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Abstract

I propose a Bayesian approach to making an inference about complicated patterns
of structural breaks in time series. Structural break models in the literature are mainly
considered for a simple case in which all the parameters under the structural changes
are restricted to have breaks at the same dates. Unlike the existing literature, the
proposed method in this paper allows multiple parameters such as intercept, persistence,
and/or residual variance to undergo mutually independent structural breaks at different
dates with the different number of breaks across parameters. To estimate the complex
structural break models considered in this paper, structural breaks in the multiple
parameters are interpreted as regime transitions as in Chib (1998). The regime for
each parameter is then indicated by a corresponding discrete latent variable which
follows a first-order Markov process. A Markov-chain Monte Carlo scheme is developed
to estimate and compare the complex structural break models, which are potentially
non-nested, in an efficient and tractable way. I apply this approach to postwar U.S.
inflation and find strong support for an autoregressive model with two structural breaks
in residual variance and no break in intercept and persistence.
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1 Introduction

1.1 Motivations and main ideas

In this paper I consider how to make an inference about complicated patterns of structural

breaks in time series data. Parameters undergo structural changes but some parameters

could have the different number of structural breaks at different dates than others. Many

macroeconomic variables in the postwar U.S. economy appear to display this pattern of

structural instability. For example, Kim and Nelson (1999) and McConnell and Perez-Quiros

(2000) find that there was a volatility reduction in 1984, the so-called “Great Modera-

tion”, while Perron (1989) and Zivot and Andrews (1992) find that there was a productiv-

ity growth slowdown in 1972 in the unit root literature. Hansen (2001) also examines U.S.

labor productivity data and finds significant evidence for multiple structural changes in

the mid-1980s and in the mid-1990s. Another interesting application is Rapach and Wohar

(2005), who find substantial evidence for multiple structural breaks in the mean real interest

rates for 13 industrialized countries. In addition, Stock and Watson (1996, 2002) show that

most of U.S. macroeconomic data are unstable in conditional mean and residual variance

of autoregressive regressions.

However, the nature and timing of structural changes are a priori unknown. Econome-

tricians need to make inferences about the number and timing of the structural breaks and

identify the parameters under the structural changes. Thus, it is necessary to develop an

econometric framework for estimating the complex patterns of structural break models with

a model selection procedure. In addition, the procedure should be able to explore all the

possible patterns of structural breaks efficiently while the models are potentially non-nested
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(e.g. a model with one break in residual variance vs. a model with two breaks in intercept).

Thus, I propose an efficient Bayesian Markov-chain Monte Carlo (MCMC) method that

allows for a number of possibilities for the nature of structural breaks. This new approach

is developed to have the following distinctive features: (i) model specification of considering

multiple structural changes in multiple parameters; (ii) model flexibility in allowing the

multiple structural breaks to occur mutually independently at different dates across different

parameters; and (iii) model selection procedure by comparing various potentially non-nested

structural break models. Especially, taking the Bayesian approach makes it feasible in

practice to estimate the structural break models with the feature (ii) via Gibbs sampling.

In the complicated structural break models, the joint distribution of parameters of interest

such as change-points and model coefficients is not known explicitly. One also encounters

difficulty in considering all the possible patterns of structural breaks for inferences since

the model space increases enormously with the number of structural breaks and the model

parameters related to them. However, the conditional distribution for each parameter is

available and the proposed approach via Gibbs sampling enables one to easily estimate

the structural break models by sampling the posterior distribution from it. In addition,

the feature (iii) is attained by comparing potentially non-nested structural break models

based on calculations of marginal densities of data under the respective models. It is

also straightforward to determine the posterior probability that each model is the true

model given the observed data among all the possible structural break models from the

calculations.

In more details I explain the proposed MCMC scheme for the complicated patterns of

structural break models. This method extends Chib’s (1998) approach in which structural
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breaks are interpreted as regime transitions. He introduces a latent discrete regime variable

which indicates one of all the possible regimes over time. A first-order Markov process

then governs the structural changes with transition probabilities constrained so that the

regime indicator variable can either stay in the current regime or move to the next regime.

Chib (1998) assumes that all the parameters subject to the changes are restricted to have

the structural changes at the same dates. In consequence his approach requires only one

regime indicator variable which governs the structural breaks in all the parameters under

the changes.

Recall that unlike in Chib (1998) the proposed approach allows multiple parameters to

have structural breaks mutually independently at different dates across different parameters.

This more flexible assumption requires the specification that each parameter is augmented

with its corresponding independent regime indicator variable. That is, each parameter is

subject to an independent structural change framework in terms of the number and timing

of structural breaks. The total number of the parameters subject to the structural changes

is then the same as that of the regime indicator variables which are independent of one

another. Note that it is possible to sort several parameters into a group and make the

parameters to have structural changes at the same dates. This specification would be a

simple extension of the proposed approach in this paper.

Based on this specification, a MCMC sampler can be presented through a hierarchical

specification in which one draws the model parameters conditional on the regime variables

and the observed data; the regime variables conditional on the model parameters and the

observed data; and finally the transition probabilities conditional on the regime variables

via Gibbs sampling.
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I then apply the Bayesian approach proposed in this paper to an artificial data set and

postwar U.S. inflation based on the GDP deflator. This new approach identifies accurately

break dates from the artificial data in the sense that estimated regime changes occur around

true break dates in the data generating process. In terms of the empirical application to U.S.

GDP deflator inflation dynamics, I run various autoregressive regressions with structural

breaks in intercept, persistence, and/or residual variance. I find that there are two structural

breaks in only the residual variance parameter and no break in the intercept and persistence

parameters. The residual variance switches from the low volatility regime to the high

volatility regime in the early 1970s and then returns to another low volatility regime in the

mid-1980s.

1.2 Recent related literature

In classical econometrics, Andrews (1993) and Andrews and Ploberger (1994) provide test

statistics for one time structural change under the null hypothesis of no break. Bai and Perron

(1998, 2003) then develop tests for multiple structural breaks by splitting samples and con-

sidering one more break under the null sequentially in these sub-samples whenever the null

hypothesis is rejected. This test continues until it fails to reject the null hypothesis.

From the Bayesian framework, Chib (1998) considers multiple change point models

by interpreting structural changes as regime transitions and the regimes follow first-order

Markov processes. Wang and Zivot (2000) also consider similar models by incorporating flat

priors on the structural break dates and produce posterior distributions via Gibbs sampling.

However, the econometric methods in the literature have the restriction that all the

parameters subject to the structural changes undergo the structural shifts at the same
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dates either in pure or partial structural change models so that they are not suitable for

making inferences about the complicated patterns of structural change models considered

in this paper with one exception of an interesting approach proposed by Levin and Piger

(2008). They allow different subsets of parameters to change at different dates. Each

subset of parameters could consist of a different combination of parameters. However, their

method is computationally burdensome in the presence of a large number of breaks since

the space of structural break models increases enormously with the number of structural

breaks. They also impose a restriction that two adjacent break dates cannot be close even

if the breaks occur in different parameters.

These limitations in the literature motivate developing the new approach in this paper

and the proposed method successfully resolves all the critical issues raised in the literature

review.

2 Model Specification and Bayesian Inference

2.1 Model Specification

I propose a Bayesian approach to making an inference about a structural break model in

which multiple parameters can have structural changes independently at different dates.

Thus, the structural break model can be specified as an econometric model that allows the

residual variance as well as the coefficients to undergo the parameter shifts independently.

In the model specification, I consider G−1 coefficient parameters and one residual variance
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parameter. Thus, the total number of parameters is G. For t = 1, . . . , T ,

yt = X ′
1tβ1,S1,t

+X ′
2tβ2,S2,t

+ · · ·+X ′
G−1,tβG−1,SG−1,t

+ et, et ∼ i.i.d.N (0, σ2
SG,t

) (1)

where Sg,t ∈ {1, . . . , (Mg +1)} is a regime indicator variable at time t for the gth parameter

with Mg number of structural breaks (i.e. Mg + 1 regimes) and unknown change point

dates Γg = {τg,1, . . . , τg,Mg} for g = 1, . . . , G. The value of the gth coefficient, βg,Sg,t, for

g = 1, . . . , G− 1 is then given over time by

βg,Sg,t =































































βg,1 if 1 ≤ t ≤ τg,1

βg,2 if τg,1 < t ≤ τg,2

...

βg,Mg if τg,(Mg−1) < t ≤ τg,Mg

βg,(Mg+1) if τg,Mg < t ≤ T

and the residual variance is given by

σ2
SG,t

=































































σ2
1 if 1 ≤ t ≤ τG,1

σ2
2 if τG,1 < t ≤ τG,2

...

σ2
MG

if τG,(MG−1) < t ≤ τG,MG

σ2
(MG+1) if τG,MG

< t ≤ T .

In regression (1), the variance parameter is assigned to the last Gth parameter.1

1 Note that it is also possible that some of the coefficient parameters and the variance parameter are
placed in the same group and all the parameters in the same parameter group are restricted to have structural
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All the parameters are assumed to be independent of one another in terms of the number

and timing of structural changes. Suppose for example an AR(1) model with one structural

break in intercept, two breaks in persistence, and no break in residual variance. It is then

necessary to develop a new approach for estimation of the complicated patterns of structural

break models presented in (1).

2.2 Single-Group Change-Point Model: Review

In order to explain the basic idea about the proposed approach in this paper, I first consider

a single-group change-point model as in Chib (1998). In this paper, both pure and partial

structural change models in Bai and Perron (2003) are defined as a single-group change-

point model in the sense that all the parameters subject to the structural changes have the

structural shifts at the same dates. Thus, they are sorted into one parameter group and

have the same nature of structural breaks. For more details, refer to Bai and Perron (2003).

For t = 1, . . . , T ,

yt = X ′
tβSt + et, et ∼ i.i.d.N (0, σ2

St
) (2)

where St ∈ {1, . . . , (M + 1)} is a regime indicator variable at time t with M number of

structural breaks (i.e. M + 1 regimes) and unknown change point dates Γ = {τ1, . . . , τM}.

changes at the same dates although this type of model specification is not considered in this paper.
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The model parameters are then given by

(βSt , σ
2
St
) =































































(β1, σ
2
1) if 1 ≤ t ≤ τ1

(β2, σ
2
2) if τ1 < t ≤ τ2

...

(βM , σ2
M ) if τ(M−1) < t ≤ τM

(β(M+1), σ
2
(M+1)) if τM < t ≤ T .

This model specification is a special case of the general model presented in (1) in the sense

that all the parameters are sorted into a single-group and they undergo the structural breaks

at the same dates.

In Bayesian econometrics, Chib’s (1998) algorithm can be applied to this single-group

change-point model by incorporating a latent regime variable St. Chib (1998) interprets

structural breaks as regime transitions.2 This idea can be expressed in a specification

that the latent state variable St follows a first-order Markov process with the transition

probabilities constrained as

Pr[St = i|St−1 = i] = pi,i and Pr[St = i+ 1|St−1 = i] = pi,i+1 = 1− pi,i for i = 1, . . . ,M

(3)

and

Pr[St = M + 1|St−1 = M + 1] = 1 for the last regime M + 1. (4)

The transition probability Pr[St = j|St−1 = i] = pi,j indicates the probability of moving to

2Wang and Zivot (2000) also consider multiple changes of all the parameters and they sample break dates
from conditional distributions of break dates with flat prior.
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regime j at time t given the regime i at time t− 1. Since a regime St is allowed to either

stay in the current regime or move to the next regime (i.e. it never comes back to the

previous regimes), the transition probability for regime i is restricted to be pi,i = 1− pi,i+1

as in (3). In addition, the last regime M + 1 is absorbing and its transition probability is

always specified to pM+1,M+1 = 1 as in (4).

A transition probability matrix P can then be formed as a (M + 1)-by-(M + 1) matrix

with elements containing the information about the first-order Markov process in (3) and (4).

This restriction can be expressed as a matrix form where pi,j is placed in the (i,j)th entry

of the transition matrix

P =

































p1,1 p1,2 0 · · · 0

0 p2,2 p2,3 · · · 0

...
...

...
...

...

· · ·
... 0 pM,M pM,M+1

0 0 · · · 0 1

































. (5)

Then, the model parameters augmented with transition probability and latent regime

variable are sampled via a MCMC sampler proposed in Chib (1998). Based on this algo-

rithm, various structural break models are compared through Bayes factor calculations. The

details of MCMC scheme will be explained in the next section in the context of multiple-

parameter change-point model.
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2.3 Multiple-Parameter Change-Point Model Algorithm

In this section, I explain a new MCMC procedure for estimating multiple-parameter change-

point model as in (1). Levin and Piger (2008) also consider a similar multiple-parameter

change-point model by using the flat prior for break dates and allow possibly different sub-

sets of parameters to be subject to the respective structural breaks. However, their method

is computationally very costly. To see this, suppose, for example, there are three param-

eters and each parameter has one break independently. Then, while the new approach in

this paper requires estimation of only one model allowing for one break in each parameter

independently, in their approach it would be necessary to consider thirteen possible com-

binations of subsets of parameters and there is a need to estimate the thirteen different

models.3 Thus, the potential model space dramatically increases with either the number of

breaks or the number of parameters. Their approach also restricts possible timing of struc-

tural changes in the sense that two adjacent break dates need to allow for the minimum

length to practically make inferences about change-points even though each break occurs

in different parameters.

In this paper, to make inferences about multiple-parameter change-point models, I ex-

tend Chib’s (1998) approach introduced in Section 2.2. Suppose a multiple-parameter

change-point model allows parameters to change at different dates with the different number

of breaks. This implies that a structural break in one parameter could occur independently

of those in the other parameter(s). For example, consider an autoregressive model with

structural breaks in which the intercept coefficient has one break, the persistence coefficient

3 Consider three categories: three parameters at the same date; two parameters at the same date and
one parameter at the other date; all three parameters at different dates. Then, 13 = 1 + 3× 2! + 1× 3!. In
addition, take into account a more complicated case in which there are m breaks and k parameters. Then,
the number of potential break models is (2k − 1)m.
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has two breaks, and the residual variance has one break. For the example given above, the

proposed method in this paper would only need a model augmented with three independent

latent regime indicator variables (S1,t, S2,t, S3,t) as in (1) and three transition probability

matrices corresponding to three parameters respectively while the single-group change-point

model is augmented with only one regime indicator variable St and one transition proba-

bility matrix P . Since all the regime indicator variables are mutually independent in the

new approach, the date of regime transition in a parameter is allowed to occur close to that

of regime transition in other parameters without any necessary minimum distance unlike

the restriction in Levin and Piger (2008).

For the purpose of illustration, consider the case in which there are three parameters,

(θ1, θ2, θ3). From a Bayesian perspective, a joint posterior density can be obtained as being

proportional to a product of a prior density and a likelihood function of YT = [y1 . . . yT ]
′

such as

π(θ,P |YT ) ∝ π(θ,P )f(YT |θ,P )

where π(·) denotes a density function; θ = (θ1, θ2, θ3) is a collection of model parame-

ters; and P = (P1, P2, P3) is a collection of transition probability matrices. Let θ1 =

(θ1,1, . . . , θ1,M1+1) denote the collection of parameters for all the possible regimes for the

first parameter with M1 breaks (i.e. M1+1 regimes) and θ2 and θ3 are defined accordingly.

Also, θg,k indicates the regime k parameter for the gth parameter for k = 1, . . . ,Mg + 1

and g = 1, 2, 3. The model parameters, θ = (θ1, θ2, θ3), are then augmented with the

transition probability matrices, P = (P1, P2, P3), and the latent regime variables S̃g,T =

[Sg,1 Sg,2 . . . Sg,T−1 Sg,T ]
′ for each parameter g = 1, 2, 3 where the discrete regime indi-
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cator variable Sg,t ∈ {1, . . . ,Mg + 1}. The MCMC sampling algorithm can be summarized

in the context of three parameter model as follows.

MCMC sampling algorithm

Step 0: Initialize θ = (θ1, θ2, θ3), P = (P1, P2, P3)

Step 1: For the parameter 1,

(i) Sample S̃1,T conditional on (θ1, θ2, θ3), (S̃2,T , S̃3,T ), (P1, P2, P3), YT

(ii) Sample θ1 conditional on (θ2, θ3), (S̃1,T , S̃2,T , S̃3,T ), (P1, P2, P3), YT

(iii) Sample P1 conditional on S̃1,T

Step 2: For the parameter 2,

(i) Sample S̃2,T conditional on (θ1, θ2, θ3), (S̃1,T , S̃3,T ), (P1, P2, P3), YT

(ii) Sample θ2 conditional on (θ1, θ3), (S̃1,T , S̃2,T , S̃3,T ), (P1, P2, P3), YT

(iii) Sample P2 conditional on S̃2,T

Step 3: For the parameter 3,

(i) Sample S̃3,T conditional on (θ1, θ2, θ3), (S̃1,T , S̃2,T ), (P1, P2, P3), YT

(ii) Sample θ3 conditional on (θ1, θ2), (S̃1,T , S̃2,T , S̃3,T ), (P1, P2, P3), YT

(iii) Sample P3 conditional on S̃3,T

Step 4: Repeat Steps 1-3

Note that the most recent values of the conditioning variables are used in all simulations.

It is straightforward to implement simulation (ii) in each step so that it will be explained

in Appendix. Only simulations (i) and (iii) in each step will be discussed below.

13



2.3.1 Simulation of latent regime variable S̃g,T

In the simulation (i) in each step, the objective is to sample the discrete latent regime

variable Sg,t ∈ {1, . . . ,Mg + 1} for t = 1, . . . , T and g = 1, 2, 3 from the mass discrete

function p(S̃g,T |θ, S̃−g,T ,P , YT ) where p(·) denotes a discrete mass function and S̃−g,T =

(S̃1,T , . . . , S̃g−1,T , S̃g+1,T , . . . , S̃G,T ). The mass function can be expressed as a joint density

in reverse time order as follows.

p(S̃g,T |θ, S̃−g,T ,P , YT ) = p(Sg,T |θ, S̃−g,T ,P , YT )× p(Sg,T−1|Sg,T ,θ, S̃−g,T ,P , YT )× · · ·

×p(Sg,t|S
t+1
g ,θ, S̃−g,T ,P , YT )× · · · × p(Sg,1|S

2
g ,θ, S̃−g,T ,P , YT ) (6)

where St+1
g = [Sg,t+1 . . . Sg,T ]

′. Notice that the last regime and the first regime are always

Mg + 1 and one respectively. These imply that for g = 1, 2, 3

p(Sg,T = Mg + 1|θ, S̃−g,T ,P , YT ) = 1 and p(Sg,1 = 1|θ, S̃−g,T ,P , YT ) = 1.

Thus, the regimes Sg,t for t = 2, . . . , t− 1 are recursively simulated from t = T − 1 to t = 2

in reverse time order.

As discussed in Section 2.2, the regime transition follows a first order Markov process. It

is also independent of its own parameter as well as both other parameters and their latent

regime variables, as shown in Chib (1996). Thus, a term in (6) can be written that for

g = 1, 2, 3

p(Sg,t|YT , S
t+1
g , S̃−g,T ,θ,P ) ∝ p(Sg,t|Yt, S̃−g,T ,θ,P )× p(Sg,t+1|Sg,t, Pg).
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The first term in the proportion of the regime distribution is calculated recursively. Suppose

p(Sg,t−1|Yt−1, S̃−g,T ,θ,P ) is known. Then, Bayes’ rule can be applied for k = 1, . . . ,Mg +1

regimes,

p(Sg,t = k|Yt, S̃−g,T ,θ,P ) =
p(Sg,t = k|Yt−1, S̃−g,T ,θ,P )× f(yt|Yt−1, θg,k,θ−g)

∑Mg+1
l=1 p(Sg,t = l|Yt−1, S̃−g,T ,θ,P )× f(yt|Yt−1, θg,l,θ−g)

where

p(Sg,t = k|Yt−1, S̃−g,T ,θ,P ) =

k
∑

l=k−1

p(Sg,t = k|Sg,t−1 = l, Pg)×p(Sg,t−1 = l|Yt−1, S̃−g,T ,θ,P )

and p(Sg,t = k|Sg,t−1 = l, Pg) is the (l,k)th entry of the transition matrix Pg.

In sum, the probabilities of the regimes over dates are sampled through MCMC simu-

lations:

Pr(Sg,t = k|YT ) =

∫

p(Sg,t = k|YT ,θ,P )π(θ,P |YT )d(θ,P )

and in practice with J simulations

Pr(Sg,t = k|YT ) =
1

J

J
∑

j=1

p(S
(j)
g,t = k|YT ,θ

(j),P (j)).

2.3.2 Simulation of transition probability matrix Pg

In simulation (iii) in each step, the transition probability matrices (P1, P2, P3) are sam-

pled only conditional on their regime variables (S1,T , S2,T , S3,T ) respectively. The rea-

son is that the full conditional distribution Pg|θ, Sg,T , S−g,T , P−g, YT is independent of

(θ, S−g,T , P−g, YT ) where P−g = (P1, . . . , Pg−1, Pg+1, . . . , PG) for g = 1, 2, 3. Thus, it can
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be shown that

π (Pg|θ, Sg,T , S−g,T , P−g, YT ) = π (Pg|Sg,T ) .

If Beta priors for pi,i, i = 1, . . . ,Mg, are employed as

pi,i ∼ Beta(ui,i, ui,i+1)

where ui,i and ui,i+1 are the hyper-parameters, the posterior distribution can be derived as

pi,i|S̃g,T ∼ Beta (ui,i + ni,i, ui,i+1 + ni,i+1)

where ni,j refers to the total number of transitions from regime i to regime j. Note that

ni,i+1, for i = 1, . . . ,Mg, is always equal to one since every regime never comes back to the

previous regimes and moves to the next regime only once. For details, see Albert and Chib

(1993).

2.4 Model Selection

In a Bayesian framework, model selection relies on comparisons of Bayes factors. The Bayes

factor is calculated from the ratio of the marginal likelihoods for two competing models

under consideration. Let M be the model indicator parameter. For models M = i, j, the

Bayes factor in favor of model M = i is given by

Bij =
m(YT |M = i)

m(YT |M = j)
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where m(YT |M = i) is the marginal likelihood or the marginal density of the data YT

under model M = i. The marginal likelihood of model M can be easily derived through

the method of Chib (1995) for Gibbs sampling based on the Bayes rule identity:

m(YT |M) =
f(YT |ψ,M)π(ψ|M)

π(ψ|YT ,M)
(7)

where ψ = (θ,P ). The above identity holds for any point ψ in the parameter space

since the left hand side is free of ψ. Taking the logarithm of the marginal likelihood for

computational convenience, the estimate of the marginal density at any particular point ψ∗

is given by

lnm̂(YT |M)

= lnf(YT |θ
∗,P ∗,M) + lnπ(θ∗,P ∗|M)− lnπ(θ∗,P ∗|YT ,M).

In this paper, I calculate the marginal likelihood at the posterior mean. I explain all the

terms in equation (8) in the following subsections. For simplicity, I drop the model indicator

M from now on.

2.4.1 Likelihood function

The logarithm of likelihood function is given by

ln f(YT |ψ
∗) =

T
∑

t=1

lnf(yt|Yt−1,ψ
∗)
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where

f(yt|Yt−1,ψ
∗) =

M1+1
∑

S1,t=1

M2+1
∑

S2,t=1

M3+1
∑

S3,t=1

f(yt|Yt−1, S1,t, S2,t, S3,t,ψ
∗)× p(S1,t, S2,t, S3,t|Yt−1,ψ

∗)

is the one-step ahead prediction density and f(yt|Yt−1, S1,t, S2,t, S3,t,ψ
∗) is the conditional

density of yt given the composite of regimes (S1,t, S2,t, S3,t) as well as the posterior mean

ψ∗. Define a composite of regimes for all the parameters by St = (S1,t, S2,t, S3,t). Then,

p(S1,t, S2,t, S3,t|Yt−1,ψ
∗) is the joint discrete mass function of the composite St = (S1,t, S2,t, S3,t)

and the transition probability matrix for the composite of regimes St is given by P1⊗P2⊗P3

where ⊗ indicates the Kronecker product, P is a m-by-m square matrix, and the number

of the composite of regimes St is given by m = (M1 + 1)× (M2 + 1)× (M3 + 1).

2.4.2 Prior density

All the parameters are a priori assumed to be independent of one another and the logarithm

of prior density is given by

ln π(ψ∗|M) = ln π(θ∗1) + ln π(θ∗2) + ln π(θ∗3) + ln π(P ∗
1 ) + ln π(P ∗

2 ) + ln π(P ∗
3 ).

2.4.3 Posterior density

In order to estimate the posterior ordinate π(θ∗,P ∗|YT ), I consider the conditional de-

composition of the posterior density as in Chib (1998). Note that the latent variables

(S̃1,T , S̃2,T , S̃3,T ) are integrated out in the calculation of the posterior density in each step.
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π(θ∗,P ∗|YT ) = π(θ∗1|YT )× π(P ∗
1 |θ

∗
1, YT )× π(θ∗2|θ

∗
1, P

∗
1 , YT )

×π(P ∗
2 |θ

∗
1, θ

∗
2, P

∗
1 , YT )× π(θ∗3|θ

∗
1, θ

∗
2, P

∗
1 , P

∗
2 , YT )π(P

∗
3 |θ

∗
1, θ

∗
2, θ

∗
3, P

∗
1 , P

∗
2 , YT )

where

π(θ∗1|YT ) =
∫

π(θ∗1|θ2, θ3, P1, P2, P3, S̃1,T , S̃2,T , S̃3,T , YT )

×π(θ2, θ3, P1, P2, P3, S̃1,T , S̃2,T , S̃3,T |YT )dθ2dθ3dP1dP2dP3dS̃1,TdS̃2,TdS̃3,T ,

π(P ∗
1 |θ

∗
1, YT ) =

∫

π(P ∗
1 |θ

∗
1, θ2, θ3, P2, P3, S̃1,T , S̃2,T , S̃3,T , YT )

×π(θ2, θ3, P2, P3, S̃1,T , S̃2,T , S̃3,T |θ
∗
1, YT )dθ2dθ3dP2dP3dS̃1,TdS̃2,TdS̃3,T ,

π(θ∗2|θ
∗
1, P

∗
1 , YT ) =

∫

π(θ∗2|θ
∗
1, P

∗
1 , θ2, θ3, P2, P3, S̃1,T , S̃2,T , S̃3,T , YT )

×π(θ3, P2, P3, S̃1,T , S̃2,T , S̃3,T |θ
∗
1, P

∗
1 , YT )dθ3dP2dP3dS̃1,TdS̃2,TdS̃3,T ,

π(P ∗
2 |θ

∗
1, θ

∗
2, P

∗
1 , YT ) =

∫

π(P ∗
2 |θ

∗
1, θ

∗
2, P

∗
1 , θ3, P3, S̃1,T , S̃2,T , S̃3,T , YT )

×π(θ3, P3, S̃1,T , S̃2,T , S̃3,T |θ
∗
1, θ

∗
2, P

∗
1 , YT )dθ3dP3dS̃1,TdS̃2,TdS̃3,T ,

π(θ∗3|θ
∗
1, θ

∗
2, P

∗
1 , P

∗
2 , YT ) =

∫

π(θ∗3|θ
∗
1, θ

∗
2, P

∗
1 , P

∗
2 , P3, S̃1,T , S̃2,T , S̃3,T , YT )

×π(P3, S̃1,T , S̃2,T , S̃3,T |θ
∗
1, θ

∗
2, P

∗
1 , P

∗
2 , YT )dP3dS̃1,TdS̃2,TdS̃3,T ,
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and

π(P ∗
3 |θ

∗
1, θ

∗
2, θ

2∗
3 , P ∗

1 , P
∗
2 , YT ) =

∫

π(P ∗
3 |θ

∗
1, θ

∗
2, θ

∗
3, P

∗
1 , P

∗
2 , S̃1,T , S̃2,T , S̃3,T , YT )

×π(S̃1,T , S̃2,T , S̃3,T |θ
∗
1, θ

∗
2, θ

∗
3, P

∗
1 , P

∗
2 , YT )dS̃1,TdS̃2,TdS̃3,T .

The decomposition of the posterior density shows that the first ordinate π(θ∗1|YT ) can be

calculated based on draws from the full Gibbs run, and π(P ∗
1 |θ

∗
1, YT ), π(θ∗2|θ

∗
1, P

∗
1 , YT ),

π(P ∗
2 |θ

∗
1, θ

∗
2, P

∗
1 , YT ), π(θ

∗
3|θ

∗
1, θ

∗
2, P

∗
1 , P

∗
2 , YT ), and π(P ∗

3 |θ
∗
1, θ

∗
2, θ

∗
3, P

∗
1 , P

∗
2 , YT ) can be calcu-

lated from appropriate reduced Gibbs runs. The Monte Carlo estimate of each decomposi-

tion component based on draws from each Gibbs run is calculated as follows.

π(θ∗1|YT ) =
1

J

J
∑

j=1

π(θ∗1|θ
(j)
2 , θ

(j)
3 , P

(j)
1 , P

(j)
2 , P

(j)
3 , S̃

(j)
1,T , S̃

(j)
2,T , S̃

(j)
3,T , YT ),

π(P ∗
1 |θ

∗
1, YT ) =

1

J

J
∑

j1=1

π(P ∗
1 |θ

∗
1, θ

(j1)
2 , θ

(j1)
3 , P

(j1)
2 , P

(j1)
3 , YT ),

π(θ∗2|θ
∗
1, P

∗
1 , YT ) =

1

J

J
∑

j2=1

π(θ∗2|θ
∗
1, P

∗
1 , θ

(j2)
2 , θ

(j2)
3 , S̃

(j2)
1,T , S̃

(j2)
2,T , S̃

(j2)
3,T , YT ),

π(P ∗
2 |θ

∗
1, θ

∗
2, P

∗
1 , YT ) =

1

J

J
∑

j3=1

π(P ∗
2 |θ

∗
1, θ

∗
2, P

∗
1 , θ

(j3)
3 , P

(j3)
3 , S̃

(j3)
1,T , S̃

(j3)
2,T , S̃

(j3)
3,T , YT ),

π(θ∗3|θ
∗
1, θ

∗
2, P

∗
1 , P

∗
2 , YT ) =

1

J

J
∑

j4=1

π(θ∗3|θ
∗
1, θ

∗
2, P

∗
1 , P

∗
2 , P

(j4)
3 , S̃

(j4)
1,T , S̃

(j4)
2,T , S̃

(j4)
3,T , YT ),

and

π(P ∗
3 |θ

∗
1, θ

∗
2, θ

∗
3, P

∗
1 , P

∗
2 , YT ) =

1

J

J
∑

j5=1

π(P ∗
3 |θ

∗
1, θ

∗
2, θ

∗
3, P

∗
1 , P

∗
2 , S̃

(j5)
1,T , S̃

(j5)
2,T , S̃

(j5)
3,T , YT )
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where the superscript (j) refers to the jth draw of the full Gibbs run and the superscript

(ji), i = 1, . . . , 5, refers to the jith draw from the appropriate reduced Gibbs run. Thus,

in addition to the full Gibbs run for the usual estimation of parameters, it is required to

have five additional Gibbs runs (5 × J iterations). For example, π(θ∗3|θ
∗
1, θ

∗
2, P

∗
1 , P

∗
2 , YT ) is

calculated by additional J iterations from the following reduced j4th Gibbs run.

Algorithm for π(θ∗3|θ
∗
1, θ

∗
2, P

∗
1 , P

∗
2 , YT )

(i) Generate θ
(j4)
3 from π(θ3|θ

∗
1, θ

∗
2, P

∗
1 , P

∗
2 , P

(j4−1)
3 , S

(j4−1)
1,T , S

(j4−1)
2,T , S

(j4−1)
3,T , YT )

(ii) Generate P
(j4)
3 from π(P3|θ

∗
1, θ

∗
2, P

∗
1 , P

∗
2 , θ

(j4)
3 , S

(j4−1)
1,T , S

(j4−1)
2,T , S

(j4−1)
3,T , YT )

(iii) Generate S̃
(j4)
1,T from π(S1,T |θ

∗
1, θ

∗
2, P

∗
1 , P

∗
2 , θ

(j4)
3 , P

(j4)
3 , S

(j4−1)
2,T , S

(j4−1)
3,T , YT )

(iv) Generate S̃
(j4)
2,T from π(S2,T |θ

∗
1, θ

∗
2, P

∗
1 , P

∗
2 , θ

(j4)
3 , P

(j4)
3 , S

(j4)
1,T , S

(j4−1)
3,T , YT )

(v) Generate S̃
(j4)
3,T from π(S3,T |θ

∗
1, θ

∗
2, P

∗
1 , P

∗
2 , θ

(j4)
3 , P

(j4)
3 , S

(j4)
1,T , S

(j4)
2,T , YT )

(vi) Evaluate π(θ∗3|θ
∗
1, θ

∗
2 , P

∗
1 , P

∗
2 , P

(j4)
3 , S

(j4)
1,T , S

(j4)
2,T , S̃

(j4)
3,T , YT )

Notice that, throughout this reduced Gibbs run, θ∗1, θ
∗
2, θ

∗
3, P

∗
1 , and P ∗

2 are set equal to

their posterior mean.

3 Application to Artificial Data

To demonstrate how the proposed method performs, I generate an artificial data set from

the following process:

yt = αS1,t
+ βS2,t

xt + et, et ∼ i.i.d.N(0, σ2
S3,t

) (8)
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where xt ∼ U(0, 1),

αS1,t
=















1.0 & S1,t = 1 if 1 ≤ t ≤ 40

1.3 & S1,t = 2 if 41 ≤ t ≤ 200,

βS2,t
=































2.5 & S2,t = 1 if 1 ≤ t ≤ 80

1.5 & S2,t = 2 if 81 ≤ t ≤ 120

3.0 & S2,t = 3 if 121 ≤ t ≤ 200,

and σ2
S3,t

=































0.42 & S3,t = 1 if 1 ≤ t ≤ 100

1.02 & S3,t = 2 if 101 ≤ t ≤ 150

0.62 & S3,t = 3 if 151 ≤ t ≤ 200.

This model consists of three parameters (α, β, σ2) and has one break in the intercept α, two

breaks in the response coefficient β, and two breaks in the residual variance σ2. Note that all

the true structural breaks occur at different dates. The generated data set {yt} is depicted

in Figure 1. Looking at the generated time series, it appears difficult to make an inference

about the existence and timing of the structural changes in the individual parameters.

Based on the proposed approach in Section 2, I generate posteriors for the parameters

as well as regime transitions via Gibbs sampling with 10,000 simulations after 2,000 burn-

ins. I assume that each parameter has the same prior distribution across regimes. This

assumption ensures that the prior distributions do not affect making an inference about
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change points. The prior distributions are summarized as follows.

α ∼ N(0, 1)

β ∼ N(0, 1)

σ2 ∼ IG(3.01, 2.10)

pii ∼ Beta(1, 0.01).

Note that the prior on the residual variance is distributed with mean 1.045 and standard

deviation 1.040. Also, the mean and the standard deviation of the prior distribution for the

regime transition probability are 0.99 and 0.07 respectively. The expected duration of one

regime can be calculated from Di = 1/(1 − pii). From the prior density for the transition

probability chosen in this estimation, the regime is expected to last for 101 periods.

Simulated regime transitions for each parameter are illustrated in Figure 4. The es-

timated break dates are quite consistent with the true break dates although in the data

generating process the pattern of the structural breaks is highly complicated.

4 Application to U.S. GDP Deflator Inflation

4.1 Data and Model Specification

For an empirical application of the new approach, I consider a univariate autoregressive

model for inflation. I calculate the quarterly percentage change of the U.S. GDP deflator

expressed as an annualized rate from 1953:Q1 to 2005:Q2. This data set is illustrated in

Figure 3.
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In this paper, I consider a pth-order autoregressive model which allows for structural

breaks in three parameters such as (i) intercept α, (ii) persistence coefficient ρ and (iii)

residual variance σ2 as follows.

πt = αS1,t
+ ρS2,t

πt−1 + γ1∆πt−1 + . . .+ γp−1∆πt−(p−1) + et, et ∼ i.i.d.N(0, σ2
S3,t

)

where S1,t ∈ {1, ..,Mα + 1}, S2,t ∈ {1, ..,Mρ + 1}, and S3,t ∈ {1, ..,Mσ2 + 1} represent the

regimes for the intercept parameter with Mα breaks, the persistence parameter with Mρ

breaks and the residual variance with Mσ2 breaks respectively. The persistence is measured

as the sum of the autoregressive coefficients. The nature of the structural breaks in each

parameter is independent of one another in terms of the number and timing of structural

breaks as in the previous application to the artificial data set in Section 3.

In this analysis, the lag order p is set to four in order to fully capture the persistence

of inflation dynamics. The diffuse and same prior distributions across different regimes

are chosen in order to avoid any distortions from the choice of specific prior distributions

when Bayes factors are calculated for the different structural break models. The priors of

regression coefficients are distributed with mean zero and variance one (i.e., ρ, γ ∼ N (0, 1))

and the priors of variance parameters follow Inverse Gamma distribution such as σ2 ∼

IG(3.01, 2.10) across different regimes. The prior of the transition probability that the

current regime i stays in the same regime i in the next period is distributed as pii ∼

Beta(1, 0.01). The prior expected duration of a given regime is about 101 quarters. All the

estimations are based on 10,000 Gibbs simulations after discarding 2,000 burn-ins.
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4.2 Model Selection: Marginal Likelihood Comparison

In this application, the maximum number of structural breaks is specified to four for each

parameter and in total, 125 different models are considered including a model with no

break (125 = 5× 5× 5). Comparing the marginal likelihoods, the most preferred model has

two structural breaks in the residual variance and no structural break in the intercept and

persistence parameters.

Table 1 shows the model comparison results with the logarithm of marginal likelihood

and the Bayes Factor. Let Mi denotes the number of breaks in the parameter i, for i ∈

{α, ρ, σ2}. Then, the Bayes factor is presented in favor of the alternative model, M =

(Mα,Mρ,Mσ2) versus the most preferred model, M = (0, 0, 2) by

B =
m (YT |M = (Mα,Mρ,Mσ2))

m (YT |M = (0, 0, 2))
.

For the summary, only ten models with high marginal likelihood values are presented

among 125 models. The model comparison based on calculating the Bayes Factors also

shows that the most preferred model with two breaks only in the residual variance clearly

dominates the other models in the sense that the Bayes factor is lower than 1/18 in favor

of any alternative model.

4.3 Model Selection: Posterior Probability of the Alternative Number of

Breaks

To examine the robustness of the model selection procedure in Section 4.2, I also calculate

the posterior probability for the number of structural breaks in the individual parameters by
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integration. For example, the posterior probability for l structural breaks in the parameter

α, denoted by Mα,l, is given by

Pr(Mα,l|YT ) =
m(YT |Mα,l)π(Mα,l)
4
∑

i=0

m(YT |Mα,i)π(Mα,i)

(9)

where

m(YT |Mα,i) =
4
∑

j=0

4
∑

k=0

m(YT |Mα,i,Mρ,j,Mσ2,k)π(Mρ,j ,Mσ2,k|Mα,i)

is the integrated likelihood ofMα,i; π(Mα,i) is the prior probability ofMα,i; and π(Mρ,j ,Mσ2,k|Mα,i)

is the joint prior probability of Mρ,j and Mσ2,k conditional on Mα,i. Since all the models

are considered a priori equally likely as well as independent, π(Mα,i) is equal to 1/5 and

π(Mρ,j ,Mσ2,k|Mα,i) is equal to 1/25 when the maximum number of structural breaks is

specified to four as in this analysis. In fact, the posterior probability of l structural breaks

in the parameter α is simply the sum of posterior probabilities for all the models which has

the same number of structural breaks in the parameter α. For other parameters, ρ and σ2,

Pr(Mρ,l|YT ) and Pr(Mσ2,l|YT ) can be easily obtained by using the same approach in (9).

Note that all the terms in (9) are readily available when the marginal likelihood calculations

are completed.

Table 2 lists the posterior probabilities for all possible values of the number of structural

breaks in the individual parameters. The posterior probability for two breaks in the residual

variance (σ2) is 0.934 and that for three breaks is 0.043 while the posterior probabilities for

no break in the intercept parameter (α) and in the persistence parameter (ρ) are 0.992 and

0.994 respectively.
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Thus, not only the marginal likelihood calculation comparisons but also the posterior

probability calculations produce very strong evidence that the autoregressive model for the

inflation rate has two breaks in the residual variance and no break in the intercept and

the persistence parameters. This result is also consistent with the finding that evidence for

shifts in persistence is not statistically significant, particularly once allowing for shifts in

the residual variance in Pivetta and Reis (2007) and Stock (2001).

4.4 Posterior Summary for the Most Preferred Model

Having found the substantial evidence for two breaks in the residual variance and no break

in the intercept and the persistence, I focus more on the estimation results from the most

preferred model.

Table 3 and Figure 4 present the posterior distribution for the timing of the structural

changes in the residual variance. The break dates with the highest posterior probabilities

are 1970:Q2 for the first structural change and 1985:Q2 for the second respectively. The

shape of the posterior distributions is very sharp in Figure 4. This finding is also confirmed

by the narrow 90% credible intervals: 1966:Q4 to 1971:Q3 for the first break date and

1983:Q2 to 1988:Q1 for the second break date. This implies that the inflation rate data

provide quite precise information about the timing of the structural changes in the residual

variance when utilizing the proposed approach.

Table 4 summarizes the posterior distributions for the parameters in the most preferred

model and Figure 5 plots the median and the 90% credible interval for the model param-

eters over the sample period. They show that the residual variance switches from the low

volatility regime to the high volatility regime around 1970 and then returns to another low
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volatility regime around 1985. Comparing two low volatility regimes, the residual variance

before 1970 appears a bit bigger than that after 1985. Also, note that the inflation rate is

highly persistent in the sense that the mean of the persistence parameter is 0.9212. This

empirical result on high inflation persistence is consistent with finding in the literature

(e.g. Fuhrer and Moore (1995)). However, the 90% credible interval doesn’t cover the unit

root.

5 Conclusion

Most macroeconomic variables in the postwar U.S. economy have experienced structural

instability in conditional mean and variance, but the nature of the structural breaks is

different across parameters of interest. The possibility of various complicated patterns of

structural breaks is what motivates this paper.

Thus, I propose an efficient Bayesian MCMC method that allows for a number of pos-

sibilities for the nature of structural breaks. This new approach is developed to have

the following distinctive features: (i) model specification of considering multiple structural

changes in multiple parameters; (ii) model flexibility in allowing the multiple structural

breaks to occur mutually independently at different dates across different parameters; and

(iii) model selection procedure by comparing various potentially non-nested structural break

models.

This method extends Chib’s (1998) approach in which structural breaks are interpreted

as regime transitions. He introduces a latent discrete regime variable which indicates one of

all the possible regimes over time. A first-order Markov process then governs the structural
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changes with transition probabilities constrained so that the regime indicator variable can

either stay in the current regime or move to the next regime. Chib (1998) assumes that all

the parameters under the structural changes are restricted to have the structural shifts at

the same dates. In consequence his approach requires only one regime indicator variable

which governs the structural breaks in all the parameters subject to the changes.

The more flexible assumption in this paper requires the specification that each param-

eter is augmented with its corresponding independent regime indicator variable. The total

number of the parameters subject to structural changes is then the same as that of the

regime indicator variables which are independent of one another. In this paper, the MCMC

sampler is presented through a hierarchical specification in which one draws the model

parameters conditional on the regime variables and the observed data; the regime vari-

ables conditional on the model parameters and the observed data; and finally the transition

probabilities conditional on the regime variables via Gibbs sampling.

I then apply this approach to an artificial data set generated by a model which has

a complicated pattern of structural breaks in parameters. The new approach identifies

accurately break dates from the artificial data in the sense that estimated regime transitions

occur around true break dates in the data generating process. As an empirical application of

the method proposed in this paper, I run various autoregressive regressions with structural

breaks in intercept, persistence, and/or residual variance for U.S. GDP deflator inflation.

I find that there are two structural changes in the residual variance and no break in the

intercept and the persistence parameters. The residual variance switches from the low

volatility regime to the high volatility regime in the early 1970s and then returns to another

low volatility regime in the mid-1980s
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Appendix

In this appendix, I describe how to sample the posterior of model parameters conditional

on the regime transition probabilities, P = (P1, P2, P3) and the latent regime variables,

(S̃1,T , S̃2,T , S̃3,T ) in the case of three parameters given in Section 2.

Consider a regression model with structural breaks in intercept, response coefficient,

and residual variance independently as follows.

yt = αS1,t
+ x′tβS2,t

+ et, et ∼ N(0, σ2
s3,t

)

S1,t ∈ {1, . . . , (M1 + 1)}; S2,t ∈ {1, . . . , (M2 + 1)}; S3,t ∈ {1, . . . , (M3 + 1)}

A.1 Sampling of intercept α

Conditional on (S̃1,T , S̃2,T , S̃3,T ), β̃ = (β1, . . . , βM2+1), and σ̃2 = (σ2
1 , . . . , σ

2
M3+1), intercept

parameter for regime j, αj , for j = 1, . . . , (M1 + 1) can be sampled as follows.

(a) Prior

αj ∼ N
(

αj,Dαj

)

(b) Posterior

αj |β̃, σ̃
2, S̃1,T , S̃2,T , S̃3,T ∼ N

(

αj ,Dαj

)

where

αj =



D−1
αj

+
∑

{S1,t=j}

1/σ2
S3,t





−1

D−1
αj

αj +
∑

{S1,t=j}

(yt − x′tβS2,t
)/σ2

S3,t





and

Dαj
=



D−1
αj

+
∑

{S1,t=j}

1/σ2
S3,t





−1

.

A.2 Sampling of coefficient β

Conditional on (S̃1,T , S̃2,T , S̃3,T ), α̃ = (α1, . . . , αM1+1), and σ̃2 = (σ2
1 , . . . , σ

2
M3+1), response

coefficient parameter for regime j, βj , for j = 1, . . . , (M2 + 1) can be sampled as follows.

(a) Prior

βj ∼ N
(

β
j
,Dβj

)
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(b) Posterior

βj |α̃, σ̃
2, S̃1,T , S̃2,T , S̃3,T ∼ N

(

βj,Dβj

)

where

βj =



D−1
βj

+
∑

{S2,t=j}

xtx
′
t/σ

2
S3,t





−1

D−1
βj

β
j
+

∑

{S2,t=j}

xt(yt − αS1,t
)/σ2

S3,t





and

Dβj
=



D−1
βj

+
∑

{S2,t=j}

xtx
′
t/σ

2
S3,t





−1

.

A.3 Sampling of variance σ2

Conditional on (S̃1,T , S̃2,T , S̃3,T ), α̃ = (α1, . . . , αM1+1), and β̃ = (β1, . . . , βM2+1), residual

variance for regime j, σ2
j , for j = 1, . . . , (M3 + 1) can be sampled as follows.

(a) Prior

σ2
j ∼ IG

(

νj
2
,
δj
2

)

(b) Posterior

σ2
j |α̃, β̃, S̃1,T , S̃2,T , S̃3,T ∼ IG

(

νj + nj

2
,
δj +

∑

{S3,t=j}(yt − αS1,t
− x′tβS2,t

)2

2

)

where nj =
∑T

t=1 1[S3,t = j] is the number of observations ascribed to regime j and

1[·] is an indicator function.
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Table 1: Model Selection: Marginal Likelihood and Bayes Factor

Model (# of breaks) Log marginal likelihood Bayes Factor
M = (mα,mρ,mσ2)

(0,0,2) -308.03 1.0000
(0,0,3) -310.96 0.0534
(0,0,1) -311.87 0.0214
(1,0,2) -312.93 0.0074
(0,1,2) -313.26 0.0053
(0,0,4) -313.97 0.0026
(0,1,3) -315.26 0.0007
(1,1,2) -315.62 0.0005
(1,0,3) -315.71 0.0005
(0,1,1) -316.38 0.0000

Note: Mα, Mρ, and Mσ2 denote the number of breaks in the intercept (α), the persistence
(ρ), and the residual variance (σ2) respectively. Bayes factors are calculated in favor of the
alternative model, M = (Mα,Mρ,Mσ2) versus the most preferred model, M = (0, 0, 2):

B =
m (YT |M = (Mα,Mρ,Mσ2))

m (YT |M = (0, 0, 2))
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Table 2: Posterior Probability of the Number of Structural Breaks in Individual Parameters

Parameter # of breaks Posterior Probability

Intercept 0 0.9917
1 0.0079
2 0.0004
3 0.0000
4 0.0000

Persistence 0 0.9937
1 0.0061
2 0.0001
3 0.0000
4 0.0000

Residual Variance 0 0.0000
1 0.0205
2 0.9341
3 0.0433
4 0.0020
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Table 3: Posterior Distribution of Break Dates for the Most Preferred Model: # of Breaks
(intercept, Pers., Var.)=(0,0,2)

Break Date 90% Credibility Interval

First Structural Break Date 1970:Q2 1966:Q4 ∼ 1971:Q3
Second Structural Break Date 1985:Q2 1983:Q2 ∼ 1988:Q1

Note: Estimates of break dates are based on the highest posterior probability. Credibility
intervals are based on the posterior distribution of break dates.
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Table 4: Posterior Distributions for Parameters in the Most Preferred Model: # of Breaks
(intercept, Pers., Var.)=(0,0,2)

Parameter Regimes
Regime 1 Regime 2 Regime 3

α 0.2314
(0.1114)

ρ 0.9212
(0.0372)

σ2 0.7031 2.2972 0.4204
(0.1291) (0.4688) (0.0784)

pii 0.9849 0.9845
(0.0148) (0.0157)

γ1 -0.3329
(0.0730)

γ2 -0.1873
(0.0746)

γ3 -0.1364
(0.0674)

Note: Standard deviations are reported in parentheses. The posterior distributions are
generated based on the most preferred autoregressive model of U.S. GDP Deflator inflation
with two structural breaks in the residual variance (σ2) and no break in the intercept (α)
and the persistence (ρ) parameters:

πt = α+ ρπt−1 + γ1∆πt−1 + γ2∆πt−2 + γ3∆πt−3 + et, et ∼ N(0, σ2
St
), St = 1, 2, 3

and
Pr[St = i|St−1 = i] = pi,i, for i = 1, 2; Pr[St = 3|St−1 = 3] = 1
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Figure 1: An Artificial Data Set

38



0 50 100 150 200

0.
0

0.
1

0.
2

0.
3

0.
4

(a) α with true break point 40
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(b) β with true break points 80 and 120
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(c) σ2 with true break points 100 and 150

Figure 2: Densities of Regimes Changes for an Artificial Data Set
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Figure 3: U.S. GDP Deflator Inflation (Quarterly percentage change at an annual rate):
1953:Q2-2005:Q2
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Figure 4: Posterior Probability of the Timing of Structural Break in Residual Variance
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Figure 5: Posterior Distribution of Parameters
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