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Abstract

This paper compares the performance of alternative estimation
approaches for Public Goods Game data. A leave-one-out cross
validation was applied to test the performance of five estimation
approaches. Random effects is revealed as the best estimation
approach because of its un-biased and precise estimates and its ability
to estimate time-invariant demographics. Surprisingly, approaches
that treat the choice variable as continuous out-perform those that
treat the choice variable as discrete. Correcting for censoring is shown
to induce biased estimates. A finite Poisson mixture model produced
relatively un-biased estimates however lacked the precision of fixed
and random effects estimation.
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1 Introduction

The Public Goods Game is extensively used by experimental economists’
as a tool to study social dilemmas and cooperation. However, even though
it has been nearly 30 years since the first laboratory Public Goods Game
experiments were published (Isaac, Walker, and Thomas, 1984; Kim and
Walker, 1984; Isaac, McCue, and Plott, 1985) the empirical analysis of
the game choice data has still not moved beyond descriptive statistics in
most papers. The likely reason for this is that the distribution of the
choice data for this game is highly non-standard and is complicated by its
discrete, censored and often panelled nature. With little known about the
preciseness or extent of biasedness of estimates for this data under these
conditions, many authors have avoided model estimation entirely.

There have been a few exceptions though. Carpenter (2004) for example,
used Tobit random effects estimation to account for data censoring to
model contribution choice in a 10 period public goods game. Bardsley and
Moffatt (2007) made a clear attempt at advancing the analytical toolbox for
public goods experiments by proposing that public goods data be modelled
using a finite mixture model to incorporate heterogeneity of types within
a population with Tobit components to address censoring, and a tremble
term to model decision error. Despite the sophistication of the model and
compelling rational for the approach, the finite mixture modelling approach
was never taken up in the Public Goods experimental literature, probably
due to its complexity.

Random effects estimation have been used by (Tan and Bolle, 2007;
Nikiforakis, 2010) and more recently, Breitmoser (2010) estimates a nested
ordered logit using Public Goods data in order to compare the internal
and external validity of different structural models. This paper differs
from Breitmoser (2010) in that this paper is specific to Public Goods
experiments only and in this paper the structural model is held constant
and the performance of the estimates are compared for different estimation
approaches. In contrast, Breitmoser (2010) holds neither the structural
model nor estimation approach constant. Different specified models with
different estimation approaches are compared using Bayes Information
Criteria (BIC) and log likelihoods producing somewhat idiosyncratic
results. In line with the results of this paper, Poen (2009) finds evidence
of bias in Tobit random effects estimates from simulated public goods
game data. However, Poen (2009) suggests the bias is likely due to the
inclusion of a feedback variable that may introduce endogeneity. This

'For example, a review paper by Chaudhuri (2011) cites 146 Public Goods experiment
publications.



paper decisively shows, by estimating a model including a feedback variable
with and without using a tobit approach, that the source of the bias is not
endogeneity but instead from the use of Tobit estimation.

This paper provides Public Goods Game experimentalists with a clear
evidence-based prescription for the best estimation approach for Public
Goods Game choices. With greater knowledge and certainty as to how
different estimators will perform with Public Goods Game data, it is hoped
that authors will be more confident in generating inferences from Public
Goods Game models.

2 Distribution of Contributions

2.1 Public Goods Game

I examine a typical public goods situation found in experimental
economics literature, a standard Voluntary Contributions Mechanism
(VCM) (Davis and Holt, 1993; Ledyard, 1995). Participants have the same
endowment w and are in groups of N. Each individual has to decide how
much of his endowment to allocate to a public account y; and how much to
keep for himself w—y;. For each group, the sum of the individual allocations
to the public good Zﬁvzl y; is then multiplied by a factor a(N > a > 1), to
model the additional value generated from the public nature of the good.
The final value of the public account is then shared equally among the group
members. The payoff therefore of player ¢ under a VCM is given by:

N
a
Wi:(w—yi)‘i'ﬁ Elyj
]:

The VCM is primarily used to model social dilemmas because the dominant
strategy for each player is to free ride by allocating nothing to the
public account (assuming players maximize their own monetary payoff and
rationality is common knowledge). However, maximum efficiency is achieved
when all members allocate their entire endowment to the public account
Yi = w.

2.2 Data

Data was sourced from a previous study that used a 10 period public
goods experiment (Guillen, Merrett, and Slonim, 2012). This study used
procedures and instructions that closely resembling those from previous
literature? The data set is a panel of 4000 observations from 400 subjects

2The instructions used in the study were adapted from Herrmann, Théni, and Géachter
(2008)



with each subject making 10 contribution decisions. The Guillen, Merrett,
and Slonim (2012) study recruited undergraduates from the University of
Sydney, Australia (undergraduates are typically recruited as subjects for
Public Goods Game experiments in the literature) and involved two stages.
In the first stage all subjects played a standard 10 period VCM game and in
the second stage subjects were re-matched into different groups and played
a variety of different 10 period public goods games. In this paper only the
data from the first stage standard 10 period VCM game is used. Subjects
played in groups of N = 4 and were given an endowment w = 100 cents in
which to make a contribution decision y = {0,1,2...100}. The experimenters
multiplied contributions by a factor of a = 2 thereby giving a marginal per
capita return (MPCR) equal to 0.5 for every cent contributed.

2.3 Distributions

The contribution data replicate the temporal results of earlier VCM
experiments (Ledyard, 1995) where mean contributions start between 40
to 60 percent of the endowment and decline to close to zero (Figure 1). The
decay in contributions in the standard VCM game has been replicated many
times by different authors and is observed across different cultures (Géchter,
Herrmann, and Thoni, 2010).
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Figure 1: Average contributions by period replicate the results of previous
experiments (N = 4000)

The distributions of contributions across all 10 periods is given in
Figure 2. The distribution of contributions is similar to those obtained from



other VCM studies, see for example, Gichter, Renner, and Sefton (2008)3
and Herrmann, Théni, and Géchter (2008)* (See Fig. 3). The distributions
in Fig. 2 and Fig. 3 are both highly truncated (in Fig. 2 almost 40 percent
of observations are at one of the two limits), more so at the zero end than
the 100 end, and display a flat, almost uniform, distribution in between the
two limits with a noticeable node at the midpoint. The distributions in
Fig. 3 also show noticeable modes between the midpoint and zero and the
midpoint and upper bound however the distributions are comparable for
the most part.
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Figure 2: Histogram of contribution data used in this paper (all 10 periods)

Given that standard parameters and standard experimental methods
were used and the contribution distribution replicates previous literature,
the dataset used in this paper is representative of standard VCM
experimental data. The dataset is also substantial involving 400 subjects
and 4000 observations. These attributes make this dataset a good candidate
to test the performance of different VCM estimation approaches.

The correct identification of the distribution becomes particularly
important when using maximum likelihood estimation (MLE). Whereas

3In this study subjects played in groups of 3, were given an endowment of 20 tokens
and received a MPCR of 0.5.

“This study collected contribution data from subjects in several different countries
around the world including Melbourne, Australia. Subjects played in groups of 4, were
given an endowment of 20 tokens and received a MPCR of 0.4.
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Figure 3: Histogram of contributions in the baseline VCM game condition
from a) Géchter, Renner, and Sefton (2008) (all 50 periods); and b)
Herrmann, Thoni, and Géchter (2008) (all 10 periods).
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Figure 4: Histogram of contributions by period

least squares estimation only requires that the distribution of the errors
be known, MLE requires that the distribution of the dependent variable
is known. If the distribution is misspecified then MLE estimates can be
inconsistent invalidating standard inference techniques White (1982).

A reasonable assumption might be that contributions are distributed
according to a Tobit distribution with lower limit censoring occurring at



zero and upper censoring occurring at 100. A simulated Tobit distribution
with a mean and variance comparable to that of the dataset illustrates
how different the Tobit distribution is compared to the distribution of
contributions (Figure 5). Further examination of contribution distributions
for each period shows that none of the periods demonstrate a distribution
similar to the simulated Tobit distribution (Figure 4).
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Figure 5: Tobit Simulation N=4000 (u = 40, o = 400)

3 Estimation Approaches

Given the unique nature of VCM data (discrete, panel, with a non-
standard distribution changing over time) many papers avoid the difficult
task of estimating models using VCM data, instead choosing descriptive
analysis over regression analysis. From those authors who have, there
have been a number of different estimation approaches. The estimation
approaches can be grouped into two main categories: the continuous
approach (as with generalized least squares for panel data models) and the
discrete approach (as with logit and finite mixture models). The estimation
approaches chosen for comparison are those used in the literature which
include, random effects estimation (Tan and Bolle, 2007; Nikiforakis,
2010), tobit random effects estimation (Carpenter, 2004), ordered logit
(Breitmoser, 2010), and finite mixture models (Bardsley and Moffatt, 2007).

In order to compare the performance of different approaches, the same
model covariates should be estimated in each approach. To be comparable to
the literature, the covariates must also reflect the previous findings. A good
model is one that is also parsimonious and incorporates the temporal nature



of the data. The following model was created with this criteria in mind and
is used to compare the performance of different estimation approaches in
sections (3.1-3.5).

Yip = Bo + B1p + B2p9 + B3pl0 + B1AVip_1 + wip (1)

The dependent variable in Eq. (1) is an individual’s #’s contribution y
in period p. The covariates are lagged Average Group Contribution (AV)
which ezcludes individual i’s contribution, period (p) and period 9 and 10
dummies (p9 and p10 respectively). The intercept is only estimated when
appropriate for that approach.

The covariate AV was included in Eq. (1) in order to model the effect
of conditional cooperation. There is evidence that people demonstrate
conditional cooperation behavior in public goods games (Urs Fischbacher
and Fehr, 2001; Keser and van Winden, 2000; Fischbacher and Géchter,
2010). That is, people will contribute to the public account if the others in
their group contribute as well. Their contributions therefore, are dependent
on the contributions of the others in their group. The covariate p was used
to control for the declining trend in contributions over time. To explicitly
model any possible end-game effects (Andreoni, 1988) a dummy for each of
the last two periods was included.

3.1 Fixed Effects

The fixed effect approach is a method of removing the unobserved
individual specific effects from panel data by applying a transformation (2)
to the data prior to estimation (Wooldridge, 2009). The transformation uses
the mean of the dependent variable §y and mean of the regressors Z to time
de-mean the data.

Yip = Ui = B(@ip — &) + uip — U (2)
The time-demeaned data (time is denoted as period p here ) is then
regressed using ordinary least squares (OLS). Because the fixed effects
approach effectively removes the individual effects it does not require
the stricter conditions that random effects estimation (3.2) imposes. One
drawback though is that the transformation not only removes the individual
effects from the intercept, but removes any time invariant variables, for
example, gender and race.

Table 2 reports the estimation results of model (1) using fixed effects
estimation. All covariates are significant except Period 9 and all coefficients
have a sign that we would expect. The coefficients are interpreted in
the same way as an OLS estimation. R-Squares are typically lower in



panel models and are less meaningful than those from cross-sectional data.
Rho reports the correlation coefficient. A correlation coefficient equal to
one suggests perfect correlation of contribution choices within the same
individual. A Rho of 0.498 here suggests suggests that 50 percent of the
variance is due to differences between the individuals.

Table 1. Estimation results : Fixed Effects

Variable Coefficient (Std. Err.)

Dependent variable: Contribution

Period 2,326 (0.295)
Period 9 -2.193 (1.395)
Period 10 ~4.408"* (1.915)
Lag Average Group Contribution  0.385*** (0.037)
Intercept 37.454" (2.447)
R? (overall) 0.226

Rho 0.498

Significance: x * 1%, * x 5%, *10%
Notes: Robust standard errors clustered at subject id level.

3.2 Random Effects

Random effects estimation does not remove the individual effects but
instead allows each individual to have their own random intercept ie,
individual effect, Demidenko (2004). The main advantage of using Random
effects over fixed effects estimation is that it allows for covariates that
are constant over time. However random effects requires the stricter
assumptions that the individual effects are uncorrelated with the covariates
and that the individual effects are normally distributed in the population.
Allowing for individual effects in the data does create serial correlation
which is solved using generalized least squares (GLS). GLS eliminates serial
correlation by a similar transformation to (2) except that only a proportion
of the transformation (\) is applied in random effects estimation.

Yip — AYi = Bo(1 = A) + Bi(xip — AZ;) + (wip — Ay) (3)

The proportion is determined by the strength if the individual effects
Eq. (4). If observations within the same individual are highly correlated,
then the within individual variation o2 will be low relative to the between
individual variation of and a greater proportion (\) of the transformation
will applied. In the extreme case where A = 1, fixed effects estimation is
obtained and when A = 0, pooled OLS estimation is obtained.

0_2

g (4)

A=1- - Ju
02 + Po}
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A Hausman test (Hausman, 1978) can be used to help determine
whether fixed effects or random effects is the more appropriate estimator
to use. The Hausman test involves regressing the model using fixed effects
estimation then random effects estimation and the compares whether
the estimates are significantly different. If the null hypothesis of no
systematic difference is rejected then fixed effects estimation should be
used. A rejection of the null suggests that some of the assumptions of
random effects estimation have been violated leading to very different
results. An LM test (Breusch and Pagan, 1980) can be used to help decide
between random effects estimation and a simple OLS regression. If the null
hypothesis of no significant differences across individuals is rejected, then
OLS estimation should be used.

A Hausman test was applied to model (1) obtaining (x? = 40.93, P =
0.000) suggesting that fixed effects is the appropriate estimator for this
model and data. This is congruent with the observed distribution of
contributions in section 2 in which is appears that the random effects are
distributed non-normally. In the interest of understanding how dire such
a violation may be to estimation performance when estimating public
goods data, I have included random effects estimation in the presence of
violations in this paper. The performance of random effects estimation here
can alert experimentalists as to the importance of such a mispecification on
estimation results.

Table 2 reports the estimation results of model (1) using random effects
estimation. The coefficients are different than those obtained from fixed
effects estimation (Table 1). However the difference do not seem dramatic
and all covariates display the same signs as those obtained from fixed effect
estimation.

Table 2: Estimation results : Random Effects

Variable Coefficient (Std. Err.)

Dependent variable: Contribution

Period 2,103 (0.298)
Period 9 Dummy -1.986 (1.392)
Period 10 Dummy -4.013** (1.902)
Lag Average Group Contribution  0.440*** (0.033)
Intercept 34.233** (2.438)
R? (overall) 0.231

Rho 0.452

Significance: * * %1%, * * 5%, *10%. N = 3600
Notes: Robust standard errors clustered at subject id level.

10



3.3 Tobit Random Effects

Contribution data from VCM public goods games are highly censored
(Section 2). Greene (1981) demonstrates that ignoring censoring and
proceeding with Least Squares estimation leads to inconsistent and
downward biased parameter estimates. A Tobit estimation is sometimes
used by authors to address this concern. Statistical packages such as Stata
can fit a random effects tobit model by MLE however no statistic exists for
tobit fixed effects that would produce un-biased estimates.

Tobit random effects estimation assumes that the random effects, «,
are normally distributed. The joint density function is a nested function.
The normally distributed random effects nests the tobit distribution of the
contributions. The individual level likelihood function is given by

2/952 M
0 efai/Za'a i

L= . W{g F(Yip, xipfS + ) o (5)
where:
(V2r02)~te~Win=x8)*/(202) if 0 < y;, < 100
F(yipxf) =4 & <O 0?5) if yip =0
1-® <1000_xﬁ> if 3, = 100

Table 3 reports the estimates of model (1) using Tobit random effects
estimation. All variables are reported significant and have the signs that
we would expect. Tobit estimates predict the average marginal impact of
covariates on the dependent variable in its theoretically true uncensored
state. For this reason the estimates of a tobit regression are not directly
comparable to an OLS regression, which estimates the marginal effects
of the covariates only on the observed outcomes. The magnitude of
Tobit coefficient estimates are often slightly inflated because of this subtle
difference. The significance and signs though are directly comparable. If
one wished to directly compare Tobit estimates to OLS estimates this
can be done by multiplying the Tobit estimate by the adjustment factor
n~1 S>> ®(x;8/6). Tobit regression does not have an R-squared that can be
calculated in the same way as those of OLS regression.

11



Table 3: Estimation results : Random Effects Tobit

Variable Coefficient (Std. Err.)
Dependent variable : Contribution
Period -2.854*** (0.357)
Period 9 Dummy -5.585** (2.460)
Period 10 Dummy -12.526*** (2.738)
Lag Average Group Contribution 0.664*** (0.040)
Intercept 25.976%** (3.466)
Rho 0.539 left-censored observations 900
right-censored observations 508

Significance: * * *1%, x * 5%, *10%. N = 3600
Notes: Robust standard errors clustered at subject id level.

3.4 Ordered Logit Regression

An ordered logit model fits an ordinal categorical dependent variable
on a set of independent variables. This estimation approach allows us
to compare the performance of an estimation technique that treats the
dependent variable as discrete as apposed to continuous. All the other
approaches presented in this paper have assumed the dependent variable
as continuous. The results of which approach, discrete or continuous,
provides better estimates for VCM data may resolve some debates within
the experimental economics community on the issue.

An ordered logit was used on the contribution data instead of
multinomial logit regression (MLR) because ordinal information is lost in
MLRs which disregards the ordinal nature of the categories. Even though
there are 101 possible choices in the contribution set y = {0,1,2...100}, we
only observe 75 different contribution choices in the dataset. Therefore a
model of 75 categories representing each observed contribution is fit from
the data. I chose not to reduce the number of contribution categories
into contribution intervals because this would be difficult to compare
the predictive performance of the ordered logit to the other estimation
approaches.

Table 4 shows the estimation results of fitted ordered logistic model. A
standard interpretation for the Lag Average Group Contribution coefficient
is that for every one unit increase in the Lag Average Group Contribution,
the ordered log-odds of being in a higher contribution category would
increase by 0.031 on average, holding other variables constant. The
estimated cut off points can be used to find the probability of an individual
choosing a particular contribution category. These were estimated (output
excluded) and were used to predict contribution choices from the model (in

12



Section 4).

Table 4: Estimation results : Ordered Logit

Variable Coefficient (Std. Err.)
Dependent variable: Contribution choice
Period -0.093*** (0.017)
Period 9 Dummy -0.186** (0.082)
Period 10 Dummy -0.483*** (0.116)
Lag Average Group Contribution — 0.031*** (0.003)

Significance: * * 1%, * * 5%, *10%
Notes: 75 cut-points were estimated (output excluded). Robust standard errors
clustered at subject id level.

3.5 Finite Mixture Models

The previous estimation approaches assumed that contributions were
generated from the same decision making process. Finite mixture models
can be used to relax this assumption and explicitly model a finite number
of different decision making process (McLachlan and Peel, 2000; Harrison
and Rutstrom, 2009; Bardsley and Moffatt, 2007). Under a finite mixture
model, agents can be categorized into one of a finite number of groups. A
mixture density function is formed by aggregating the category k densities
so that:

g
Flyis®) =Y mifilyis 6)

k=1

With the constraint that 7 _; m = 1.

To demonstrate how well a mixture density can fit the observed
distribution of the data, an adhoc mixture of a uniform (rounded to the
nearest 10) and a discrete distribution was simulated (Figure 6). In the
adhoc mixture the parameters were not estimated but simply calibrated
to reflect the observed distribution. As you can see, it is easy to find an
adhoc finite mixture that fits the data very well. The challenge though, is
to estimate a finite mixture model that nests a predictive structural model
of contributions.

As the contribution data is comprised of discrete non-negative integers,
the Poisson distribution was chosen as the component densities for the
finite mixture model because it models the probability of an occurrence
of a discrete non-negative integer. The component distributions need
not have the same variance but do need to belong to the same family
of distributions. In a finite mixture model (FMM), the number of

13
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Figure 6: a) Distribution of average contributions in the 10 period Public
Goods Game. b) Simulated distribution (N=500) containing components
of Binomial (p; = 0.30) and Uniform distributions with ad-hoc component
parameters (m = 0.25, w9 = 0.75) respectively.

components are chosen a priori. Theory can help guide the choice of
components however the choice is largely subjective. Once the number of
components is decided the component moments and proportions m; can
then be estimated simultaneously with the coefficients of the structural
model. Four components were chosen for the FMM estimated in this paper
which replicates the number of components estimated by Bardsley and
Moffatt (2007). They chose four types based on the theory that there are
four contributor types: Free Riders, Altruists, Strategists and Reciprocators.

Because it is easy to over-fit FMMs it is useful to use the Bayes
information criteria (BIC) (Schwarz, 1978) to ensure you haven’t over-fit the
number of components. These statistics are available post-estimation and
is a criteria that incorporates a tradeoff between fit and parsimony. Smaller
BICs are preferred as they are associated with higher log likelihoods. BIC is
used over Akaike information criteria (AIC) here because there is a tendency
for AIC to over-fit models in large sample sizes (Hurvich and ling Tsai, 1989).
Table 5 reports the BIC values for FMM of 2 to four components. The four
component model has the lowest BIC and is therefore preferred over the
other two.

Table 5: Goodness-of-fit criteria
Model Obs df BIC
2-Components 3600 9  52897.36
3-Components 3600 14 35934.83
4-Components 3600 19 30913.12

14



Estimation of FMM can be achieved through GLS, MLE or the
Expectation Maximization algorithm. The FMM estimated in this paper
was done in Stata through a user-written fmm command by Deb (2007)
that enables MLE of FMMs using many of the standard distributions. To
understand the construction of the grand log likelihood function for the
FMM estimated in this paper first consider the likelihood function for a
single Poisson distribution:

The log likelihood is

m

Inl = Z (yj (0'z;) — e — lnyj!)

J=1

The grand likelihood is constructed from four component Poisson likelihood
functions

N
Grand £ = [ [ (w61 + maly + m3ls + mals)
i=1
Taking the log
N
Grand Inf = Zln(mél + moly + m3l3 + 7T4€4) (6)
i=1

The estimates for each component probability m; are constrained
to be between 0 and 1 and sum to 1, using a post-estimation log-odds
transformation (Harrison, 2007).

The mean contributions and standard deviations for the four estimated
components of Equation 6 are reported in Table 6. The first component,
or group of contributors, contribute an average of almost 0 cents out of 100
per period. These members could be classified as ”free riders”. The second
group of members contribute on average 90 cents out of 100, these could be
classified as ”altruists”. The third group contribute on average 50 cents out
of 100 and their contributions vary during the 10 periods (Std. Deviation
is 5.6). The fourth group contributes an average of 16 cents out of 100 per
period.

Table 7 reports the estimates of the FMM which nests model (1). The
first thing to note is that 28 percent of the individuals in the dataset could
be classified as free riders (m; = 0.278). The other other components are
fairly evenly proportioned. The end game effect only seems to be significant

15



Table 6: Summary statistics
Variable Mean Std. Dev.
Component 1 0.123 0.042
Component 2 89.645 2.683
Component 3 46.354 5.609
Component 4  16.021 2.841
Total N=3600

for component 1 members (the free riders) with the Period 10 dummy
significant at the 5 percent level. The Lag Average Group Contributions
significantly affect the contributions of individuals in all contributor groups
except the free riders (component 1). However the altruists (component 2)
are the only group to have a signifcant downward trend in contributions.
This result is interesting as the aggregate distributions demonstrate a
clear downward trend in contributions. It is suprising to observe the
temporal decline is insignificant for most individuals when Lag Average
Group Contributions are controlled for. One explanation is that the altruists
are the instigators of the decline which is magnified by Lag Average Group
Contributions.

4 Comparing the Performance of Different
Estimation Approaches

A cross validation method (Stone, 1974) was used to measure the
predictive accuracy of each model. In the leave-one-out cross validation
(LOOCV) method, one observation is removed from the data set and
used as the test observation. The model is then fit from the remaining
data. The value of the test observation is predicted from the fitted model
and the predicted residual is calculated from the fit. This is repeated
for each observation in the data set and the Mean Squared Error (MSE)
Eqn. (7) is calculated from the resulting residuals. The model that has
the greatest predictive accuracy is the one with the lowest MSE. The
LOOCYV method is used as it is a more efficient use of the data than a
leave-k-out cross-validation in which k observations are left out at each step.

n

MSE = "(y—i)*/n (7)

i=1
Where (y — ) is the difference between the observed and predicted
contribution also known as the residual.

16



Table 7: Estimation results : Finite Mixture Poisson Model

Variable

Coefficient (Std. Err.)

Dependent Variable: Contribution

Equation 1 : component 1

Period 0.009 (0.087)
Period 9 -0.063 (0.328)
Period 10 -0.975** (0.454)
Lag Average Group Contribution -0.011 (0.008)
Intercept -1.617** (0.652)
Equation 2 : component 2
Period 0.007** (0.003)
Period 9 0.001 (0.017)
Period 10 -0.021 (0.021)
Lag Average Group Contribution  0.001*** (0.000)
Intercept 4.408** (0.029)
Equation 3 : component 3
Period 0.002 (0.008)
Period 9 0.055 (0.051)
Period 10 -0.005 (0.060)
Lag Average Group Contribution  0.005*** (0.001)
Intercept 3.617 (0.062)
Equation 4 : component 4
Period 0.004 (0.015)
Period 9 0.096 (0.079)
Period 10 -0.095 (0.102)
Lag Average Group Contribution  0.006*** (0.001)
Intercept 2.464% (0.114)
Proportion: m;
0.278*** (0.012)
Proportion: o
0.262*** (0.016)
Proportion: 73
0.251*** (0.013)
Proportion: w4
0.204 (0.012)

Significance: * * 1%, * x 5%, *10%
Notes: Robust standard errors clustered at subject id level.

The predicted contributions for the ordered logit, are given by the
contribution category with the highest probability, conditional on the leave
one out covariates. There are some contribution categories that are only

observed once in the dataset.

These observations were dropped before
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the LOOCYV for the ordered logit approach because if they were used as
a test observation, their contribution category would not be represented
in the fitted set, thus inducing zero probability of an accurate prediction.
There were 25 contribution choices that were only observed once reducing
the number of categories for which the ordered logit was fit to 51 and the
number of total observations to 3575.

The results of the LOOCYV for each estimation approach are displayed in
Table 8. Random effects estimation had the lowest MSE therefore has the
highest predictive performance of the approaches examined here. However
its performance was only negligibly better than the fixed effects and tobit
random effects estimation. The worst performer (by far) was the ordered
logit. Surprisingly, the finite mixture model, whose Poisson distributions
most closely resembled the distribution of the data, came second last.
The mean error (ME) measures estimation bias by sign and magnitude
and is the mean of the residuals. MEs suggest that fixed effect estimates
are un-biased and random effects estimates are infinitesimally biased.
Tobit random effects estimation produces the most biased estimates. The
positive bias is most likely due to the mis-specification of the distribution
of contributions (Fig. 2) as a Tobit distribution and to tobit estimates
predicting the latent un-censored variable as apposed to the observed
censored variable (as discussed in Section 3.3).

The estimation approaches that treat the dependent variable as
continuous (random effects, fixed effects and tobit random effects) clearly
out-perform the estimation approaches that treat the dependent variable as
discrete. Omne explanation could be that the larger MSEs in the discrete
approaches are simply due to rounding to the nearest integer and that these
rounding errors are magnified by the square. To test this explanation I
ran a second LOOCYV on the continuous approaches that rounded predicted
contributions to the nearest integer. The MSE was then calculated using the
rounded prediction (MSE-integer Table 8) making MSE exactly comparable
to the discrete MSEs. There is little difference between the MSE and MSE-
integer values. Rounding does not explain the poorer performance of the
discrete approaches. To see whether dropping the 25 uniquely observed
observations might have aversely affected the ordered logit’s predictive
power, I tested its in-sample predictive power by running a cross validation
for each variable fitting the model from every observation to give it its
best chance at accurately predicting contribution choices. The MSE was
just as large (2279.282) suggesting that this was not the cause of its poor
performance.
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Table 8: Leave-One-Out Cross Validation

Model Obs MSE MSE-integer ME

(precision) (bias)

Random Effects 3600  1039.959 1040.367 0.001
Fixed Effects 3600  1051.498 1051.799 0.000
Tobit Random Effects 3600  1086.326 1086.209 -4.079
4-Component Poisson Mixture 3600  1267.854 -0.270
Ordered Logit 3575  2285.079 -1.885

5 Conclusion

The continuous estimators convincingly outperformed the discrete
approaches in both precision (MSE) and un-biassedness (fixed and random
effects). The difference in predictive performance between fixed effects,
random effects and tobit random effects are negligible. However Tobit
random effects estimates are biased. Given that there is no substantial
tradeoff in performance and un-biasedness, Random effects estimation
is preferred over fixed effects for VCM model estimations as it has the
advantage of being able to estimate time in-variant demographic variables.

The MEs suggest that as long as a reasonable model is specified,
authors should not be too concerned about the possible biases induced by
censoring. In fact trying to correct for censoring will likely induce bias.
Greene (1981) even concedes that estimation bias can become negligible
even in the presence of severe censoring as the fit of the model increases.

The question raised from these results is why do the discrete estimation
approaches perform so badly? For the FMM approach it may be because
there are too many points to cluster around. This problem is one of
identification. Its performance might be considerably improved by adding
more components. If this were the case though, one must then question
whether the FMM is reflecting a finite number of contributor types, or is
instead clustering around the VCM game groups exogenously randomly
determined by the experimenter. In this circumstance, the FMM would not
be modeling heterogeneity in contribution preferences but simply reflecting
random clustering by experimental design. Further research could be done
to investigate the number of mixture components needed to outperform
random effects estimation and whether the estimates are clustering on
group membership.

The poor performance of the ordered logit might be because the logit
is predicting the mode where as the continuous estimators are predicting
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the mean. If this is the case, we might expect a discrete approach to
out-perform a continuous approach under a unimodal data generating
process. VCM data though is characterized by multiple modes which is the
likely reason the logit estimator performed so badly. In such a circumstance
continuous estimators are preferred.

Occam’s Razor appears to win the final debate when estimating models
using VCM data. As with many things in life, the simplest solution is often
the best.
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