πε(X0)→ 1 as ε→ 0 and by Proposition 3, πε approaches the distribution

with point mass on 0n.

Appendix B. Counterexamples

Appendix B.1. The role of Assumption 3

Here we present a counterexample when Assumption 3 does not hold. Let X =

{xm}m∈N and let X be equipped with the discrete metric. Let Λ = {x0}. Let

P (xm+1, xm) = 1, m ∈ N,

G1(xm, {xm′ : m′ ≥ m̄}) =

(
1

m̄−m

) 1
4

for m̄ > m,

G2(x0) = 1.
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Note that for any xm ∈ X, m ∈ N+, Pm(x,Λ) = 1 so Assumption 2 holds. Now note

that

If t′ ≤
log 1

2

log(1− ε2)
, then (1− ε2)t

′ ≥ 1

2
,

implying that for t′ ≤ log 1
2

log(1−ε2)
, m > t′,

Prxm(Φt
ε 6= x0 for t = 1, . . . , t′) = (1− ε2)t

′ ≥ 1

2
. (B.1)

Consider ε such that 1/2ε2 is an integer, and note that,

G1

(
x0,

{
xm : m >

1

ε2

})
=

(
1
1
ε2

) 1
4

= ε
1
2 . (B.2)

Further note that

1

2ε2
<

log 1
2

log(1− ε2)
and

1

ε2
>

1

2ε2
, (B.3)

so (B.1) holds for t′ = 1/2ε2, m = 1/ε2.

Now, as G2(x0) > 0, πε(x0) > 0. The invariant measure of other sets as a

proportion of πε(x0) is then given by the expected number of periods the process

spends in those sets between visits to x0.28. For the set X \ {x0}, this quantity is

bounded below by

Prx0(τ{x0} > 1/2ε2)
1

2ε2
= Prx0(Φt 6= x0, t = 1, . . . , 1/2ε2)

1

2ε2

≥ ε G1

(
x0,

{
xm : m >

1

ε2

})
︸ ︷︷ ︸

=ε
1
2 by (B.2).

(
1− ε2

) 1
2ε2︸ ︷︷ ︸

≥1/2 by (B.1)
and (B.3).

1

2ε2

≥ ε ε
1
2

1

2

1

2ε2
=

1

4ε
1
2

.

This is true for arbitrarily small ε, and 1/4ε 1
2 →∞ as ε→ 0. Therefore, πε(X\{x0}) 6→

0 as ε→ 0. Proposition 3 does not hold.

28Meyn and Tweedie (2009), Theorem 10.4.9.
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Appendix B.2. The role of Assumption 2

Here we present a counterexample when Assumption 2 does not hold. Let X =

{x∗k, x∗j} ∪ {xm}m∈N+ and let X be equipped with the discrete metric. In accordance

with previous notation, let Λ = {x∗k, x∗j}. Let

P (xm, x
∗
k) =

1

m+ 1
, P (xm, xm+1) =

m

m+ 1
, m ∈ N+,

G1(x∗k, x1) = 1, G1(x∗j , x
∗
j) = 1, G1(xm, x

∗
j) = 1, m ∈ N+,

G2(x∗k) = 1.

Note that for any x ∈ X, P t(x,Λ) → 1 as t → ∞, but for any x /∈ Λ, there does

not exist a t such that P t(x,Λ) = 1. Hence Assumption 2 is violated. Observe that

P t
ε(x
∗
k, x

∗
j) ∈ Θ(ε2) for all t ∈ N+. As for small enough δ, Bδ(x

∗
k) = {x∗k}, we have that

V (x∗k, x
∗
j) = V −(x∗k, x

∗
j) = 2. Similarly, V (x∗j , x

∗
k) = V −(x∗j , x

∗
k) = 2, so (C1) holds.

Noting that P 2
ε (x∗k, x

∗
j) = P 1

ε (x∗j , x
∗
k) = ε2, we see that (C2) also holds, so Property C

holds. However,

P̃ε(x
∗
k, x

∗
j) = ε

(
ε+ (1− ε)1

2
ε+ (1− ε)2 1

2

2

3
ε+ (1− ε)3 1

2

2

3

3

4
ε+ . . .

)
= ε2

∞∑
m=0

1

m+ 1
(1− ε)m = ε2 (− log ε)

1− ε
,

so for any l ∈ R++, there exists ε̄ such that for all ε < ε̄,

P̃ε(x
∗
k, x

∗
j) = ε2 (− log ε)

1− ε
> ε2(− log ε) > lε2.

This contradicts Lemma 6.

Appendix B.3. The role of Assumption 5

Here we present a counterexample when Assumption 5 does not hold. Let X =

{x∗k, x∗j}∪{xm}m∈N+ and let X be equipped with the discrete metric. Let Λ = {x∗k, x∗j}.
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Let

P (x1, x
∗
k) = 1, P (xm+1, xm) = 1, m ∈ N+,

G1(x∗j , x
∗
j) = 1, G1(xm, x

∗
j) = 1, m ∈ N+,

G1(x∗k, {xm : m ≥ m̄}) =

(
1

m̄

) 1
2

G2(x∗k) = 1.

Note that for any xm ∈ X, Pm(x,Λ) = 1 so Assumption 2 holds. In a similar manner

to the example in Appendix B.2 we see that P t
ε(x
∗
k, x

∗
j) ∈ Θ(ε2) for all t ∈ N+,

V (x∗k, x
∗
j) = V −(x∗k, x

∗
j) = 2 and that Property C is satisfied. For small δ, W δ = Λ, so

Fδ(t) = {x ∈ X : P t(x,Λ) < 1} = {xm : m > t}

and as Pε(x
∗
k, {xm : m > t}) ∈ Ω(ε) for all t, Assumption 5 does not hold. Now note

that

If m ≥
⌈

log 1
2

log(1− ε)

⌉
, then m ≥

log 1
2

log(1− ε)
so (1− ε)m ≤ 1

2
,

implying that for m ≥
⌈

log 1
2

log(1−ε)

⌉
,

Prxm(Φt
ε 6= x∗j for t = 1, . . . ,m) = (1− ε)m ≤ 1

2
. (B.4)

Now,

G1

(
x∗k,

{
xm : m ≥

⌈
log 1

2

log(1− ε)

⌉})
=

 1⌈
log 1

2

log(1−ε)

⌉
 1

2

>

 1
log 1

2

log(1−ε) + 1

 1
2

=

(
log(1− ε)

log 1
2

+ log(1− ε)

) 1
2

>

(
log(1− ε)

2 log 1
2

) 1
2

>

(
−ε

2 log 1
2

) 1
2

=

(
−2 log

1

2

)− 1
2

ε
1
2 .

(B.5)
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So, using (B.4) and (B.5),

P̃ε(x
∗
k, x

∗
j) ≥ εG1

(
x∗k,

{
xm : m ≥

⌈
log 1

2

log(1− ε)

⌉})
1

2

> ε

(
−2 log

1

2

)− 1
2

ε
1
2

1

2
=

1

2

(
−2 log

1

2

)− 1
2

ε
3
2 .

This contradicts Lemma 6.
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