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Abstract

In this paper, we relax the assumption of constant regime-specific mean growth rates in
Hamilton’s (1989) two-state Markov-switching model of the business cycle. We introduce

a random walk hierarchical prior for each regime-specific mean growth rate and impose a
cointegrating relationship between the mean growth rates in recessionary and expansionary

periods. By applying the proposed model to postwar U.S. real GDP growth (1947:Q4-
2011:Q3), we uncover the evolving nature of the regime-specific mean growth rates of real

output in the U.S. business cycle. Additional features of the postwar U.S. business cycle that

we uncover include: i) a steady decline in the long-run mean growth rate of real output over
the postwar sample and ii) an asymmetric error-correction mechanism when the economy

deviates from its long-run equilibrium.
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1. Introduction

Blanchard and Watson (1986) raised an interesting question of whether or not business

cycles are all alike. Their answer was “No.” To motivate this paper, we ask,“Are postwar

booms or recessions all alike?” Our answer is tentatively “No.” In Hamilton’s (1989) two-

state Markov-switching model of the business cycle, the mean growth rates of real GDP

during different episodes of a specific regime (boom or recession) are assumed to be the

same. Although this assumption may be a reasonable approximation for a specific sample

period, we claim that it may be a poor approximation for the extended sample that covers

the whole postwar period. This is confirmed by Figure 1, in which the quarterly growth

rates of real GDP for the sample period 1947:Q4 to 2011:Q3 are plotted along with the

mean growth rate for each episode of NBER boom or recession. The shaded areas refer to

the NBER recession periods. The mean growth rates for the 12 historical episodes of boom

range from 0.59 to 1.83 with a standard deviation of 0.37. The mean growth rates for the 11

historical episodes of recession range from 0.02 to -0.69 with a standard deviation of 0.23. 3

In this paper, we propose a flexible two-state Markov-switching model of the business

cycle, in which the regime-specific mean growth rates of real output may evolve over different

episodes of boom or recession. We first present a preliminary model, in which we assume

a simple random walk hierarchical prior for each regime-specific mean growth rate. Within

this framework, we provide basic insights into the model. Then, by imposing a condition for

the existence of the long-run mean growth rate for real output, we extend the preliminary

model to a realistic one, in which we allow for a cointegrating relationship between the two

regime-specific mean growth rates.

For making an inference about the model, we build on recent advances in Bayesian ap-

proaches to change-point models that allow for flexible relationships between parameters in

various regimes and/or an unknown number of structural breaks. (Koop and Potter (2007),

Giordani and Kohn (2008), Geweke and Jiang (2011), etc.) In particular, we follow Koop

and Potter (2007) and cast the models into standard Markov-switching state-space formula-

tions with heteroscedastic shocks to regime-specific parameters. Once the model is put into

3 For more details, the summary statistics are provided in Appendix Table A.1.
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standard state-space formulations, a Markov Chain Monte Carlo (MCMC) procedure can be

easily developed based on the existing posterior simulation method for state-space models

and on that for Markov-switching models. For example, in order to generate the evolving

regime-specific mean growth rates conditional on the Markov-switching regime indicator vari-

able, we can take advantage of Carter and Kohn’s (1994) and Kim et al.’s (1998) methods of

posterior simulation for linear state-space models. In order to generate the Markov-switching

regime indicator variable conditional on the evolving regime-specific mean growth rates, we

use a modified version of Albert and Chib’s (1993) method.

We estimate the proposed model and various competing models using postwar U.S. real

GDP growth for the sample period of 1947:Q4 to 2011:Q3. In our empirical models, we also

allow for the possibility of time-varying long-run mean growth rate and stochastic volatility

for the disturbance term. The performance of the proposed model is superior to that of

various other competing models, including the Hamilton (1989) model and the Hamilton

model with the ‘bounce-back effect’ of Kim et al. (2005), both in identifying recessions and

in making inferences about the mean growth rates. The superiority of the proposed model is

also confirmed by Bayesian model comparison based on the Deviance Information Criterion

(DIC).

The evolving nature of each regime-specific mean growth rate for booms or recessions is

not the only feature of the U.S. postwar business cycle that we uncover in this paper. First,

we find that the decline in the long-run mean growth rate of real output was not abrupt.

Whereas an abrupt decline in the long-run output growth has commonly been postulated

around the mid-1970s (e.g., Perron (1989) and Zivot and Andrews (2002)), we find that

the long-run mean growth rate has declined steadily over the entire postwar sample, as first

documented by Stock and Watson (2012). Second, an asymmetric error-correction effect

arises when the economy deviates from its long-run equilibrium. We find more evidence of

error correction in the form of a high growth expansion following a deep recession than vice

versa.

The remainder of this paper is organized as follows. In Section 2, we propose a model

with evolving regime-specific mean growth rates of real output, in which we impose a condi-

tion for the existence of the long-run mean growth rate. In Section 3, we present a state-space
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representation of the proposed model and describe an MCMC procedure for Bayesian infer-

ence of the model. In Section 4, we apply the proposed model to postwar U.S. real GDP

growth. The performance of the proposed model is compared to those of various alternative

models. Section 5 provides the summary and conclusions.

2. Markov-Switching Models with Evolving Regime-Specific Mean Growth Rates

2.1. A Preliminary Model

Let yt be real output growth, and consider the following Markov-switching model of the

business cycle:

yt = (1− St)µ̄0,τ0 + Stµ̄1,τ1 + et, St = 0, 1, (1)

et ∼ i.i.d.N(0, σ2
e), (2)

t = 1, 2, ..., T ; τ0 = 1, 2, ..., N0; τ1 = 1, 2, ..., N1,

where µ̄0,τ0 is the mean growth rate during the τ0 − th episode of boom in the sample; µ̄1,τ1

is the mean growth rate during the τ1− th episode of recession; and N0 and N1 are the total

numbers of the episodes of boom and recession, respectively, conditional on the states. Note

that N0 and N1 are random variables and that they are dependent upon the realizations

of the latent state variables S̃T = [S1 S2 . . . ST ]′ that characterize the business cycle

regime. The latent state variable St follows a first-order Markov-switching process with the

transition probabilities:

Pr[St = 1|St−1 = 1] = p, Pr[St = 0|St−1 = 0] = q. (3)

While Hamilton (1989) assumes that µ̄0,τ0 = µ0 for all τ0 = 1, 2, ..., N0 and µ̄1,τ1 = µ1 for

all τ1 = 1, 2, ..., N1, we allow for the possibility that different episodes of boom (or recession)

have different mean growth rates. In order to allow for the dependence of mean growth rates

between current and past episodes of boom or recession, we adopt hierarchical priors given

by the following random walk dynamics for µ̄0,τ0 and µ̄1,τ1 :
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µ̄0,τ0 = µ̄0,τ0−1 + ω0,τ0 , ω0,τ0 ∼ i.i.d.N(0, σ2
ω,0), (4)

µ̄1,τ1 = µ̄1,τ1−1 + ω1,τ1 , ω1,τ1 ∼ i.i.d.N(0, σ2
ω,1), (5)

τ0 = 1, 2, ..., N0; τ1 = 1, 2, ..., N1,

where ω0,τ0 and ω1,τ1 are independent of each other and are not correlated with et in equation

(2). Within the context of the linear models with multiple structural breaks, Koop and Potter

(2007) use the same hierarchical prior in order to allow for dependence in parameters across

regimes. When σ2
ω,0 = σ2

ω,1 = 0 the above model collapses to that of Hamilton (1989). The

fundamental difference between the model proposed in this paper and the Hamilton model

is illustrated in Figure 2.

For notational simplicity, we rewrite equations (4) and (5) with a common subscript τ

instead of two different regime subscripts τ0 and τ1, in the following way:

yt = (1− St)µ̄0,τ + Stµ̄1,τ + et, St = 0, 1; t = 1, 2, ..., T, (6)

µ̄0,τ = µ̄0,τ−1 + ω0,τ , ω0,τ ∼ N(0, σ2
0,τ ), (7)

µ̄1,τ = µ̄1,τ−1 + ω1,τ , ω1,τ ∼ N(0, σ2
1,τ ), (8)

σ2
0,τ =

{
σ2
ω,0, if τ = (2j − 1) + j∗, j = 1, 2, 3, . . .

0, otherwise,
(9)

σ2
1,τ =

{
σ2
ω,1, if τ = 2j − j∗, j = 1, 2, 3, . . .

0, otherwise,
(10)

where j∗ = 1, if the sample starts with the first episode of recession; and j∗ = 0, if the sample

starts with the first episode of boom. We therefore have τ = 1, 2, . . . , N , where N = N1+N2.

2.2. A Realistic Model with a Long-Run Restriction: Vector Error-Correction
Dynamics for Regime-Specific Mean Growth Rates

One weakness of the preliminary model in Section 2.1 is that the long-run growth rate

does not exist. This results in a serious problem especially when the assumption of a constant
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long-run growth rate is relaxed in a later section. In this section, we first derive a condition

for the existence of the long-run growth rate.

By denoting the long-run growth rate as δ, we rewrite equation (6) as:

yt = δ + (1− St)µ0,τ + Stµ1,τ + et, (11)

et ∼ i.i.d.N(0, σ2
e), (12)

where µ0,τ or µ1,τ refers to the deviation of the mean growth rate during boom or recession

from the long-run mean growth rate δ.

By taking unconditional expectations on both sides of equation (11), we obtain the

restriction: E[yt − δ] = E[(1 − St)µ0,τ + Stµ1,τ + et] = 0, which, due to the law of iterated

expectations and the independence of St from µ0,τ or µ1,τ for all t and τ , results in:

E[π0µ0,τ + π1µ1,τ ] = 0 (13)

where, πi = Pr[St = i], i = 0, 1, are the unconditional probabilities of boom (i = 0) and

recession (i = 1).

This long-run restriction, combined with the random walk assumptions for the regime-

specific mean growth rates, suggests that µ0,τ and µ1,τ are cointegrated with a cointegrating

vector [ π0 π1 ]
′. Thus, changes in µ0,τ and µ1,τ do not have any long-run effect on yt by the

long-run restriction of the cointegration. The following describes the dynamics of µ0,τ and

µ1,τ with the long-run restriction:

µ0,τ = µ0,τ−1 + θ0(π0µ0,τ−1 + π1µ1,τ−1) + ω0,τ , ω0,τ ∼ N(0, σ2
0,τ ), (14)

µ1,τ = µ1,τ−1 + θ1(π0µ0,τ−1 + π1µ1,τ−1) + ω1,τ , ω1,τ ∼ N(0, σ2
1τ ), (15)

µ0,τ > 0 and µ1,τ < 0, ∀ τ,

τ = 1, 2, ..., N,

where σ2
0τ and σ2

1τ are defined in (9) and (10).

Finally, in order to guarantee the stability of the above vector error-correction model and

the existence of long-run output growth, we actually need a restriction on error-correction
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coefficients θ0 and θ1. If we cast the vector error-correction model in equations (14) and (15)

into a state-space form, we have:








∆µ0,τ

∆µ1,τ

zτ







=








0 0 θ0

0 0 θ1

0 0 1 + θ0π0 + θ1π1















∆µ0,τ−1

∆µ1,τ−1

zτ−1







+








1 0

0 1

π0 π1








[
ω0,τ

ω1,τ

]

, (16)

[
ω0,τ

ω1,τ

]

∼ N

([
0

0

]

,

[
σ2
ω,0 0

0 σ2
ω,1

])

, (17)

τ = 1, 2, ..., N,

where zτ = π0µ0,τ+π1µ1,τ is the equilibrium error during period τ . 4 Here, as the equilibrium

error needs to be stationary, the restriction on the θ0 and θ1 parameters is given by:

−1 < 1 + θ0π0 + θ1π1 < 1. (18)

The model in equations (11)-(15) differs from a conventional unobserved-components

model. The regime-specific mean growth rate µ0,τ or µ1,τ changes only when we face a new

episode of boom or recession. Furthermore, adjustment to long-run equilibrium occurs only

when the regime changes from boom to recession or vice versa. Thus, we can cast the model

into the following unobserved-components representation of the model:

Conventional Unobserved-Components Model Representation

yt = δ + (1− St)µ
∗
0,t + Stµ

∗
1,t + et, (19)

µ∗
0,t = µ∗

0,t−1 + θ0(d10,t + d01,t)(π0µ
∗
0,t−1 + π1µ

∗
1,t−1) + ω∗

0,t, ω∗
0,t ∼ N(0, d10,tσ

2
ω,0), (20)

µ∗
1,t = µ∗

1,t−1 + θ1(d10,t + d01,t)(π0µ
∗
0,t−1 + π1µ

∗
1,t−1) + ω∗

1,t, ω∗
1,t ∼ N(0, d01,tσ

2
ω,1), (21)

µ∗
0,t > 0 and µ∗

1,t < 0, ∀ t.

−1 < 1 + θ0π0 + θ1π1 < 1,

4 The long-run equilibrium error dynamics zt = (1+ θ0π0+ θ1π1)zt−1+(π0ω0,τ +π1ω1,τ ) in
(16) can be derived by multiplying (14) and (15) by π0 and π1, respectively, and summing
them up.
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t = 1, 2, ..., T,

where

dij,t =

{
1, if St−1 = i and St = j, j 6= i;

0, otherwise.
(22)

3. Markov Chain Monte Carlo (MCMC) Procedure and Model Comparison

3.1. Markov Chain Monte Carlo (MCMC) Procedure

As in Koop and Potter (2007), we first cast the unobserved components model derived

in the previous section into a state-space model:

Measurement Equation

yt = δ + [ (1− St) St ]

[
µ∗
0,t

µ∗
1,t

]

+ et, et ∼ i.i.d.N(0, σ2
e), (23)

(

⇔ yt = δ +Htµ
∗
t + et, et ∼ i.i.d.N(0, σ2

e)
)

State Equation

[
µ∗
0,t

µ∗
1,t

]

=

[
1 + θ0π0(d10,t + d01,t) θ0π1(d10,t + d01,t)

θ1π0(d10,t + d01,t) 1 + θ1π1(d10,t + d01,t)

] [
µ∗
0,t−1

µ∗
1,t−1

]

+

[
ω∗
0,t

ω∗
1,t

]

(24)

(

⇔ µ∗
t = Ftµ

∗
t−1 + ωt, ωt ∼ N(0,Ωt)

)

,

where Ωt = Diag ( d10,tσ
2
ω,0, d01,tσ

2
ω,1 ) and dij,t is as defined in (22).

Conditional on S̃T = [S1 S2 . . . ST ]′, the above is a linear state-space model with

heteroscedastic shocks and a procedure for making inferences on µ∗
0,t and µ

∗
1,t (the elements

of the state vector µ∗
t ) can easily be developed by modifying the procedure proposed by

Carter and Kohn (1994). Furthermore, conditional on the µ∗
0,t and µ

∗
1,t terms generated for

t = 1, 2, ..., T , a procedure for generating the regime indicator variable St can be derived

easily by modifying the procedure proposed by Albert and Chib (1993). In what follows, we

summarize the prior used for Bayesian inference of the model and present an outline for the

MCMC procedure.
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By defining µ̃∗
j,T = [µ∗

j,1 µ∗
j,2 . . . µ∗

j,T ]
′, j = 0, 1 and S̃T = [S1 S2 . . . ST ]′, the

full specification for the priors can be summarized as:

Summary of the Prior

p(µ̃∗
0,T ,µ̃

∗
1,T , S̃T , µ

∗
0,0, µ

∗
1,0, S0, δ, σ

2
e , σ

2
ω,0, σ

2
ω,1, θ0, θ1, p, q)

= p(µ̃∗
0,T , µ̃

∗
1,T |µ

∗
0,0, µ

∗
1,0, S̃T , S0, δ, σ

2
e , σ

2
ω,0, σ

2
ω,1, θ0, θ1)× p(S̃T |S0, p, q)

× p(µ∗
0,0, µ

∗
1,0, S0, δ, σ

2
e , σ

2
ω,0, σ

2
ω,1, θ0, θ1, p, q)

=

[
T∏

t=1

p(µ∗
0,t, µ

∗
1,t|µ

∗
0,t−1, µ

∗
1,t−1, St, St−1, σ

2
ω,0, σ

2
ω,1, θ0, θ1)

]

×

[
T∏

t=1

p(St|St−1, p, q)

]

× p(µ∗
0,0, µ

∗
1,0)× p(S0)× p(δ|σ2

e)× p(σ2
e)

× p(θ0|σ
2
ω,0)× p(σ2

ω,0)× p(θ1|σ
2
ω,1)× p(σ2

ω,1)× p(p, q),

(25)

where the joint conditional prior p(µ∗
0,t, µ

∗
1,t|µ

∗
0,t−1, µ

∗
1,t−1, St, St−1, σ

2
ω,0, σ

2
ω,1, θ0, θ1) is given

by equation (24); p(St|St−1, p, q) is given by the transition probabilities in (3); p(µ∗
0,0, µ

∗
1,0)

is diffuse; p(S0) is given by the unconditional probabilities of St; p(δ|σ
2
e), p(θ0|σ

2
ω,0) and

p(θ1|σ
2
ω,1) are independent normals; p(σ2

e), p(σ
2
ω,0), and p(σ2

ω,1) are independent inverted

Gamma’s; and p(q, p) are independent Beta’s.

Outline of the MCMC Procedure

Step 0:

Initialize the parameters of the model ψ̃ = [ δ σ2
e θ0 σ2

ω,0 θ1 σ2
ω,1 q p ]′ and the

states S̃T = [S1 S2 . . . ST ]′.

Step 1:

Generate µ̃∗
0,T = [µ∗

0,1 µ∗
0,2 . . . µ∗

0,T ]′ and µ̃∗
1,T = [µ∗

1,1 µ∗
1,2 . . . µ∗

1,T ]′ conditional

on ψ̃, S̃T , and data ỸT = [ y1 y2 . . . yT ]′. This step is based on the state-space

representation of the model in equations (23) and (24). The conditional joint posterior

distribution of µ̃∗
0,T and µ̃∗

1,T can be decomposed as:

p(µ̃∗
0,T , µ̃

∗
1,T |ỸT , S̃T , Ψ̃) = p(µ∗

0,T , µ
∗
1,T |ỸT , S̃T , ψ̃)

T−1∏

t=1

p(µ∗
0,t, µ

∗
1,t|µ

∗
0,t+1, µ

∗
1,t+1, Ỹt, S̃T , ψ̃), (26)
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which suggests that we can sequentially generate µ∗
0,t and µ

∗
1,t for t = T, T − 1, . . . , 2, 1.

Step 2:

Generate S̃T conditional on µ̃∗
0,T and µ̃∗

1,T ; parameters ψ̃; and data ỸT . This step is based

on equation (23) and the transition probabilities in (3). As in Albert and Chib (1993),

p(St|ỸT , S̃ 6=t, µ̃
∗
0,T , µ̃

∗
1,T , ψ̃) can be derived as:

p(St|ỸT , S̃ 6=t, µ̃
∗
0,T , µ̃

∗
1,T , ψ̃) ∝ Pr(St|St−1)Pr(St+1|St)p(yt|Ỹt−1, St, µ

∗
0,t, µ

∗
1,t, ψ̃). (27)

Step 3:

Generate θ0, θ1, σ
2
ω,0 and σ2

ω1
, conditional on µ̃∗

0,T , µ̃
∗
1,T , and S̃T . This step is based on

equations (14)-(15).

Step 4:

Generate δ and σ2
e , conditional on µ̃

∗
0,T , µ̃

∗
1,T ,, S̃T and ỸT . This step is based on equation

(23).

Step 5: Generate q and p conditional on S̃T .

For more details of the above MCMC procedure, readers are referred to Appendix A.

3.2. Model Selection Criterion

In addition to visually inspecting the estimated probabilities of being in the recession

regime with the NBER recession dates, we formally compare our proposed model with various

extensions of the Hamilton model. The usual method of Bayesian model comparison is

through marginal likelihood calculations but they are quite sensitive to prior information

especially for the models with high-dimensional parameter spaces. The proposed model

has a complicated hierarchical structure for the evolving regime-specific mean growth rates.

Furthermore, when the model is extended to incorporate a random walk process for the

long-run mean growth and stochastic volatility for the disturbance terms, the hierarchical

structural of the model is further complicated. Thus, the number of model parameters and
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the latent state variables is extremely large and easily exceeds the number of observations.

This creates difficulty in evaluating the marginal likelihood.

In order to overcome the difficulty in marginalizing over the parameter vector and the

latent state variables, we adopt the Deviance Information Criterion (DIC) for our model

comparisons. Spiegelhalter et al. (2002) first proposed using DIC for complex hierarchical

models and Berg, Meyer, and Yu (2004) showed that DIC can be effectively used for com-

paring various stochastic volatility models. As discussed, DIC is developed exactly for the

models such as ours. This model selection criterion consists of (i) a Bayesian measure of

model fit defined as the posterior expectations of the deviance and (ii) a penalty term to

measure the complexity of the model as in the Akaike Information Criterion (AIC) and the

Schwarz Information Criterion (SIC). The penalty term represents the effective number of

parameters defined by the difference between the posterior mean of the deviance and the

deviance evaluated at the posterior mean of the parameters 5:

DIC = −2EΨ|y[log f(y|Ψ)]
︸ ︷︷ ︸

(i)modelfit

+2
{

log f(y|Ψ)−EΨ|y [log f(y|Ψ)]
}

︸ ︷︷ ︸

(ii)penalty

(28)

where Ψ is a collection of model parameters including state variables and Ψ is its poste-

rior mean. Thus, DIC prefers the model with a small value. In practice, the posterior

expectations of the deviance are calculated with

EΨ|y [log f(y|Ψ)] =
1

M

M∑

j=1

log f(y|Ψj) (29)

where M is the number of MCMC simulations. Thus, calculating these two terms is easy

when MCMC draws are readily available. We simply need to average the log of likelihoods

from MCMC draws and evaluate the log of likelihood at the mean of MCMC draws for the

parameters.

4. An Application to U.S. Real GDP Growth Data

4.1. The Hamilton Model and the Proposed Model

5 For more details, refer to Spiegelhalter et al. (2002).
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We apply the proposed model and the MCMC procedure presented in Section 3 to

postwar U.S. real GDP growth data over the sample period from 1947:Q4 to 2011:Q3. The

results are compared to those from the Hamilton (1989) model. For both models, we specify

the long-run mean growth rate as a random walk process and the variance of the disturbance

terms as a stochastic volatility process. The former is incorporated in order to reflect Stock

and Watson’s (2012) observation that long-run growth of real output has declined steadily

over the postwar sample and the latter is incorporated to reflect the Great Moderation.

For the two competing models under consideration, the long-run growth rate (δ) in

equation (11) is replaced by:

δt = δt−1 + ǫt, ǫt ∼ i.i.d.N(0, σ2
ǫ ), (30)

and the distribution of the disturbance term et in equation (12) is replaced by:

et ∼ N(0, σ2
e,t), (31)

where

ln(σ2
e,t) = ln(σ2

e,t−1) + ηt, ηt ∼ i.i.d.N(0, σ2
η). (32)

The two competing models with the features in equations (30)-(32) are summarized

below:

Model I: Hamilton Model

yt = δt + (1− St)µ0 + Stµ1 + et, et ∼ N(0, σ2
e,t),

µ0 > 0, µ1 < 0,

π0µ0 + π1µ1 = 0,

where the regime-specific mean growth rates (µ0 and µ1) are assumed to be time-invariant;

the transition probabilities for St are as given in equation (3); and the last equation above

is the identifying restriction that we need for estimating the long-run growth rate δt. Here,

π0 and π1 refer to steady-state probabilities of St.

Model II: Proposed Model
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yt = δt + (1− St)µ0,τ + Stµ1,τ + et, et ∼ N(0, σ2
e,t),

µ0,τ > 0, µ1,τ < 0, for all τ,

E[π0µ0,τ + π1µ1,τ ] = 0,

where the hierarchical prior for µ0,τ and µ1,τ are given in equations (14) and (15) along

with equation (18), which restricts the coefficients governing the speed of adjustment in

their error-correction dynamics; and the transition probabilities for St are the same as in

the Hamilton model. The priors we specify for the variances of the shocks are Inverted

Gamma distributions, those for the transition probabilities are Beta distributions; and those

for all the other parameters are Normal distributions. The prior mean and the the standard

deviations for the parameters common to both models are set to be the same.

All inferences are based on 20,000 Gibbs simulations after discarding 10,000 burn-ins.

Tables 1 and 2 summarize prior and posterior moments for the Hamilton model and those

for the proposed model, respectively. Of particular interest in Table 2 are the posterior

distributions for the θ0 and θ1 coefficients in the proposed model. These coefficients represent

the speed of adjustments at which the regime-specific mean growth rates converge to long-

run equilibrium. Even though the posterior means for θ0 an θ1 are both negative, the sample

evidence in favor of θ0 < 0 is relatively more than that in favor of θ1 < 0. 6 Notice that,

while the upper bound for the 90% bands for θ0 is close to 0, that for θ1 is much greater

than zero. This suggests that, on average, a relatively strong recovery would follow a severe

recession, which is sometimes referred to as the ‘bounce-back effect’ in the literature (e.g.,

Beaudry and Koop (1993), Kim, Morley, and Piger (2005), and references there-in).

DIC for the proposed model (421.50) is considerably lower than that for the Hamilton

model (446.79), suggesting that the proposed model is preferred to the Hamilton model. The

plots of posterior regime probabilities and posterior mean growth rates for the two models

further confirm this. In Figure 3, the posterior probabilities of recession for both models

are depicted against the NBER recessions (shaded areas). The proposed model clearly does

a better job in the in-sample prediction of the NBER recession than the Hamilton model.

6 The results are robust with respect to alternative prior moments used for the θ0 and θ1
coefficients.
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In Figure 4, the posterior mean growth rates from the two competing models are depicted

against the NBER business cycle episode-specific mean growth rates. 7 Again, the proposed

model does a much better job in replicating the NBER episode-specific mean growth rates.

Figure 5 compares the long-run mean growth rates. The gradual declines in the long-run

mean growth rates throughout the sample and their magnitudes for both models are in close

agreement with that reported in Stock and Watson (2012). 8 A slight difference is that,

whereas the posterior long-run mean growth for the Hamilton model steadily declines from

close to 1% to 0.4% throughout the sample, that for the proposed model declines from around

0.8% to 0.5%. Clearly, a much higher long-run mean growth rate in the 1950s and a bigger

decline for the Hamilton model may be an artifact of assuming constant regime-specific

means, as shown in Figure 4.

Lastly in Figure 6, we compare the volatility of the disturbance terms for the two models.

The volatility before the 1980s for the Hamilton model is estimated to be about 25%∼50%

higher than that for the proposed model. Again, this may be due to the constant regime-

specific mean growth assumed in the Hamilton model, and a lot of the variation in the

regime-specific mean growth rates during this period is reflected as high variance of the

disturbance terms.

4.2. Robustness Check: Various Alternative Model Specifications

In this section, we consider and estimate various alternative models. For example, one

important finding from the proposed model is the existence of high growth recoveries that

typically follow deep recessions (i.e., the ‘bounce-back effect’ of Beaudry and Koop (1993),

Kim, Morley, and Piger (2005), and references there-in). One cannot rule out the possibility

that the estimated evolving regime-specific mean growth rates for the proposed model may

7 The posterior mean growth rate is calculated from E[yt|ỸT ] using Gibbs draws.
8 Stock and Watson (2012) support this finding by examining various macroeconomic

variables and suggest that the declining trend growth rate is due to changes in underlying
demographic factors, especially (i) the stagnant female labor force participation rate and (ii)
the aging of the U.S. workforce. Note that this nature of changes in the long-run output
growth is quite different from what has been reported in the literature. The literature
suggests an abrupt decline in the long-run mean growth rate after the first Oil Shock of the
mid-1970s (e.g. Perron (1989) and Zivot and Andrews (2002)).
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simply be an artifact of not explicitly considering the ‘bounce-back effect’ in the Hamilton

model. We thus consider an extended Hamilton model, in which the ‘bounce-back effect’ is

incorporated as in Kim et. al (2005):

Model III: Hamilton Model with a Bounce-Back Effect

yt = δt + (1− St)µ0 + Stµ1 + λ
m∑

j=1

St−j(yt−j − δt−j) + et, et ∼ N(0, σ2
e,t),

µ0 > 0, µ1 < 0,

π0µ0 + π1µ1 = 0,

where the specification for the transition probabilities, the long-run growth rate δt, and

stochastic volatility σ2
e,t are the same as in Models I and II. A nice feature of the above

model is that, the longer the duration and the deeper the magnitude of a recession, the higher

recovery (i.e., a bigger bounce-back effect). The bounce-back effect term λ
∑m

j=1 St−j(yt−j −

δt−j) reflects this feature. Note that when λ = 0 the above model collapses to Model I (the

Hamilton model). We follow Kim, Morley, and Piger (2005), in setting m = 6 for the length

of the bounce-back effect.

Table 3 presents prior and posterior moments. The prior distribution we specify for

the bounce-back effect parameter λ is N(0.30, 0.502). 9 The prior distributions for other

parameters are the same as those in the Hamilton model without the bounce-back effect.

In Table 3, the bounce-back effect is significant in the sense that the posterior mean of

the bounce-back effect parameter is 0.10 and its 90% credible interval is [0.03, 0.18]. The

posterior moments for other parameters are similar to those for the Hamilton model without

the bounce-back effect (Model I) reported in Table 2.

Figure 5.A shows that incorporating the bounce-back effect in the Hamilton model results

in a better correspondence between the posterior probabilities of recession and the NBER

recession dates. It also provides a better correspondence between the posterior mean growth

rates and the NBER regime-specific mean growth. However, the model completely misses

9 Kim, Morley, and Piger (2005) found that the estimate of λ is 0.26 and its standard error
is 0.06 via the maximum likelihood estimation method.
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the 2001 recession, unlike the proposed model. 10 DIC decreases from 446.79 (Hamilton

model) to 444.93 (extended Hamilton model). However, the decrease in DIC is only minor

and it is still considerably higher than that for the proposed model (421.50).

Other than the ‘bounce-back effect’, we cannot preclude the possibility of an abrupt

structural break in the long-run mean growth rate, as reported in the literature (e.g. Perron

(1989) and Zivot and Andrews (2002)). We thus consider three additional models in which

the random walk specification for the long-run mean growth rate in equation (30) is replaced

by a structural shift in the long-run mean growth rate, which is modeled as a Markov-

switching process with an absorbing state:

δDt
= δ0(1−Dt) + δ1Dt, (37)

where

Pr[Dt = 0|Dt−1 = 0] = qD, P r[Dt = 1|Dt−1 = 1] = 1. (38)

To summarize, we consider and estimate three additional models given below:

Model IV: Hamilton Model with a Structural Break in Long-Run Growth Rate

yt = δDt
+ (1− St)µ0 + Stµ1 + et, et ∼ N(0, σ2

e,t)

µ0 > 0, µ1 < 0

π0µ0 + π1µ1 = 0

Model V: Proposed Model with a Structural Break in Long-Run Growth Rate

yt = δDt
+ (1− St)µ0,τ + Stµ1,τ + et, et ∼ N(0, σ2

e,t)

µ0,τ > 0, µ1,τ < 0, for all τ

E[π0µ0,τ + π1µ1,τ ] = 0

Model VI: Hamilton Model with a Bounce-Back Effect

10 Figures 5.B-5.D depict posterior mean growth rates, stochastic volatility, and long-run
mean growth rates over time, respectively. They are very similar to those for the Hamilton
model without the bounce-back effect.
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and a Structural Break in Long-Run Growth Rate

yt = δDt
+ (1− St)µ0 + Stµ1 + λ

6∑

j=1

St−j(yt−j − δDt−j
) + et,

µ0 > 0, µ1 < 0

π0µ0 + π1µ1 = 0.

The priors for the long-run growth rates before and after the break date are specified as

N(0.8, 0.52). The prior mean is based on the fact that the average growth rate for postwar

U.S. real GDP is about 0.8 in the sample. The prior distribution for qD is specified as

Beta(70, 1). The prior and the posterior moments for each of the above models, along with

all related figures, are reported in the Appendix. A comparison of the DIC values reported

in Table 4 gives the following result summary: i) The proposed model is most preferred;

and ii) for each model, a random walk specification for the long-run mean growth rate is

preferred to a one-time structural-break specification. 11 Our results confirm Stock and

Watson’s (2012) observation that the long-run mean growth rate of real output has declined

steadily over the postwar sample.

6. Summary and Suggestion for Further Studies

As an economy and its institutions and policies evolve over time, so do the dynamics

of the business cycle. Over time, we thus may need a more sophisticated empirical model

that is capable of capturing the changes in the dynamics of the business cycle. The Great

Moderation, i.e., the stabilization of the economy since the mid-1980s, is an example of such

change. However, what is sometimes overlooked in empirical models of the business cycle is

that the postwar booms or recessions are not all alike. For example, a two-state Markov-

switching model of the business cycle, as proposed by Hamilton (1989), assumes that mean

growth rates during all episodes of boom or recession are the same. While this assumption

11 We also considered models in which we allow for a one-time structural break in the
variance of the disturbance term et, as an alternative to the stochastic volatility. Even
though we do not report the estimation results in the paper, we note that these models are
inferior to those with stochastic volatility based on DIC.
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may be valid for particular sample periods, it may not be realistic for a sample that covers

the entire postwar period. This is why the original Hamilton model fails to provide sharp

inferences on two distinctive business cycle regimes when the sample period is extended

beyond that used by Hamilton (1989).

The extensions to the original Markov-switching approach of Hamilton (1989) include

the introduction of a random walk hierarchical prior for each regime-specific mean growth

rate and the inclusion of a cointegrating relationship between the average growth rates in

recessionary and expansionary periods. By applying the propose approach to the postwar

U.S. real GDP growth data from 1947:Q4 to 2011:Q3, we find three important features of

the U.S. business cycle. First, the postwar booms and recessions are not all alike. Second,

the long-run mean growth rate of real output has steadily and gradually declined over the

postwar sample. Third, the error-correction mechanism works asymmetrically when the

economy deviates from its long-run equilibrium.

The model presented in this paper may be further extended to the case of time-varying

transition probabilities.
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Table 1. Prior and Posterior Moments: Hamilton Model

yt = δt + (1− St)µ0 + Stµ1 + et, et ∼ N(0, σ2
e,t)

δt = δt−1 + ǫt, ǫt ∼ i.i.d.N(0, σ2
ǫ ),

ln(σ2
e,t) = ln(σ2

e,t−1) + ηt, ηt ∼ i.i.d.N(0, σ2
η),

P r[St = 0|St−1 = 0] = q, P r[St = 1|St−1 = 1] = p

π0µ0 + π1µ1 = 0

where π0 and π1 are the unconditional probabilities.

Prior Posterior

Mean SD Mean SD 90% Bands

µ0 0.3000 0.5000 0.2262 0.0831 [0.0958, 0.3680]
σ2
ǫ 0.0004 5.659e-006 0.00040 5.672e-006 [0.00039, 0.00041]
σ2
η 0.3333 0.2352 0.0152 0.0071 [0.0065, 0.0290]
q 0.9000 0.0900 0.9526 0.0198 [0.9172, 0.9812]
p 0.8000 0.1212 0.7380 0.0837 [0.5862, 0.8601]

DIC 446.79
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Table 2. Prior and Posterior Moments: Proposed Model

yt = δt + (1− St)µ0,τ + Stµ1,τ + et, et ∼ N(0, σ2
e,t)

µ0,τ = µ0,τ−1 + θ0(π0µ0,τ−1 + π1µ1,τ−1) + ω0,τ , ω0,τ ∼ i.i.d.N(0, (1 − St)σ
2
ω,0)

µ1,τ = µ1,τ−1 + θ1(π0µ0,τ−1 + π1µ1,τ−1) + ω1,τ , ω1,τ ∼ i.i.d.N(0, Stσ
2
ω,1)

δt = δt−1 + ǫt, ǫt ∼ i.i.d.N(0, σ2
ǫ ),

ln(σ2
e,t) = ln(σ2

e,t−1) + ηt, ηt ∼ i.i.d.N(0, σ2
η),

P r[St = 0|St−1 = 0] = q, P r[St = 1|St−1 = 1] = p

µ0,τ > 0, µ1,τ < 0, for all τ,

−1 < 1 + θ0π0 + θ1π1 < 1,

where π0 and π1 are the unconditional probabilities.

Prior Posterior

Mean SD Mean SD 90% Bands

θ0 -0.1000 0.5000 -0.2924 0.2658 [−0.7826, 0.0769]
θ1 -0.1000 0.5000 -0.1163 0.3842 [−0.7901, 0.4675]
σ2
ω0 0.2500 0.1450 0.1195 0.0445 [0.0663, 0.2029]
σ2
ω1 0.2500 0.1450 0.1476 0.0585 [0.0777, 0.2590]
σ2
ǫ 0.0004 5.659e-006 0.0004 5.673e-006 [0.00039, 0.00041]
σ2
η 0.3333 0.2352 0.0141 0.0072 [0.0061, 0.0287]
q 0.9000 0.0900 0.9204 0.0267 [0.8723, 0.9577]
p 0.8000 0.1212 0.7848 0.0595 [0.6789, 0.8739]

DIC 421.50
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Table 3. Prior and Posterior Moments: Hamilton Model with ‘Bounce-bak

Effect’

yt = δt + (1− St)µ0 + Stµ1 + λ
6∑

j=1

St−j(yt−j − δt−j) + et, et ∼ N(0, σ2
e,t)

δt = δt−1 + ǫt, ǫt ∼ i.i.d.N(0, σ2
ǫ ),

ln(σ2
e,t) = ln(σ2

e,t−1) + ηt, ηt ∼ i.i.d.N(0, σ2
η),

P r[St = 0|St−1 = 0] = q, P r[St = 1|St−1 = 1] = p

π0µ0 + π1µ1 = 0

where π0 and π1 are the unconditional probabilities.

Prior Posterior

Mean SD Mean SD 90% Bands

µ0 0.3000 0.5000 0.2950 0.0885 [0.1532, 0.4450]
σ2
ǫ 0.0004 5.659e-006 0.0004 5.669e-006 [0.00039, 0.00041]
σ2
η 0.3333 0.2352 0.0129 0.0058 [0.0062, 0.0240]
q 0.9000 0.0900 0.9466 0.0183 [0.9136, 0.9729]
p 0.8000 0.1212 0.7666 0.0688 [0.6461, 0.8703]
λ 0.3000 0.5000 0.1041 0.0454 [0.0346, 0.1816]

DIC 444.93
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Table 4. Deviance Information Criterion (DIC): Model Comparison

Model DIC Value

Model I 446.79

Model II 421.50

Model III 444.93

Model IV 441.99

Model V 453.59

Model VI 452.79

Note 1

Model I: Hamilton model;

Model II: Proposed model;

Model III: Hamilton model with a bounce-back effect;

Model IV: Proposed model with a structural break in the long-run growth rate;

Model V: Hamilton model with a structural break in the long-run growth rate;

Model VI: Hamilton model with a bounce-back effect and a structural break in the

long-run growth rate.

Note 2

The DIC value is calculated using

DIC = −2EΨ|y[log f(y|Ψ)] + 2
{

log f(y|Ψ)− EΨ|y [log f(y|Ψ)]
}

and DIC prefers the model with a small value.
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Figure 1. Real GDP Growth and Its Episode-Specific Means During
NBER Booms and Recessions [1947:IV - 2011:III]
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Figure 2. Comparison of Hamilton (1989) Model and the Proposed Model
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Figure 3. Posterior Probabilities of Recession:
Hamilton Model vs. Proposed Model
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Figure 4. Posterior Mean Growth Rates:
Hamilton Model vs. Proposed Model
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Figure 5. Posterior Long-run Mean Growth Rates with 90%
Posterior Bands: Hamilton Model vs. Proposed Model
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Figure 6. Posterior Volatilities with 90% Posterior Bands:
Hamilton Model vs. Proposed Model
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Figure 7. Posterior Probabilities of Recession and Posterior Mean
Growth Rates: Hamilton Model with a ‘Bounce-back Effect’
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Appendix A. Details of the MCMC Procedure

A.1. Generating µ̃∗
0,T and µ̃∗

1,T conditional on S̃T , parameters ψ̃, and data ỸT .

Conditional on S̃T , equations (23)-(24) form a linear state-space model for the extended

model in Section 3.1. This allows us to employ a slightly modified version of the procedure

proposed by Carter and Kohn (1994). The conditional joint posterior distribution of µ̃∗
0,T

and µ̃∗
1,T can be decomposed as:

p(µ̃∗
0,T , µ̃

∗
1,T |ỸT , S̃T , Ψ̃) = p(µ∗

0,T , µ
∗
1,T |ỸT , S̃T , ψ̃)

T−1∏

t=1

p(µ∗
0,t, µ

∗
1,t|µ

∗
0,t+1, µ

∗
1,t+1, Ỹt, S̃T , ψ̃), (A.1)

which suggests that we can sequentially generate µ∗
0,t and µ

∗
1,t for t = T, T −1, . . . , 2, 1. Note

that, for identification of the model, we need to impose the restrictions, µ∗
0,t > 0 and µ∗

1,t < 0

for all t.

We run the Kalman filter for the state-space model given by equations (23)-(24) in order

to obtain and save µ∗
t|t = E(µ∗

t |Ỹt, S̃t, ψ̃) and Pt|t = Cov(µ∗
t |Ỹt, S̃t, ψ̃) for t = 1, 2, ..., T , where

Ỹt = [ y1 y2 . . . yt ]
′.

For t = T , we generate µ∗
T = [µ∗

0,T µ∗
1,T ]′ from the joint normal distribution

µ∗
T |ỸT , S̃T , ψ̃ ∼ N(µ∗

T |T , PT |T ). (A.2)

For t = T−1, T−2, .., 1, we generate µ∗
t = [µ∗

0,t µ∗
1,t ]

′ conditional on µ∗
t+1 = [µ∗

0,t+1 µ∗
1,t+1 ]

′.

For this purpose, we first calculate

µ∗
t|t,µ∗

t+1

= E(µ∗
t |Ỹt, µ

∗
t+1, S̃T , ψ̃) = µ∗

t|t+Pt|tF
′

t+1(Ft+1Pt|tF
′

t+1+Ωt+1)
−1(µ∗

t+1−Ft+1µ
∗
t|t) (A.3)

and

Pt|t,µt+1
= Cov(µ∗

t |Ỹt, µ
∗
t+1, S̃T , ψ̃) = Pt|t − Pt|tF

′

t+1(Ft+1Pt|tF
′

t+1 + Ωt+1)
−1Ft+1Pt|t. (A.4)

Then, we can generate µ∗
0,t and µ

∗
1,t in the following way:

i) If St = 0 and St+1 = 1, we set µ∗
0,t = (1,1) element of µ∗

t|t,µ∗

t+1

, and generate µ∗
1,t from

the following distribution:
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µ∗
1,t|µ

∗
t+1, Ỹt, S̃T , ψ̃ ∼ N(µ∗

t|t,µ∗

t+1

(2, 1), Pt|t,µ∗

t+1
(2, 2)), (A.5)

where µ∗
t|t,µ∗

t+1

(2, 1) and Pt|t,µ∗

t+1
(2, 2) are the (2,1) element of µ∗

t|t,µ∗

t+1

and the (2,2)

element of Pt|t,µ∗

t+1
, respectively.

ii) If St = 1 and St+1 = 0, we set µ∗
1,t = (2,1) element of µ∗

t|t,µ∗

t+1

, and generate µ∗
0,t from

the following distribution:

µ∗
0,t|µ

∗
t+1, Ỹt, S̃T , ψ̃ ∼ N(µ∗

t|t,µ∗

t+1

(1, 1), Pt|t,µ∗

t+1
(1, 1)), (A.6)

where µ∗
t|t,µ∗

t+1

(1, 1) and Pt|t,µ∗

t+1
(1, 1) are the (1,1) element of µ∗

t|t,µ∗

t+1

and the (1,1)

element of Pt|t,µ∗

t+1
, respectively.

iii) Otherwise, we set µ∗
0,t = (1,1) element of µ∗

t|t,µ∗

t+1

and µ∗
1,t = (2,1) element of µ∗

t|t,µ∗

t+1

.

A.2. Generating S̃T conditional on µ̃∗
0,T , µ̃

∗
1,T , parameters ψ̃, and data ỸT

We employ a modified version of Albert and Chib’s (1993) single-move Gibbs sampling

for generating St, t = 1, 2, ..., T , conditional on S̃ 6=t = [S1 . . . St−1 St+1 . . . ST ]′ and

other variates. The key is in appropriately evaluating the predictive densities of yt under two

possible alternative regimes at time t (i.e., for St = 0 and for St = 1). However, unlike in the

Hamilton (1989) model with constant mean growth rates (µ0 and µ1), the mean growth rates

during recessions or booms in our model are not always defined, as discussed in the earlier

sections. For example, conditional on St = 1 in the (j − 1) − th iteration of the MCMC

procedure, only µ1,τ1 is defined and µ0,τ1 is not. The difficulty is that, when evaluating the

predictive densities of yt under two alternative regimes at the j− th iteration of the MCMC

procedure, we need µ0,τ1 as well as µ1,τ1. We overcome this difficulty by taking advantage of

hierarchical priors in (20)-(21). Note that µ∗
0,t and µ

∗
1,t in equations (20)-(21) summarize the

hierarchical priors for the mean growth rates under two alternative regimes, for all t.

Thus, the method for generating S̃t conditional on S̃ 6=t and other variates is the same

as in Albert and Chib (1993), except that we use µ∗
0,t and µ∗

1,t as the mean growth rates

under two possible alternative regimes at each point in time. As in Albert and Chib (1993),

p(St|ỸT , S̃ 6=t, µ̃
∗
0,T , µ̃

∗
1,T , ψ̃) can be derived as:
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p(St|ỸT , S̃ 6=t, µ̃
∗
0,T , µ̃

∗
1,T , ψ̃) ∝ Pr(St|St−1)Pr(St+1|St)p(yt|Ỹt−1, St, µ

∗
0,t, µ

∗
1,t, ψ̃), (A.7)

where

p(yt|Ỹt−1, St, µ
∗
0,t, µ

∗
1,t, ψ̃) =

1
√

2πσ2
e

exp

(

−
1

2σ2
e

(yt − δ − µ∗
St,t

)2
)

. (A.8)

Then, St can be generated from

Pr[St = 1|ỸT , S̃ 6=t, µ̃
∗
0,T , µ̃

∗
1,T , ψ̃)] =

p(St = 1|ỸT , S̃ 6=t, µ̃
∗
0,T , µ̃

∗
1,T , ψ̃)

∑1
j=0 p(St = j|ỸT , S̃ 6=t, µ̃

∗
0,T , µ̃

∗
1,T , ψ̃)

. (A.9)

Note that, in Albert and Chib’s (1993) procedure for the Hamilton model, they have µ∗
St,t

=

µSt
, St = 0, 1.

A.3. Generating θ0, θ1, σ
2
ω,0 and σ2

ω,1, conditional on µ̃∗
0,T , µ̃

∗
1,T , and S̃T

For given S̃T , we first extract µ̃0,N = [µ0,1 . . . µ0,N ]′ and µ̃1,N = [µ1,1 . . . µ1,N ]′,

from µ̃∗
0,T = [µ∗

0,1 . . . µ∗
0,T ]′ and µ̃∗

1,T = [µ∗
1,1 . . . µ∗

1,T ]′, as implied by the equivalence

of equations (4)-(5) and (7)-(8). For example, µ̃0,N and µ̃1,N are the collections of µ∗
0,t’s and

µ∗
1,t’s whenever St 6= St−1.

Then, based on equations (14)-(15), θ0 and θ1 can be generated conditional on σ2
ω,0 and

σ2
ω,1; and then σ2

ω,0 and σ2
ω,1 can be generated conditional on θ0 and θ1. The prior and

posterior distributions for generating these parameters are described below.

Prior

θj ∼ N(θj ,Σθj
), j = 0, 1 (A.10)

σ2
ω,j ∼ IG

(

νω,j

2
,
hω,j

2

)

, j = 0, 1, (A.11)

Posterior

θj | µ̃
∗
0,T , µ̃

∗
1,T , S̃T , σ

2
ω,0, σ

2
ω,1 ∼ N(θ̄j , Σ̄θj ), j = 0, 1, (A.12)
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σ2
ω,j | θj , µ̃

∗
0,T , µ̃

∗
1,T , S̃T ∼ IG

(

νω,j +Nj

2
,
hω,j +

∑

τ∈Γj
ω2
j,τj

2

)

, j = 0, 1, (A.13)

where

θ̄j = Σ̄θj



Σ−1
θj
θj +

1

σ2
ω,j

∑

τ∈Γj

(πiµi,τ−1 + πjµj,τ−1)(µj,τ − µj,τ−1)



 , (A.14)

(j, i) = (0, 1), (1, 0)

Σ̄θj =



Σ−1
θj

+
1

σ2
ω,j

∑

τ∈Γj

(πiµi,τ−1 + πjµj,τ−1)
2





−1

, (A.15)

ωj,τ = µj,τ − µj,τ−1 − θj(πiµi,τ−1 + πjµj,τ−1), (j, i) = (0, 1), (1, 0), (A.16)

and Γj is a collection of the regime episode τ ’s which belong to the regime j where j = 0 for

boom episodes and j = 1 for recession episodes.

A.4. Generating δ and σ2
e , conditional on µ̃∗

0,T , µ̃
∗
1,T , S̃T , and ỸT

This step is based on equation (19). Conditional on S̃T , µ̃
∗
0,T , µ̃

∗
1,T and ỸT , we define

y∗t = yt − (1− St)µ
∗
0,t − Stµ

∗
1,t, t = 1, 2, ..., T . Then, we have y∗t = δ + et. Based on this, the

conditional posterior distributions for the δ and σ2
e parameters can be easily derived. The

prior and posterior distributions are given below:

Prior

δ ∼ N(δ,Σδ), (A.17)

σ2
e ∼ IG

(

νe

2
,
he

2

)

, j = 0, 1, (A.18)

Posterior

δ | µ̃∗
0,T , µ̃

∗
1,T , S̃T , σ

2
e , ỹT ∼ N(δ̄, Σ̄δ), (A.19)
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σ2
e | δ, µ̃∗

0,T , µ̃
∗
1,T , S̃T , ỸT ∼ IG

(

νe + T

2
,
he +

∑T
t=1(y

∗
t − δ)2

2

)

, j = 0, 1, (A.20)

where

Σ̄δ =

(

Σ−1
δ +

T

σ2
e

)−1

(A.21)

and

δ̄ = Σ̄δ

(

Σ−1
δ δ +

1

σ2
e

T∑

t=1

y∗t

)

. (A.22)

A.5. Generating q and p conditional on S̃T

We employ the following Beta priors for q and p:

Prior

q ∼ Beta(u00, u01), (A.23)

p ∼ Beta(u11, u10), (A.24)

where uij , i, j = 0, 1, are the hyper-parameters. Then the posterior distribution can be

derived as:

Posterior

p|S̃T ∼ Beta(u11 + n11, u10 + n10), (A.25)

q|S̃T ∼ Beta(u00 + n00, u01 + n01), (A.26)

where nij refers to the total number of transitions from state i to state j.
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Appendix B. Tables

Table B.1. Episode-Specific Mean Growth Rates of Real GDP During NBER
Booms and Recessions [1947:Q4 - 2011:Q3]

Boom Recession

47:Q4 ∼ 48:Q3 1.37 48:Q4 ∼ 49:Q4 -0.28

50:Q1 ∼ 53:Q2 1.83 53:Q3 ∼ 54:Q2 -0.64

54:Q3 ∼ 57:Q2 0.98 57:Q3 ∼ 58:Q2 -0.55

58:Q3 ∼ 60:Q1 1.67 60:Q2 ∼ 61:Q1 -0.25

61:Q2 ∼ 69:Q3 1.24 69:Q4 ∼ 70:Q4 -0.12

71:Q1 ∼ 73:Q3 1.30 73:Q4 ∼ 75:Q1 -0.38

75:Q2 ∼ 79:Q4 1.09 80:Q1 ∼ 80:Q3 -0.64

80:Q4 ∼ 81:Q2 1.04 81:Q3 ∼ 82:Q4 -0.24

83:Q1 ∼ 90:Q2 1.06 90:Q3 ∼ 91:Q1 -0.45

91:Q2 ∼ 00:Q4 0.91 01:Q1 ∼ 01:Q4 0.02

02:Q1 ∼ 07:Q3 0.66 07:Q4 ∼ 09:Q2 -0.69

09:Q3 ∼ 11:Q3 0.59

Mean 1.15 -0.38
Maximum 1.83 0.02
Minimum 0.59 -0.69
Standard Deviation 0.37 0.23

7



Table B.2. Model IV: Hamilton Model with a Structural Break in δ

yt = δDt
+ (1− St)µ0 + Stµ1 + et, et ∼ N(0, σ2

e,t)

ln(σ2
e,t) = ln(σ2

e,t−1) + ηt, ηt ∼ i.i.d.N(0, σ2
η),

P r[St = 0|St−1 = 0] = q, P r[St = 1|St−1 = 1] = p

Pr[Dt = 0|Dt−1 = 0] = qD, P r[Dt = 1|Dt−1 = 1] = 1

π0µ0 + π1µ1 = 0

where π0 and π1 are the unconditional probabilities.

Prior Posterior

Mean SD Mean SD 90% Bands

µ0 0.3000 0.5000 0.2326 0.0953 [0.0907, 0.4018]
σ2
η 0.3333 0.2352 0.0143 0.0070 [0.0066, 0.0274]
q 0.9000 0.0900 0.9520 0.0217 [0.9122, 0.9822]
p 0.8000 0.1212 0.7436 0.0840 [0.5920, 0.8644]
δ0 0.8000 0.5000 0.9145 0.1515 [0.6956, 1.1852]
δ1 0.8000 0.5000 0.4400 0.1377 [0.2113, 0.6651]
qD 0.9859 0.0139 0.9913 0.0065 [0.9788, 0.9985]

DIC 453.59
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Table B.3. Model V: Proposed Model with a Structural Break in δ

yt = δDt
+ (1− St)µ0,τ + Stµ1,τ + et, et ∼ N(0, σ2

e,t)

µ0,τ = µ0,τ−1 + θ0(π0µ0,τ−1 + π1µ1,τ−1) + ω0,τ , ω0,τ ∼ i.i.d.N(0, σ2
0,τ )

µ1,τ = µ1,τ−1 + θ1(π0µ0,τ−1 + π1µ1,τ−1) + ω1,τ , ω1,τ ∼ i.i.d.N(0, σ2
1,τ )

ln(σ2
e,t) = ln(σ2

e,t−1) + ηt, ηt ∼ i.i.d.N(0, σ2
η),

P r[St = 0|St−1 = 0] = q, P r[St = 1|St−1 = 1] = p

Pr[Dt = 0|Dt−1 = 0] = qD, P r[Dt = 1|Dt−1 = 1] = 1

µ0,τ > 0, µ1,τ < 0, for all τ,

−1 < 1 + θ0π0 + θ1π1 < 1,

where π0 and π1 are the unconditional probabilities.

Prior Posterior

Mean SD Mean SD 90% Bands

θ0 -0.1000 0.5000 -0.4322 0.3214 [−1.0063, 0.0270]
θ1 -0.1000 0.5000 -0.2533 0.4549 [−1.0069, 0.4901]
σ2
ω0 0.2500 0.1450 0.1259 0.0467 [0.0700, 0.2119]
σ2
ω1 0.2500 0.1450 0.1786 0.0749 [0.0923, 0.3189]
σ2
η 0.3333 0.2352 0.0142 0.0069 [0.0073, 0.0264]
q 0.9000 0.0900 0.9382 0.0253 [0.8946, 0.9731]
p 0.8000 0.1212 0.7605 0.0753 [0.6235, 0.8676]
δ0 0.8000 0.5000 1.0031 0.1594 [0.7243, 1.2485]
δ1 0.8000 0.5000 0.3542 0.1384 [0.1243, 0.5880]
qD 0.9859 0.0139 0.9910 0.0075 [0.9772, 0.9982]

DIC 441.99
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Table B.4. Model VI: Hamilton Model with a Bounce-back Effect and a Struc-

tural Break in δ

yt = δDt
+ (1− St)µ0 + Stµ1 + λ

6∑

j=1

St−j(yt−j − δt−j) + et, et ∼ N(0, σ2
e,t)

ln(σ2
e,t) = ln(σ2

e,t−1) + ηt, ηt ∼ i.i.d.N(0, σ2
η),

P r[St = 0|St−1 = 0] = q, P r[St = 1|St−1 = 1] = p

Pr[Dt = 0|Dt−1 = 0] = qD, P r[Dt = 1|Dt−1 = 1] = 1

π0µ0 + π1µ1 = 0

where π0 and π1 are the unconditional probabilities.

Prior Posterior

Mean SD Mean SD 90% Bands

µ0 0.3000 0.5000 0.2697 0.0891 [0.1269, 0.4194]
σ2
η 0.3333 0.2352 0.0135 0.0067 [0.0062, 0.0269]
q 0.9000 0.0900 0.9492 0.0195 [0.9143, 0.9767]
p 0.8000 0.1212 0.7703 0.0718 [0.6423, 0.8755]
λ 0.3000 0.5000 0.0951 0.0523 [0.0123, 0.1843]
δ0 0.8000 0.5000 0.7761 0.1403 [0.5670, 1.0329]
δ1 0.8000 0.5000 0.3023 0.1672 [0.0551, 0.6069]
qD 0.9859 0.0139 0.9919 0.0060 [0.9805, 0.9986]

DIC 452.79
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Appendix C. Figures

Figure C.1. Model III: Hamilton Model with a Bounce-Back Effect
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