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Abstract

We propose the use of likelihood-ratio-based confidence sets for the timing of struc-
tural breaks in parameters from time series regression models. The confidence sets are
valid for the broad setting of a system of multivariate linear regression equations under
fairly general assumptions about the error and regressors and allowing for multiple
breaks in mean and variance parameters. In our asymptotic analysis, we determine
the critical values for a likelihood ratio test of a break date and the expected length
of a confidence set constructed by inverting the likelihood ratio test. Notably, the
likelihood-ratio-based confidence sets are more precise than other confidence sets con-
sidered in the literature. Monte Carlo analysis confirms their greater precision in finite
samples, including in terms of maintaining accurate coverage even when the sample
size or magnitude of a break is small. An application to postwar U.S. real GDP and
consumption leads to a shorter 95% confidence set for the timing of the “Great Mod-
eration” in the mid-1980s than previously found in the literature. Furthermore, when
taking cointegration between output and consumption into account, confidence sets for
structural break dates become even shorter and suggest a “productivity growth slow-
down” in the early 1970s and an additional large, abrupt decline in long-run growth in
the mid-1990s.
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1 Introduction

The exact timing of structural breaks in parameters from time series models is generally

unknown a priori. Much of the literature on structural breaks has focused on accounting for

uncertainty about this timing when testing for the existence of structural breaks (e.g., An-

drews (1993)). However, there has also been considerable interest in how to make inference

about the timing itself, with an important contribution made by Bai (1997). Employing

asymptotic analysis for a slowly-shrinking magnitude of a break, Bai derives the distribu-

tion of a break date estimator in a linear time series regression model and uses a related

statistic to construct a confidence interval for the timing of a break. One problem with

Bai’s approach highlighted in a number of studies (e.g., Bai and Perron (2006) and Elliott

and Müller (2007)) is that the confidence interval tends to undercover in finite samples, even

given a moderately-sized break. Elliott and Müller (2007) propose a different approach based

on the inversion of a test for an additional break under the null hypothesis of a given break

date and employing asymptotic analysis for a quickly-shrinking magnitude of break. Their

approach produces a confidence set (not necessarily an interval) for the timing of a break

that has very accurate coverage rates in finite samples, even given small breaks. However, it

is only applicable for a single break and the confidence set tends to be quite wide, including

when breaks are large.

In this paper, we propose the use of likelihood-ratio-based confidence sets for the timing

of structural breaks in parameters from time series regression models. Employing asymptotic

analysis for a slowly-shrinking magnitude of break, as in Bai (1997) and originally proposed

by Picard (1985), we show that likelihood-ratio-based confidence sets are valid in Qu and

Perron’s (2007a) broad setting of quasi maximum likelihood estimation for a system of mul-

tivariate linear regression equations under fairly general assumptions about regressors and

errors. Building on the literature on structural breaks, this setting allows for heteroskedastic-

ity and autocorrelation in the errors, multiple breaks (e.g., Bai and Perron (1998)) in mean

and variance parameters (e.g., Bai (2000)), and potentially produces more precise inferences

as additional equations are added to the system (e.g., Bai, Lumsdaine, and Stock (1998)).

Our asymptotic analysis provides critical values for a likelihood ratio test of a break date
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and an analytical expression for the expected length of a confidence set based on inverting

the likelihood ratio test. Notably, the asymptotic expected length of a likelihood-ratio-based

confidence set is generally much shorter than for the corresponding confidence intervals based

on the break date estimator, such as Bai’s for one break in mean and Qu and Perron’s for

their broader setting.1

Our proposed approach is motivated by Siegmund (1988), who considers confidence sets

in the simpler context of a changepoint model of independent Normal observations with

a one-time break in mean and assuming known parameters (other than the break date).

In particular, we follow Siegmund’s suggestion of constructing an inverted likelihood ratio

(ILR) confidence set for the break date.2 Also, our calculation of the asymptotic expected

length of an ILR confidence set builds on his analysis in the simpler setting for which he

also finds that the ILR confidence set is more precise than for a Wald-type approach along

the lines of Bai (1997). Another related study is by Dümbgen (1991), who derives the

asymptotic distribution of a break date estimator given independent, but not necessarily

Normal observations and proposes inverting a bootstrap version of a likelihood ratio test to

construct a confidence set for the break date. More recently, Hansen (2000) proposes the

use of ILR confidence sets in the related context of a threshold regression model. However,

he maintains the assumption of a stationary threshold variable, thus precluding the use of

a deterministic time trend as a threshold variable in order to capture a structural break.

Despite a somewhat different setup, our asymptotic analysis builds on Hansen’s, in addition

to the literature on structural breaks discussed above.

1Expected length is more difficult to determine for the confidence set proposed by Elliott and Müller
(2007). However, if the asymptotic power for the test of an additional break is strictly less than one when
the true break date is within some fixed fraction of the sample period away from the hypothesized break,
the expected length of their confidence set will increase with the sample size. This pattern is confirmed in
our Monte Carlo analysis, even for a large magnitude of break for which the power of a test for the existence
of a break will be high regardless of its timing.

2Siegmund (1988) also suggests constructing a confidence set using what can be thought of as the marginal
“fiducial distribution” of a break date. In particular, a marginal fiducial distribution of a break date is
equivalent to a Bayesian marginal posterior distribution for the break date given a flat prior and integrating
out other parameters over the likelihood. The motivation for using a fiducial distribution to construct a
frequentist confidence set for a break date, which Siegmund (1988) attributes to Cobb (1978), ultimately
comes from Fisher’s (1930) idea of using fiducial inference to construct a confidence set for a location
parameter. In practice, we find that both methods of constructing sets perform very similarly, but inverting
a likelihood ratio test is far more computationally efficient. Thus, we focus on ILR confidence sets in this
paper.
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We consider a range of Monte Carlo experiments in order to evaluate the finite-sample

performance of the competing methods for constructing confidence sets of structural break

dates. We allow for both large and small breaks in mean and/or variance, including in the

presence of serial correlation, multiple breaks, and a system of equations.3 The Monte Carlo

analysis supports the asymptotic results in the sense that the ILR confidence sets have the

shortest average length even in large samples, while at the same time demonstrating accurate,

if somewhat conservative, coverage in small samples. Bai’s approach and the extension of it

to a broader setting by Qu and Perron (2007a) produce confidence intervals that are longer

on average, consistent with the asymptotic results, and they tend to undercover in small

samples, even for moderately-sized breaks. Meanwhile, as emphasized by Elliott and Müller

(2007), their approach always has very accurate coverage in finite samples. However, their

confidence sets are much longer on average than for the ILR approach, including for small

breaks and especially for larger sample sizes.

To demonstrate the empirical relevance of the shorter expected length of the ILR confi-

dence sets, we apply the various methods to make inference about the timing of structural

breaks in postwar U.S. real GDP and consumption. Consistent with the asymptotic and

Monte Carlo results, we find the ILR confidence set for the timing of the so-called “Great

Moderation” in quarterly output growth is about half the length as for Qu and Perron’s

approach. Indeed, the 95% ILR confidence set is similar to the 67% confidence interval re-

ported in Stock and Watson (2002) based on Bai’s approach.4 The short length of the ILR

confidence set supports the idea that the Great Moderation was an abrupt change in the

mid-1980s rather than a gradual reduction in volatility, potentially providing insight into its

possible sources (see, Morley (2009)). Meanwhile, when taking cointegration between out-

3Following Elliott and Müller (2007), we refer to ‘large’ breaks as those that can be detected with near
certainty using a test for structural instability and ‘small’ breaks as those that cannot.

4Stock and Watson (2002) consider the four-quarter growth rate for U.S. real GDP, rather than the
annualized quarterly growth rate, as considered here. They discuss that because they use Bai’s approach
by regressing the absolute value of residuals from an autoregression of real GDP growth on a constant and
allowing a break in the constant from the auxiliary regression, the break estimator has a non-Normal and
heavy-tailed distribution, and the 95% confidence interval would be very wide, hence their reporting of the
67% interval. Meanwhile, our ILR confidence sets are much more similar to the 95% credibility set for the
timing of the Great Moderation found in Kim, Morley, and Piger (2008) based on the marginal posterior
distribution of the break date given a flat/improper prior for the parameters of a linear time series regression
model, which is computationally (but not conceptually) equivalent to the approach based on a marginal
fiducial distribution suggested by Siegmund (1988).
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put and consumption into account, confidence sets for structural break dates are even more

precise, consistent with the findings in Bai, Lumsdaine, and Stock (1998). In addition to

the Great Moderation, we find evidence of a large decline in the long-run growth rate of the

U.S. economy in the early 1970s, corresponding to the “productivity growth slowdown”, and

another abrupt decline in long-run growth in the mid-1990s that has not, to our knowledge,

been documented in the literature before.

The rest of this paper is organized as follows. Section 2 establishes the asymptotic

properties of the likelihood-ratio-based confidence sets for the timing of structural breaks

in parameters from time series regression models. Section 3 presents Monte Carlo anal-

ysis comparing the finite-sample performance of the likelihood-ratio-based approach to the

widely-used methods developed by Bai (1997), Qu and Perron (2007a), and Elliott and Müller

(2007). Section 4 provides an application to the timing of structural breaks in postwar U.S.

real GDP and consumption. Section 5 concludes.

2 Asymptotics

In this section, we make explicit some assumptions for which a likelihood-ratio-based confi-

dence set of a structural break date is asymptotically valid. In particular, we consider Qu

and Perron’s (2007a) broad setting of a system of multivariate linear regression equations

with possible multiple breaks in mean and variance parameters. However, it should be em-

phasized that this setting encompasses the simpler univariate and single-equation models

that are often considered in structural break analysis (see, for example, Bai (1997) and Bai

and Perron (1998, 2003)).

Our asymptotic analysis proceeds as follows: First, we present the general model and

assumptions. Second, we discuss quasi maximum likelihood estimation of the model and

establish results for the asymptotic distribution of the likelihood ratio test of a break date

and a confidence set for the break date based on inverting the likelihood ratio test.
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2.1 Model and Assumptions

We consider a multivariate regression model with multiple structural changes in the regres-

sion coefficients and/or the covariance matrix of the errors. The model is assumed to have n

equations with t = 1, ..., T observations for which there are m structural breaks (i.e. m + 1

regimes) at break dates τ = (τ1, . . . , τm).

Following the notation of Qu and Perron (2007a), the model in the jth regime for j =

1, ...,m+ 1 is given by

yt = (In ⊗ z′t)Sβj + ut, for τj−1 < t ≤ τj, (1)

where yt is a n × 1 vector, zt = (z1t, . . . , zqt)
′ is a q × 1 vector of regressors, βj is a p × 1

vector of regression coefficients, and ut is a n×1 vector of errors with mean 0 and covariance

matrix Σj. The matrix S is a selection matrix for regressors zt. It consists of 0 or 1 elements

and has the dimension nq × p with full column rank.5 Also, it is possible to impose a set of

h cross- and within-equation restrictions across or within structural regimes in the general

form of

g(β, vec(Σ)) = 0,

where β = (β1, . . . , βm+1), Σ = (Σ1, . . . ,Σm+1), and g(·) is an h-dimensional vector. For

notational simplicity, we can rewrite (1) as

yt = x′
tβj + ut, (2)

where the p× n matrix xt is defined by x′
t = (In ⊗ z′t)S.

In developing our asymptotic results, we closely follow the assumptions in Bai (1997,

5For example, suppose there are two equations (n = 2) and three regressors (q = 3). If the first and
second regressors are used in the first equation and the first and third regressors are used in the second
equation, the selection matrix S would be specified as follows:

S =

⎡
⎢⎣

1 0
0 1
0 0

0 0
0 0
0 0

0 0
0 0
0 0

1 0
0 0
0 1

⎤
⎥⎦ .

Note that, if all the regressors are included in each equation, nq = p and S = Ip.
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2000) and Qu and Perron (2007a). Let ||X||r =
(∑

i

∑
j E|Xij|r

)1/r

for r ≥ 1 denote the Lr

norm of a random matrix X, < · > denote the usual inner product, λmin(Σ) and λmax(Σ)

denote the smallest and largest eigenvalues of Σ respectively, and [·] denote the greatest

integer function. Also, let the true values of the parameters be denoted with a superscript

0. Then, the assumptions are given as follows:

Assumption 1 τ 0j = [Tλ0
j ] for j = 1, . . . ,m+ 1 with 0 < λ0

1 < · · · < λ0
m < 1.

Assumption 2 For each j = 1, . . . ,m+1 and lj ≤ τ 0j −τ 0j−1, (1/lj)×
∑τ0j−1+lj

t=τ0j−1+1
xtx

′
t

a.s.−→ H0
j

as lj → ∞ with H0
j a nonrandom positive definite matrix not necessarily the same for all

j. In addition, for Δτ 0j = τ 0j − τ 0j−1, as Δτ 0j → ∞, uniformly in s ∈ [0, 1], (1/Δτ 0j ) ×∑τ0j−1+[sΔτ0j ]

t=τ0j−1+1
xtx

′
t −→

p
sH0

j .

Assumption 3 There exists l0 > 0 such that for all l > l0, the matrices (1/l)×∑τ0j +l

t=τ0j +1
xtx

′
t

and (1/l) × ∑τ0j
t=τ0j −l

xtx
′
t have the minimum eigenvalues bounded away from zero for all

j = 1, . . . , j.

Assumption 4 The matrix
∑l

t=k xtx
′
t is invertible for l − k ≥ k0 for some 0 < k0 < ∞.

Assumption 5 If xtut is weakly stationary within each segment, then

(a) {xtut,Ft} form a strongly mixing (α−mixing) sequence with size −4r/(r−2) for some

r > 2 for Ft = σ − fields {. . . , xt−1, xt, . . . , ut−2, ut−1},

(b) E(xtut) = 0 and ||xtut||2r+δ < M < ∞ for some δ > 0 and,

(c) letting Sk,j(l) =
∑τ0j−1+l+k

t=τ0j−1+l+1
xtut, j = 1, . . . ,m + 1, for each e ∈ Rn of length 1, var(<

e, Sk,l(0) >) ≥ v(k) for some function v(k) → ∞ as k → ∞.

Or, if xtut is not weakly stationary within each segment, assume (a)-(c) holds and, in addi-

tion, there exists a positive definite matrix Ω = [wi,s] such that, for any i, s = 1, . . . , p, we

have, uniformly in l, that |k−1E((Sk,j(l)iSk,j(l)s)− wi,s| ≤ C2k
−ψ for some C2 and ψ > 0.

Assumption 6 Assumption 5 holds with xtut replaced by ut or utu
′
t − Σ0

j for τj−1 < t ≤
τj (j = 1, . . . ,m+ 1).
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Assumption 7 The magnitudes of the shifts satisfy ΔβT,j = β0
T,j+1 − β0

T,j = vT δj, and

ΔΣT,j = Σ0
T,j+1 − Σ0

T,j = vTΦj where (δj,Φj) 	= 0 and they are independent of T. Moreover,

vT is a sequence of positive numbers that satisfy vT → 0 and T 1/2vT/(logT )
2 → ∞. (Note

that, for simplicity, we use β0
j and Σ0

j from now on, suppressing the subscript T .)

Assumption 8 (β0,Σ0) ∈ Θ with Θ = {(β,Σ) : ||β|| ≤ c1, λmin(Σ) ≥ c2, λmax(Σ) ≤ c3} for

some c1 ≤ ∞, 0 < c2 ≤ c3 < ∞.

While building off of earlier work by Bai (1997, 2000), this particular formulation of as-

sumptions is drawn directly from Qu and Perron (2007a) and is discussed in detail in their

paper. However, we provide a brief explanation here. Assumption 1 restricts the break dates

to be asymptotically distinct. Assumption 2 is used for the central limit theorem and allows

the regressors to have different distributions across regimes, although it excludes unit root

regressors and trending regressors. Assumption 3 requires that there is no local collinearity

in the regressors near the break dates. Assumption 4 is a standard invertibility condition

to ensure well-defined estimates. Assumptions 5 and 6 determine the structure of the xtut

and ut processes and imply short memory for xtut and utu
′
t with bounded fourth moments.

These assumptions guarantee strongly consistent estimates and a well-behaved likelihood

function while, at the same time, they are mild in the sense of allowing for substantial het-

eroskedasticity and autocorrelation and encompassing a wide range of econometric models.

Assumption 7 implies that, although the magnitude of structural change shrinks as the sam-

ple size increases, it is large enough that we can derive limiting distributions for estimators

of break dates that are independent of the exact distributions of regressors and errors. This

assumption follows from Picard (1985) and Bai (1997), among many others, although Elliott

and Müller (2007) make the assumption that vT shrinks at a faster rate in their analysis in

order to consider a smaller magnitude of break. Finally, Assumption 8 implies that the data

are generated by innovations with a nondegenerate covariance matrix and a finite conditional

mean.

7



2.2 Estimation, Likelihood Ratio, and Likelihood-Ratio-Based Con-

fidence Set

As discussed in Qu and Perron (2007a) and building on the results in Bai, Lumsdaine, and

Stock (1998) and Bai (2000), the parameters for the model in (2) can be consistently esti-

mated by restricted quasi maximum likelihood estimation with the likelihood constructed

based on the (potentially false) assumption of serially-uncorrelated Normal errors. Specifi-

cally, the quasi-likelihood function is

LT (τ, β,Σ) =
m+1∏
j=1

τj∏
t=τj−1+1

f (yt|xt; βj,Σj) ,

where

f (yt|xt; βj,Σj) =
1

(2π)n/2|Σj|1/2 exp
{
−1

2
(yt − x′

tβj)Σ
−1
j (yt − x′

tβj)

}
.

Let lT (τ, β,Σ) be the natural logarithm of the quasi-likelihood function LT (τ, β,Σ):

lT (τ, β,Σ) = logLT (τ, β,Σ) =
m+1∑
j=1

τj∑
t=τj−1+1

{
−n

2
log(2π)− 1

2
log |Σj| − 1

2
(yt − x′

tβj)Σ
−1
j (yt − x′

tβj)

}
.

The estimates for (τ, β,Σ) are found by maximizing the quasi-log-likelihood function subject

to the restrictions g(β, vec(Σ)) = 0:

(τ̂ , β̂, Σ̂) = arg max
(τ,β,Σ)

lrT (τ, β,Σ), (3)

where lrT (τ, β,Σ) = lT (τ, β,Σ) + λ′g(β, vec(Σ)). We also assume that this maximization is

taken over all partitions from a set of break dates τ = (τ1, . . . , τm) = (Tλ1, . . . , Tλm), where

(λ1, . . . , λm) ∈ Λε = {(λ1, . . . , λm); |λj+1 − λj| ≥ ε, λ1 ≥ ε, λm ≤ 1 − ε} and ε is a trimming

fraction that imposes a minimal length for each regime.

Qu and Perron (2007a) establish the same rate of convergence for parameter estimates

in this setting as is found in much of the previous literature on structural breaks (e.g.,

Bai (1997, 2000), Bai and Perron (1998), Bai, Lumsdaine, and Stock (1998)). Specifically,

for j = 1, . . . ,m, v2T (τ̂j − τ 0j ) = Op(1) and, for j = 1, . . . ,m + 1,
√
T (β̂j − β0

j ) = Op(1) and
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√
T (Σ̂j−Σ0

j) = Op(1) (see the proof of Lemma 1 in Qu and Perron (2007b) for more details).

Based on this result, we study the limiting distributions by using the restricted log-likelihood

function in a compact set of the parameter space in the neighborhood of the true parameter

values. In particular, we take the arg max of lrT (τ, β,Σ) over the compact set CM , where

CM = {(τ, β,Σ) : v2T |τj − τ 0j | ≤ M for j = 1, . . . ,m,

|
√
T (βj − β0

j )| ≤ M, |
√
T (Σj − Σ0

j)| ≤ M for j = 1, . . . ,m+ 1}

and M is a fixed positive number that is large enough to be equivalent to taking the arg max

in an unrestricted set because the estimates will fall in CM with probability arbitrarily close

to 1 (see also Lemma 1 in Qu and Perron (2007b)).

Motivated by Siegmund (1988), we propose confidence sets for the break dates (τ1, . . . , τm)

based on inverting likelihood ratio tests. Let lrj (τj) denote the natural logarithm of the profile

likelihood function for the jth break date subject to the restrictions g(β, vec(Σ)) = 0:

lrj (τj) = lrj (τj, β̂j(τj), Σ̂j(τj), β̂j+1(τj), Σ̂j+1(τj))

= max
(βj ,Σj ,βj+1,Σj+1)

τj∑
t=τ̂j−1+1

{
−n

2
log(2π)− 1

2
log |Σj| − 1

2
(yt − x′

tβj)Σ
−1
j (yt − x′

tβj)

}

+

τ̂j+1∑
t=τj+1

{
−n

2
log(2π)− 1

2
log |Σj+1| − 1

2
(yt − x′

tβj+1)Σ
−1
j+1(yt − x′

tβj+1)

}
+ λ′g(β, vec(Σ)),

Given this profile likelihood, we construct a 1 − α confidence set for the jth break date by

inverting the following α-level likelihood ratio test of H0 : τj = τ 0j sequentially for different

values of τj:

LRj(τj) = −2
[
lrj (τj)− lrj (τ̂j)

]
, (4)

where lrj (τ̂j) = max
τj

lrj (τj) and τ̂j = argmax
τj

lrj (τj).

In practice, in order to construct confidence sets for break dates by inverting likelihood

ratio tests, we first need consistent estimates of the number of breaks, m̂, the break dates

(τ̂1, ..., τ̂j, ..., τ̂m), and the regression parameters under the alternative. We obtain these based

on the procedures in Qu and Perron (2007a). Given these estimates, we then proceed as
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follows for each break j = 1, ..., m̂:

Step 1: Calculate the critical value, κα,j, for an α-level likelihood ratio test of a break date

(see Proposition 1 below).

Step 2: Invert a sequence of tests for all hypothesized dates τhj within the trimmed sub-

sample (τ̂j−1 + εT, τ̂j+1 − εT ) by computing the likelihood ratio value LRj(τ
h
j ) in (4)

where ε is the same trimming fraction used in estimation and the relevant regression

parameters are re-estimated for each hypothesized date.6

Step 3: Include the hypothesized date τhj in the level 1−α confidence set for the jth break

date if LRj(τ
h
j ) ≤ κα,j and exclude it otherwise.

For this procedure, we establish some asymptotic results relating to the distribution of

the likelihood ratio statistic and the expected length of the likelihood-ratio-based confidence

set. Letting ηt = (η1,t, . . . , ηn,t) = (Σ0
j)

−1/2ut for t ∈ [τ 0j−1 + 1, τ 0j ] and j = 1, . . . ,m and

assuming that E[ηk,tηl,tηh,t] = 0 for all k, l, h and for every t, we define the following terms

and then present two propositions:

6When computing the likelihood ratio for the jth break date, the estimates of the regression parameters
and the break dates for the breaks i 	= j are fixed.
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B1,j = (Σ0
j)

1/2(Σ0
j+1)

−1ΔΣj(Σ
0
j)

−1/2,

B2,j = (Σ0
j+1)

1/2(Σ0
j)

−1ΔΣj(Σ
0
j+1)

−1/2,

Q1,j = plim
T→∞

(τ 0j − τ 0j−1)
−1

τ0j∑
t=τ0j−1+1

xt(Σ
0
j+1)

−1x′
t,

Q2,j = plim
T→∞

(τ 0j+1 − τ 0j )
−1

τ0j+1∑
t=τ0j +1

xt(Σ
0
j)

−1x′
t,

Π1,j = lim
T→∞

var

⎧⎨
⎩(τ 0j − τ 0j−1)

−1/2

⎡
⎣ τ0j∑

t=τ0j−1+1

xt(Σ
0
j+1)

−1(Σ0
j)

1/2ηt

⎤
⎦
⎫⎬
⎭ ,

Π2,j = lim
T→∞

var

⎧⎨
⎩(τ 0j+1 − τ 0j )

−1/2

⎡
⎣ τ0j+1∑

t=τ0j +1

xt(Σ
0
j)

−1(Σ0
j+1)

1/2ηt

⎤
⎦
⎫⎬
⎭ ,

Ω1,j = lim
T→∞

var

⎧⎨
⎩vec

⎡
⎣(τ 0j − τ 0j−1)

−1/2

τ0j∑
t=τ0j−1+1

(ηtη
′
t − I)

⎤
⎦
⎫⎬
⎭ ,

Ω2,j = lim
T→∞

var

⎧⎨
⎩vec

⎡
⎣(τ 0j+1 − τ 0j )

−1/2

τ0j+1∑
t=τ0j +1

(ηtη
′
t − I)

⎤
⎦
⎫⎬
⎭ ,

Γ1,j =

(
1

4
vec(B1,j)

′Ω0
1,jvec(B1,j) + Δβ′

jΠ1,jΔβj

)1/2

,

Γ2,j =

(
1

4
vec(B2,j)

′Ω0
2,jvec(B2,j) + Δβ′

jΠ2,jΔβj

)1/2

,

Ψ1,j =

(
1

2
tr(B2

1,j) + Δβ′
jQ1,jΔβj

)
,

Ψ2,j =

(
1

2
tr(B2

2,j) + Δβ′
jQ2,jΔβj

)
.

Proposition 1 Under Assumptions 1-8 with ⇒ denoting weak convergence under the Sko-

rohod topology, the likelihood ratio statistic for the jth break date

LRj(τ
0
j ) ⇒ ξ = max

v

⎧⎨
⎩

ω1,j (−|v|+ 2Wj(v)) for v ∈ (−∞, 0]

ω2,j (−|v|+ 2Wj(v)) for v ∈ (0,∞)
, (5)

11



where Wj(v) is a standard Wiener processes defined on the real line,

ω1,j =
Γ2
1,j

Ψ1,j

, and ω2,j =
Γ2
2,j

Ψ2,j

.

The distribution function of ξ is

P (ξ ≤ x) =

(
1− exp(− x

2ω1,j

)

)(
1− exp(− x

2ω2,j

)

)
. (6)

Then, using (6) to solve for the critical value κα,j of a α-level likelihood ratio test of a break

date, a 1− α likelihood-ratio-based confidence set for τj is given by

Cj,1−α = {τj : LRj(τj) ≤ κα,j}.

Proposition 1 establishes the asymptotic distribution of the likelihood ratio test for a

break date and shows how to calculate a confidence set based on inverting the likelihood ratio

test. Note that the simpler distribution maxv −1
2
|v|+W (v) was studied in Bhattacharya and

Brockwell (1976), but the scaling factors ω1,j and ω2,j generally make the distribution of the

likelihood ratio statistic asymmetric when allowing for different distributions of regressors

and/or errors before and after the structural break. Note that ω1,j and ω2,j are replaced by

consistent estimates from (3) in practice and the calculation of a critical value using (6) is

straightforward (see proof for more details). Also, it should be noted that the likelihood-

ratio-based confidence set in Proposition 1 is constructed under the assumption that the

magnitude of the break ΔβT,j → 0 and ΔΣT,j → 0 as T → ∞, so the actual coverage should

exceed the desired level 1−α for a given fixed magnitude of break, at least for Normal errors

(see Hansen (2000)).

Proposition 2 Under Assumptions 1-8, the expected length of a 1−α likelihood-ratio-based

confidence set is

2
(
Γ2
1,j/Ψ

2
1,j

)(
1− exp(− κα,j

2ω1,j

)

){
κα,j

2ω1,j

− 1

2

(
1− exp(− κα,j

2ω1,j

)

)}

+ 2
(
Γ2
2,j/Ψ

2
2,j

)(
1− exp(− κα,j

2ω2,j

)

){
κα,j

2ω2,j

− 1

2

(
1− exp(− κα,j

2ω2,j

)

)}
.
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Proposition 2 establishes the expected length of a 1−α likelihood-ratio-based confidence

set. The length is calculated by measuring the expected size of the set of τj’s such that

LRj(τj) ≤ κα,j. Note that Siegmund (1986, 1988) considers a related calculation using

Brownian motion with a break in drift as follows:

dX(t) = μ1dt+ dW (t), if t ≤ τ 0,

dX(t) = μ2dt+ dW (t), if t > τ 0,

where μ1 	= μ2 and the Brownian motion is assumed to approximate the simple changepoint

model of independent Normal observations with a one-time break in mean. For his analysis,

the magnitude of the break is assumed to be fixed and known, while a variance of unity is

also assumed to be known. In this case, Siegmund shows that the likelihood ratio statistic

LRj(τ
0) can be approximated by the distribution of maxr 2

(−1
2
|r|+W (r)

)
. In our case,

by contrast, we derive the asymptotic distribution of the likelihood ratio statistic for a

more general setting with parameter and break date estimates that do not depend on the

exact distributions of the regressors and the errors. Thus, a shrinking magnitude of break,

as in Bai (1997), is required for the development of the limiting theory. Importantly, the

distance between the break dates under the null and alternative hypotheses is scaled using

a change in variables to obtain the distribution in (6). As a result, v in maxv −|v|+ 2W (v)

is not the distance between two break dates. Instead, we calculate expected length based

on the distribution of maxv −|v| + 2W (v) for v ≥ 0 and v < 0, respectively, and rescaled

by
(
Γ2
1,j/Ψ

2
1,j

)
for τj ≤ τ 0j and

(
Γ2
2,j/Ψ

2
2,j

)
for τj > τ 0j . Thus, the likelihood ratio statistic

is invariant to the scales for the break dates,
(
Γ2
1,j/Ψ

2
1,j

)
and

(
Γ2
2,j/Ψ

2
2,j

)
, but the distance

between break dates is not invariant to the transformations and should be taken into account

for the calculation of length (see proof for more details).

In the following two corollaries, we consider simplified cases for either breaks in condi-

tional mean or breaks in variance and solve for the simplified asymptotic distribution of the

likelihood ratio statistic for a break date, critical values, and expressions for expected length:

Corollary 1 Under Assumptions 1-8 and additionally if (i) there are only changes in condi-

tional mean and (ii) the errors form a martingale difference sequence, then for the jth break

13



date ω1,j = ω2,j = 1 and

LRj(τ
0
j ) ⇒ max

v
−|v|+ 2Wj(v) for v ∈ (−∞,∞).

Also, the asymptotic critical value of a 1− α likelihood-ratio-based confidence set is

κα,j = −2 log
(
1− (1− α)1/2

)

and the expected length of the confidence set is

(
1

Δβ′
jQ1Δβj

+
1

Δβ′
jQ2Δβj

)
2(1− exp(−κα,j

2
))

{
κα,j

2
− 1

2
(1− exp(−κα,j

2
))

}

or, equivalently,

(
1

Δβ′
jQ1Δβj

+
1

Δβ′
jQ2Δβj

)
2(1− α)1/2{− log[1− (1− α)1/2]− 1

2
(1− α)1/2}.

Remark 1 If, in addition to Assumptions in Corollary 1, the distribution of the regressors

is stable, Q = Π1,j = Q1,j = Π2,j = Q2,j and ω1,j = ω2,j = 1. Thus, the expected length of

the confidence set would further simplify to

(
1

Δβ′
jQΔβj

)
4
(
1− exp(−κα,j

2
)
){κα,j

2
− 1

2

(
1− exp(−κα,j

2
)
)}

or, equivalently,

(
1

Δβ′
jQΔβj

)
4(1− α)1/2{− log[1− (1− α)1/2]− 1

2
(1− α)1/2}.

The asymptotic critical value is the same as in Corollary 1.

Remark 2 If we replace the assumption of martingale difference errors in Remark 1 with the

assumption that the errors are identically distributed, Π = limT→∞ var
{
T−1/2

[∑T
t=1 xt(Σ

0)−1/2ηt

]}
,

Q = plimT→∞ T−1
∑T

t=1 xt(Σ
0)−1x′

t, and ω1,j = ω2,j = ωj =
Δβ′

jΠΔβj

Δβ′
jQΔβj

. Thus, the asymptotic

14



critical value of a 1− α likelihood-ratio-based confidence set is

κα,j = −2ωj log
(
1− (1− α)1/2

)

and the expected length of the confidence set is

Δβ′
jΠΔβj

(Δβ′
jQΔβj)2

4

(
1− exp(−κα,j

2ωj

)

){
κα,j

2ωj

− 1

2

(
1− exp(−κα,j

2ωj

)

)}

or, equivalently,

Δβ′
jΠΔβj

(Δβ′
jQΔβj)2

4(1− α)1/2{− log[1− (1− α)1/2]− 1

2
(1− α)1/2}.

Corollary 2 Under Assumptions 1-8 and additionally if (i) there are only changes in vari-

ance and (ii) the errors are Normally distributed, then for the jth break date ω1,j = ω2,j = 1

and

LRj(τ
0
j ) ⇒ max

v
−|v|+ 2Wj(v) for v ∈ (−∞,∞).

Also, the asymptotic critical value of a 1− α likelihood-ratio-based confidence set is

κα,j = −2 log
(
1− (1− α)1/2

)

and the expected length of the confidence set is

(
2

tr(B2
1)

+
2

tr(B2
2)

)
2(1− exp(−κα,j

2
))

{
κα,j

2
− 1

2
(1− exp(−κα,j

2
))

}

or, equivalently,

(
2

tr(B2
1)

+
2

tr(B2
2)

)
2(1− α)1/2{− log[1− (1− α)1/2]− 1

2
(1− α)1/2}.

In the simplified cases of Corollaries 1 and 2, the critical values for the likelihood ratio

test of a break date are the same as reported in Table 1 of Hansen (2000) for a likelihood ratio

test of a threshold parameter. These values are 5.94, 7.35 and 10.59 at the 10%, 5%, and 1%
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levels, respectively. Meanwhile, the simplified expected length expressions again make use of

results in Siegmund (1986, 1988) and allow for easy comparison with the expected lengths

of the confidence intervals in Bai (1997) and Qu and Perron (2007a), as is done throughout

the next section.

3 Monte Carlo Analysis

In this section, we present extensive Monte Carlo analysis of the finite-sample performance

of competing methods for constructing confidence sets of structural break dates. In addition

to the likelihood-ratio-based approach proposed in the previous section, we also consider the

methods developed by Bai (1997), Qu and Perron (2007a), and Elliott and Müller (2007). For

brevity, we omit many of the details of these widely-used methods and encourage interested

readers to consult the original papers. However, we provide some background for these other

approaches in the following subsection to help motivate our Monte Carlo experiments and

facilitate interpretation of our results.

3.1 Widely-Used Methods for Constructing Confidence Sets of

Structural Break Dates

Bai (1997) solves for the distribution of the least squares break date estimator using asymp-

totic analysis for a slowly-shrinking magnitude of break. In terms of the notation in the

previous section, he assumes that vT → 0 and vTT
ε → ∞ for some ε ∈ (0, 1/2) when

Δβ = vT δ, where the break subscript is dropped from Δβj and δj for convenience given

the assumption of only one break. His confidence intervals are constructed based on the

asymptotic distribution of this break date estimator. Bai’s approach is designed for univari-

ate analysis under fairly general assumptions about the error term and even allowing for

the possibility of a deterministic time trend regressor. His approach has been generalized to

more complicated settings of multiple breaks and multivariate models (see Bai, Lumsdaine,

and Stock (1998), Bai and Perron (1998, 2003), Bai (2000), and Qu and Perron (2007a)).
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Qu and Perron (2007a) consider a system of multivariate linear regression equations with

potentially serially correlated errors and allow for multiple breaks in mean and variance

parameters. In order to calculate a confidence interval for jth break date, they construct a

Bai-type confidence interval based on the following statistic with a non-standard distribution:

Ψ2
1,j

Γ2
1,j

(τ̂ − τ0) ⇒ argmax
s

Z(s), (7)

where

Z(s) =

⎧⎨
⎩

−1
2
|s|+W1(−s) if s ≤ 0

− ς
2
|s|+√

ϕW2(s) if s > 0,
(8)

with Wi(s), i = 1, 2 denoting two independent standard Wiener processes defined on [0,∞],

ς =
Ψ2

2,j

Ψ2
1,j
, ϕ =

Γ2
2,j

Γ2
1,j
, and Ψi,j and Γi,j, i = 1, 2 are as defined in the previous section. The con-

fidence intervals are then constructed using least squares estimates and equal-tailed quantile

values: [
τ̂ − Γ2

1,j

Ψ2
1,j

× q(1− α/2), τ̂ − Γ2
1,j

Ψ2
1,j

× q(α/2)

]
,

where q(·) is the quantile function for the non-standard distribution in (7).7

Bai’s confidence interval is a special case of Qu and Perron’s confidence interval under

the following assumptions: (i) no break in variance, (ii) a single break (m = 1), and (iii)

single equation (n = 1) in (1). In this simplified case,
Ψ2

1,j

Γ2
1,j

= (Δβ′Q1Δβ)2

Δβ′Π1Δβ
, ϕ = Δβ′Π2Δβ

Δβ′Π1Δβ
, and

ς = Δβ′Q2Δβ
Δβ′Q1Δβ

.8 Furthermore, when regressors and errors are stationary across regimes (i.e.

Q = Q1 = Q2 and Π = Q), the asymptotic expected length of Bai’s confidence interval is

given by

2
1

(Δβ′QΔβ)
× q(1− α/2),

where the quantile function q(·) is determined by (8) under more simplifying conditions that

ϕ = 1 and ς = 1. For example, the asymptotic expected length of the confidence interval

at 95% confidence level is approximately 22 × 1
(Δβ′QΔβ)

. Notably, this is almost twice the

7The quantile function q(·) can obtained from the CDF G(x) for argmax
s

Z(s) shown in Bai (1997). Note

that this is different from the CDF for max
s

Z(s) that we use to construct the likelihood-ratio-based confidence

set.
8Note that Qi and Πi are normalized by the conditional variance, as in Qu and Perron (2007a), but

different to Bai (1997).
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asymptotic expected length of approximately 12× 1
(Δβ′QΔβ)

for the equivalent 95% likelihood-

ratio-based confidence set implied by Corollary 1 in the previous section. It is also worth

noting from these expressions that the asymptotic expected length depends on the squared

magnitude of the break relative to the variance of the errors, which implies that the expected

length will increase in proportion to the sampling frequency (i.e., it will be three times the

length in terms of monthly observations as for quarterly observations, corresponding to the

same length of calendar time).

Elliott and Müller (2007) take a different approach than Bai (1997) and propose con-

structing a confidence set (not interval) for a break date based on the inversion of a sequence

of tests for an additional break given a maintained break date. The validity of their ap-

proach is established using asymptotic analysis for a quickly-shrinking magnitude of break

(i.e. Δβ = δT−1/2). They argue that Bai’s approach has poor finite-sample performance

due his asymptotic analysis based on a slowly-shrinking break being innappropriate for the

moderately-sized breaks that appear to occur in practice. It should be noted, however, that

the use of a slowly-shrinking break, originally proposed by Picard (1985), is common in the

literature on structural breaks, including in Qu and Perron (2007a) and in our asymptotic

analysis in the previous section as well. Meanwhile, it should also be noted that, because

Elliott and Müller’s approach is based on tests for an additional break, it is only suitable for

a one-time break and cannot be generalized to multiple breaks unlike Bai and Perron (1998)

for Bai’s approach or the likelihood-ratio-based approach proposed in this paper.

3.2 Experiments

For our Monte Carlo experiments, we calculate the effective coverage rates and average

lengths of confidence sets (or intervals) for break dates based on 1,000 replications given

data generating processes involving structural breaks. We first consider a simple univariate

model with one break in mean and/or variance. Then, we consider extended models with

multiple breaks or a system of equations.
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3.2.1 A simple univariate model with one break in mean and/or variance

For the experiments assuming one break in mean and/or variance, the general univariate

model for our data generating process is given by

yt = z′tβ1 + z′tΔβ1[t > τ ] + ut, (9)

where ut =
(√

Σ1 + (Σ2 − Σ1)1[t > τ ]
)
et, et ∼ i.i.d.N (0, 1), 1[·] is an indicator function,

and τ = [rT ] with r denoting the true break point fraction. Unless otherwise specified, we

set zt = 1, β1 = 0, and r = 0.5.

Our first experiment considers large-sample coverage rates and lengths of confidence sets

for a large slowly-shrinking break in mean. Given the large samples, this experiment is

designed to verify our asymptotic analysis. Meanwhile, the break is “large” in Elliott and

Müller’s (2007) sense that its existence would be reliably detected with a test for the presence

of a structural break. We parameterize a slowly-shrinking break in mean as Δβ = δ/T 1/4,

with δ = 5, which implies Δβ = 1.06 for T = 500 and Δβ = 0.89 for T = 1, 000. Given fixed

variance Σ1 = Σ2 = 1, a break magnitude of close to 1 is roughly calibrated to the estimated

reduction in the long-run growth rate of the U.S. economy in the early 1970s when measured

relative to the volatility of consumption growth in our application in the next section.9 For

each simulated sample, we estimate the parameters of a restricted version of the model in (9)

with a fixed variance. Estimation is via maximum likelihood assuming one break with 15%

trimming at the beginning and end of the sample period (i.e., the inner 70% of sample

period provides the admissible set of break dates for estimation and calculation of the ILR

confidence sets). In this experiment, Bai’s approach and Qu and Perron’s approach are

equivalent and referred to by the label “Bai/QP” hereafter. For convenience, we also refer

to Elliott and Müller’s approach by the label “EM” hereafter.

Table 1 reports the results for the first experiment. Even with such large sample sizes,

9From Table 9, the implied reduction in 1972Q4 is 0.89 based on the estimated reduction in long-run
growth and the conditional standard deviation of consumption growth. Ideally, we should standardize the
magnitude of a break by the “long-run standard deviation” based on the spectral density at frequency zero.
However, assuming consumption growth has little or no persistence, the conditional standard deviation
provides a reasonable approximation.
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the ILR confidence sets overcover at the 90% and 95% levels.10 Bai/QP confidence intervals

are also somewhat conservative, while the EM confidence sets have very accurate coverage.

All three approaches have accurate coverage at the 99% level. Unlike with undercoverage,

conservative confidence sets are not, in themselves, a problem as long as they are informative.

So the key result in Table 1 is that, even though the ILR confidence sets overcover somewhat

in large samples, they always have shortest average length and are, therefore, the most

informative.

The average lengths in Table 1 correspond closely to the asymptotic expected lengths

for both of the ILR and Bai/QP approaches.11 In practice, the average lengths are slightly

longer than the asymptotic lengths, which could be due in part to the overcoverage discussed

above. But it is also related to the fact that the analytical expressions for the asymptotic

expected length are for a continuous measure, while the average length captures the number

of discrete periods in finite samples. By including an entire discrete time period instead of

fractions of periods in a set, there is a natural rounding up in the average length relative

to the asymptotic length. This rounding up will be more severe given disjointed sets, which

occur for the ILR approach, but not for the Bai/QP approach. The main point, however,

is that the ratio of average lengths for the competing methods converges to the ratio of

asymptotic expected lengths as the sample size gets larger. The average lengths for the

Bai/QP approach are much longer and sometimes twice as long as for the ILR approach.

Meanwhile, even though we cannot calculate the asymptotic expected length for the EM

approach, the average lengths for it are generally at least three times as long as for the ILR

approach. Thus, the ILR confidence sets perform best and it is not just a small-sample issue.

A natural question is why the ILR approach is so much better than the Bai/QP ap-

proach asymptotically. Both methods are based on inverting a test of a hypothesized break

10Although we are considering a slowly-shrinking magnitude of break across the different sample sizes in
this Monte Carlo experiment, the break for any given sample size is, of course, of fixed magnitude. Thus, if
the asymptotic distribution of the likelihood ratio statistic for a slowly-shrinking magnitude of break provides
an upper bound on the distribution of a fixed magnitude of break, as it should according to Hansen (2000)
under Normal errors, we would expect the coverage to be conservative for any given experiment.

11It should be noted that the asymptotic expected length calculations depend on the fixed magnitude of
the change in mean for the ILR and Bai/QP approaches. Therefore, under a shrinking break, the asymptotic
lengths get longer with the sample size. For the EM approach, expected length always increases with sample
size, including given a fixed magnitude of the change in mean. So we cannot calculate an asymptotic expected
length for the EM confidence sets.
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Table 1: Large-Sample Coverage Rates and Lengths of Confidence Sets for a Large Slowly-
Shrinking Break in Mean

(a) 90% Confidence Level

T=500 T=1,000
Coverage Average Asymptotic Coverage Average Asymptotic
Rate Length Length Rate Length Length

ILR 0.95 11.09 8.47 0.94 14.36 11.98
Bai/QP 0.93 16.68 14.00 0.91 22.33 20.00
EM 0.90 34.83 - 0.90 56.50 -

(b) 95% Confidence Level

T=500 T=1,000
Coverage Average Asymptotic Coverage Average Asymptotic
Rate Length Length Rate Length Length

ILR 0.97 13.89 11.12 0.97 18.20 15.73
Bai/QP 0.97 22.69 20.00 0.95 30.77 28.00
EM 0.95 43.06 - 0.95 69.34 -

(c) 99% Confidence Level

T=500 T=1,000
Coverage Average Asymptotic Coverage Average Asymptotic
Rate Length Length Rate Length Length

ILR 0.99 20.28 17.08 0.99 27.04 24.16
Bai/QP 0.99 38.25 36.00 0.99 52.71 51.00
EM 0.99 58.79 - 0.99 93.59 -

Notes: Coverage rate and average length based on 1,000 Monte Carlo replications assuming one
break, where coverage refers to the inclusion of the true break date in a confidence set. Asymptotic
length is based on analytical results for expected length discussed in Sections 2.2 and 3.1. ILR
refers to inverted likelihood ratio, Bai refers to Bai (1997), QP refers to Qu and Perron (2007a),
and EM refers to Elliott and Müller (2007). In terms of the model in (9), the break in mean is set
at Δβ = δ/T 1/4 with δ = 5, which implies Δβ = 1.06 for T = 500 and Δβ = 0.89 for T = 1, 000
and the variance fixed at Σ1 = Σ2 = 1.
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Figure 1: Empirical Power Functions for 5% Tests of a Break Date Given a Large Slowly-
Shrinking Break in Mean
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(b) T = 1, 000

Notes: Empirical rejection rates for tests of a hypothesized break date up to 50 periods away from
the true break date based on 1,000 Monte Carlo replications. LR refers to likelihood ratio, Bai
refers to Bai (1997), and QP refers to Qu and Perron (2007a). In terms of the model in (9), the
break in mean is set at Δβ = δ/T 1/4 with δ = 5, which implies Δβ = 1.06 for T = 500 and
Δβ = 0.89 for T = 1, 000 and the variance fixed at Σ1 = Σ2 = 1.

date. However, in the nonstandard environment of a test for a break date, the likelihood

ratio (LR) test turns out to be more powerful than the Wald-type test used to construct

the Bai/QP confidence intervals. Figure 1 displays empirical power functions for 5% tests

of a hypothesized break date given the same data generating process and sample sizes con-

sidered in Table 1. The LR test clearly has a lot more power than the Bai/QP test against

hypothesized break dates that are close to the true break date.12 Thus, the ILR confidence

sets can exclude a lot more break dates than the Bai/QP confidence intervals. Hence, their

shorter average lengths.

Next, we consider small-sample coverage rates and lengths of 95% confidence sets for large

fixed-magnitude breaks in mean and/or variance. This experiment is designed to capture how

different methods would perform given empirically-relevant sample sizes of T = 100, 200, 300

and when the magnitude of break is a fixed quantity, as it would be in reality. In terms of the

model in (9), the break in mean only is set at Δβ = 1, with the variance fixed at Σ1 = Σ2 = 1.

Again, this is roughly calibrated to the estimated productivity growth slowdown in the U.S.

12The LR test is also slightly undersized at the true break date, corresponding to the overcoverage of the
ILR confidence sets reported in Table 1.
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economy relative to the volatility of consumption growth. The break in variance only is set

at Σ1 = 1.5,Σ2 = 0.5 with Δβ = 0. This corresponds to a 40% reduction in the standard

deviation, which is roughly calibrated to (albeit a bit smaller than) the estimated reduction

of 50% or more in output growth volatility in the mid-1980s reported in many studies and

also found in our application in the next section. The break in both mean and variance is

set at Δβ = 0.5 and Σ1 = 1,Σ2 = 0.5, which corresponds to somewhat smaller individual

breaks, but their combined effect is such that the asymptotic expected lengths are similar

to the other two cases. For each simulated sample, we again estimate the parameters of the

model in (9) imposing a fixed variance in the case of a break in mean only and a fixed mean

in the case of a break in variance only. As before, estimation is via maximum likelihood

assuming one break with 15% trimming.

Table 2 reports the small-sample results for the breaks in mean and/or variance. As in

the large-sample experiment, the 95% ILR confidence sets for a break in mean overcover and

have the shortest expected length for all three sample sizes T = 100, 200, 300. Despite having

a longer average length than the ILR approach, the Bai/QP confidence intervals undercover

for a break in mean, especially for the smaller sample sizes, while the EM confidence sets have

accurate coverage, but much longer average lengths. Bai’s approach and the EM approach

were both designed for a break in mean only. So for a break in variance and break in mean and

variance, we compare the ILR approach to the QP approach only. Again, the QP confidence

intervals undercover the true break date, especially for the break in variance. Even given

the small sample sizes, the average lengths for the ILR and QP methods are generally in

line with their corresponding asymptotic expected lengths, with a slight upward bias for the

rounding reason discussed above, especially for the ILR confidence sets in the case of a break

in mean and variance. Indeed, the QP confidence intervals have slightly shorter average

lengths for the smaller sample sizes in this case, although their undercoverage raises serious

concerns about their usefulness in practice given small samples.

Our third experiment considers small-sample coverage rates and lengths of 95% confidence

sets for a small quickly-shrinking break in mean or no break. This experiment is designed

to determine how well the ILR approach performs in the setting that the EM approach

was designed for and for which Elliott and Müller (2007) show Bai’s approach performs
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Table 2: Small-Sample Coverage Rates and Lengths of 95% Confidence Sets for Large Fixed-
Magnitude Breaks in Mean and/or Variance

(a) Break in Mean

T=100 T=200 T=300
Coverage Average Coverage Average Coverage Average Asymptotic
Rate Length Rate Length Rate Length Length

ILR 0.96 18.35 0.96 16.53 0.98 15.74 12.43
Bai/QP 0.90 22.66 0.92 22.92 0.94 22.90 24.00
EM 0.94 30.05 0.94 33.80 0.95 38.75 -

(b) Break in Variance

T=100 T=200 T=300
Coverage Average Coverage Average Coverage Average Asymptotic
Rate Length Rate Length Rate Length Length

ILR 0.96 34.29 0.97 30.69 0.96 29.23 31.08
QP/Bai 0.73 58.45 0.74 56.68 0.75 57.23 56.00

(c) Break in Mean and Variance

T=100 T=200 T=300
Coverage Average Coverage Average Coverage Average Asymptotic
Rate Length Rate Length Rate Length Length

ILR 0.97 35.99 0.98 37.38 0.98 35.48 29.59
QP/Bai 0.84 32.22 0.89 35.41 0.91 36.00 35.00

Notes: Coverage rate and average length based on 1,000 Monte Carlo replications assuming one
break, where coverage refers to the inclusion of the true break date in a confidence set. ILR refers
to inverted likelihood ratio, Bai refers to Bai (1997), QP refers to Qu and Perron (2007a), and
EM refers to Elliott and Müller (2007). In terms of the model in (9), the break in mean only
is set at Δβ = 1 with the variance fixed at Σ1 = Σ2 = 1, the break in variance only is set at
Σ1 = 1.5,Σ2 = 0.5 with Δβ = 0, and the break in mean and variance is set at Δβ = 0.5 and
Σ1 = 1,Σ2 = 0.5.
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particularly poorly. Given that the asymptotic validity of our approach is based on the same

assumption as Bai’s approach of a slowly-shrinking break, it is a reasonable concern that

our approach might also perform poorly in the presence of a small break. Meanwhile, an

extremely small break is essentially the same as no break at all, so it is an interesting question

as to how different methods perform when there is actually no break (i.e., the true number of

breaks is misspecified in the estimated model). We parameterize a quickly-shrinking break

in mean as Δβ = δ/T 1/2, with δ = 4. This corresponds to the smallest magnitude of break

considered in Elliott and Müller’s (2007) Monte Carlo analysis and implies Δβ = 0.40 for

T = 100, Δβ = 0.28 for T = 200, and Δβ = 0.23 for T = 300. Given fixed variance

Σ1 = Σ2 = 1, the magnitude of the break is similar to the size of the estimated reduction

in the long-run growth rate of the U.S. economy in the early 1970s when measured relative

to the volatility of real GDP growth in our application in the next section.13 As in the first

experiment, we estimate the parameters of a restricted version of the model in (9) with a

fixed variance. Again, estimation is via maximum likelihood assuming one break with 15%

trimming.

Table 3 reports the results for a small break in mean or no break. In the case of a

small break, the undercoverage of the Bai/QP confidence intervals highlighted in Elliott and

Müller (2007) is confirmed, while the EM confidence sets again have very accurate coverage.14

However, despite our asymptotic analysis being based on the same assumption as Bai’s

approach of a slowly-shrinking break, the ILR confidence sets retain their relatively accurate

small-sample coverage properties, with some remaining overcoverage. Again, conservative

confidence sets are not a problem in this case because the average length is lowest for the ILR

approach. Meanwhile, the fact that the average lengths for the ILR and Bai/QP approaches

are less than the respective asymptotic expected lengths is likely due to trimming for the ILR

13Again from Table 9, the implied reduction in 1972Q4 is 0.46 based on the estimated reduction in long-
run growth and the conditional standard deviation of output growth. Furthermore, because output growth
appears to be somewhat persistent even when accounting for structural breaks in mean, using the conditional
standard deviation clearly overstates what the reduction would be relative to the long-run standard deviation.

14The experiment for T = 100 is essentially the same as the first experiment reported in Table 3 of Elliott
and Müller (2007). However, Bai’s approach does not perform quite as poorly here. One possible reason is
that we trim the possible break dates to exclude the first and last 15% of the sample period, as is standard
in the structural break literature, while Elliott and Müller only trim the first and last few observations when
applying Bai’s approach.
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confidence sets and the small-sample undercoverage for the Bai/QP confidence intervals. In

the case of no break, we report the coverage rate in terms of how often the entire admissible

set of break dates based on 15% trimming is included in a confidence set. The idea is that,

as the magnitude of a break gets smaller and smaller, a confidence set should get wider

and wider until it almost always includes the entire admissible set. The results in the table

confirm that confidence sets do, indeed, get wider, with the average length for the ILR

approach close to the length of the entire admissible set, while the average lengths for the

Bai/QP and EM approaches are even longer. Notably, the ILR confidence sets include the

entire admissible over 90% of the time. By comparison, despite their longer average lengths,

the Bai/QP and EM confidence sets include the entire admissible set only about 60% of the

time.

The last experiment that we consider for the simple univariate model allows for serial

correlation. For simplicity, we only consider a break in mean and the sample size of T =

300, which is roughly similar to the number of postwar quarterly observations for the U.S.

macroeconomic time series considered in the application in the next section. In the first

case, we modify the error process to have first-order serial correlation as follows:

ut = ρut−1 + (1− ρ)et, et ∼ i.i.d.N (0, 1).

The break in mean is set at Δβ = 1, which corresponds to a magnitude of 1 relative to

the long-run standard deviation. This is the same as for the break in mean only in Table

2, which is why we have the same asymptotic lengths as before. We consider low or high

persistence by setting ρ = 0.3 (as in Table 5 of Elliott and Müller (2007)) or ρ = 0.6. In

this case, estimation of the parameters of the model in (9) is via quasi maximum likelihood

assuming one break in mean with 15% trimming and we employ a HAC estimator of the

long-run variance of ut in order to calculate scaled test statistics with asymptotically pivotal

distributions for the purposes of constructing confidence sets. Following Elliott and Müller

(2007) and Qu and Perron (2007a), we consider the HAC estimator due to Andrews and

Monahan (1992), which would also address heteroskedasticity if it were present, although

we focus on the problem of serially-correlated errors in this Monte Carlo experiment. In the
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second case, we capture serial correlation as a time-varying conditional mean for the model

in (9) by considering an AR(1) process with a break in mean set at Δβ = ((1− ρ) 0)′ given

zt = (1 yt−1), β1 = (0 ρ)′, and the variance fixed at Σ1 = Σ2 = (1 − ρ)2. In terms of the

unconditional mean, this break corresponds to a magnitude of 1 relative to the long-run

standard deviation, again implying the same asymptotic lengths as for the break in mean in

Table 2, and we consider low or high persistence by setting ρ = 0.3 or ρ = 0.6. In this case,

estimation of parameters in (9) is via conditional maximum likelihood assuming one break

in mean with 15% trimming.

Table 4 reports the results for a break in mean in the presence of serial correlation. Again,

the ILR approach performs best with the shortest average lengths despite conservative cover-

age. Serial correlation generally increases the average lengths compared to the corresponding

results in Table 2, with higher serially correlation generally having a larger effect. For the

ILR approach, the average lengths are shorter when the serial correlation is captured in the

AR(1) model rather than allowed for in the errors, likely reflecting more efficient estimation

and less overcoverage. For the Bai/QP approach, there appears to be slight undercoverage

for the AR(1) model that worsens given higher persistence, although the coverage is more

accurate when serial correlation is allowed for in the errors. As always, the EM approach has

accurate coverage, although its average lengths increase a lot when there is high persistence.

To summarize the results from the first four experiments, the ILR approach always pro-

vides the most precise inferences about the timing of structural breaks. It tends to have

conservative coverage, consistent with the analysis in Hansen (2000) for ILR confidence sets

of threshold parameters under Normal errors, as are assumed in our Monte Carlo experi-

ments. The EM approach does remarkably well in terms of coverage rates in finite samples,

but it produces much less precise confidence sets than the ILR approach. The Bai/QP

approach undercovers in smaller samples and typically has wide confidence intervals. In gen-

eral, confidence sets become wider as the magnitude of the break gets smaller. However, in

the case of misspecification of the number of breaks, the ILR confidence sets tend to include

the entire admissible set while other methods often produce misleadingly narrow confidence

sets in particular samples even though their average lengths are larger than for the ILR

approach.
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Table 4: Coverage Rates and Lengths of 95% Confidence Sets for T = 300 and a Large Break
in Mean in the Presence of Serial Correlation

(a) Serially-Correlated Errors

ρ=0.3 ρ=0.6
Coverage Average Coverage Average Asymptotic
Rate Length Rate Length Length

ILR 0.98 17.07 0.99 18.16 12.43
Bai / QP 0.95 23.28 0.96 23.00 24.00
EM 0.95 28.20 0.97 69.06 -

(b) AR(1) Model

ρ=0.3 ρ=0.6
Coverage Average Coverage Average Asymptotic
Rate Length Rate Length Length

ILR 0.96 16.18 0.97 15.85 12.43
Bai / QP 0.94 23.49 0.93 22.71 24.00
EM 0.95 45.56 0.95 57.11 -

Notes: Coverage rate and average length based on 1,000 Monte Carlo replications assuming one
break, where coverage refers to the inclusion of the true break date in a confidence set. ILR refers
to inverted likelihood ratio, Bai refers to Bai (1997), QP refers to Qu and Perron (2007a), and
EM refers to Elliott and Müller (2007). In terms of the model in (9), the break in mean is set at
Δβ = 1 and the error process modified to ut = ρut−1 + (1− ρ)et, et ∼ i.i.d.N (0, 1), in the case of
serially-correlated errors and the break in mean is set at Δβ = ((1 − ρ) 0)′ for zt = (1 yt−1) and
β1 = (0 ρ)′ with the variance fixed at Σ1 = Σ2 = (1− ρ)2 in the case of the AR(1) model.
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3.2.2 Extended models with multiple breaks or a system of equations

In this subsection, we consider extended models that allow for multiple breaks or a system

of equations. For the experiment that allows for multiple breaks in mean and/or variance,

the univariate model for our data generating process is now given by

yt = β1 +Δβ11[t > τ1] + Δβ21[t > τ2] + ut, (10)

where ut =
(√

Σ1 + (Σ2 − Σ1)1[t > τ1] + (Σ3 − Σ2)1[t > τ2]
)
et, et ∼ i.i.d.N (0, 1), and τj =

[rjT ] with rj, j = 1, 2, denoting the true break point fractions. As in most of the previous

subsection, we set zt = 1 and β1 = 0. For the timing of the two breaks, we set r1 = 0.3

and r2 = 0.7. Again, for simplicity, we only consider the sample size of T = 300. In one

case, we consider two breaks in mean only by setting Δβ1 = 1,Δβ2 = −1 with the variance

fixed at Σ1 = Σ2 = Σ3 = 1. Thus, these breaks are the same magnitude as the break in

mean in Tables 2 and 4. In a second case, we consider two breaks in variance only by setting

Σ1 = 1.5,Σ2 = 0.5,Σ3 = 1.5 with Δβ1 = 0,Δβ2 = 0. Thus, these breaks are the same

magnitude as the breaks in variance in Table 2. In a third case, we consider different breaks

in mean and variance by setting Δβ1 = 1,Δβ2 = 0 and Σ1 = Σ2 = 1.5,Σ3 = 0.5. The

first break in mean is smaller than in Table 2 because of the higher variance in the first two

regimes, while the break in variance is the same magnitude as is Table 2. Estimation of the

parameters in (10) is via maximum likelihood assuming two breaks with 15% trimming at

the beginning and end of the sample period and between break dates. For simplicity, the

true structure of the breaks in terms of whether they are in mean or variance is assumed to

be known and imposed in estimation.

Table 5 reports the results for multiple breaks in mean and/or variance. The ILR ap-

proach continues to perform better than the QP approach. For the case of two breaks in

mean, the 95% ILR confidence sets are extremely accurate and have slightly shorter average

lengths than in the corresponding case for one break reported in Table 2. This improve-

ment in average length is likely due to more accurate coverage and the trimming given two

breaks reducing the size of the admissible break sets. For the case of two breaks in vari-

ance, the ILR confidence sets are, again, slightly shorter than for the corresponding case in
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Table 2, although they still overcover somewhat. The QP confidence sets again suffer from

undercoverage, while still being almost twice the average length of the corresponding ILR

confidence sets. For the case of different breaks in mean and variance, the ILR confidence

sets overcover for the break in mean and the average length is relatively long compared to

the asymptotic expected length. However, the ILR confidence sets remain more precise than

the QP confidence intervals, which slightly undercover for the break in mean. For the break

in variance, both methods perform similarly to the case of two breaks in variance, with a

slight increase in the average lengths. The general point of this experiment is that the ILR

confidence remain precise and better than the QP confidence sets when there are multiple

breaks that occur closer to the beginning or end of the sample.

For the experiment that allows for a system of equations, the bivariate model for our

data generating process is given by

⎡
⎣y1t
y2t

⎤
⎦ =

⎡
⎣β1,1 +Δβ1,11[t > τ0]

β2,1 +Δβ2,11[t > τ0]

⎤
⎦+

⎡
⎣e1t
e2t

⎤
⎦ ,

⎡
⎣e1t
e2t

⎤
⎦ ∼ N

⎛
⎝0,

⎡
⎣1 ρ

ρ 1

⎤
⎦
⎞
⎠ , (11)

where Δβi,1 = βi,2 − βi,1, i = 1, 2. In our simulations, we set βi,1 = 0, i = 1, 2, and consider

three different values for correlation between errors across equations of ρ = −0.3, 0, 0.3.

Again, for simplicity, we only consider the sample size of T = 300. In one case, we consider

a break in the mean for the first equation only by setting Δβ1,1 = 1,Δβ2,1 = 0. In a second

case, we consider a break in the mean for both equations by setting Δβ1,1 = Δβ2,1 = 1.

Estimation of the parameters in (11) is via maximum likelihood assuming one break with

15% trimming. Again, the true structure of the breaks in terms of which equations they

occur in is assumed to be known and imposed in estimation.

Table 6 reports the results for a break in mean in a system of equations. Once again, the

ILR confidence sets perform better than the QP approach, with shorter average lengths and

correct coverage. Regardless of its sign, correlation in the errors across equations reduces

the asymptotic expected length when there is a break in one equation only. The average

lengths for both methods reflect this, while the average lengths when there is no correlation

are slightly longer than in Table 2, presumably due to finite-sample uncertainty about the

correlation when estimating the system of equations. In the case of a break in both variables,
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Table 5: Coverage Rates and Lengths of 95% Confidence Sets for T = 300 and Multiple
Large Breaks in Mean and/or Variance

(a) Two Breaks in Mean

First Break Second Break
Coverage Average Coverage Average Asymptotic
Rate Length Rate Length Length

ILR 0.95 14.01 0.95 14.46 12.43
QP 0.95 24.32 0.95 25.22 24.00

(b) Two Breaks in Variance

First Break Second Break
Coverage Average Coverage Average Asymptotic
Rate Length Rate Length Length

ILR 0.96 28.89 0.96 28.36 31.08
QP 0.75 53.50 0.76 53.91 56.00

(c) Different Breaks in Mean and Variance

First Break Second Break
Coverage Average Asymptotic Coverage Average Asymptotic
Rate Length Length Rate Length Length

ILR 0.98 25.70 18.65 0.96 29.09 31.08
QP 0.92 33.55 34.00 0.77 55.42 56.00

Notes: Coverage rate and average length based on 1,000 Monte Carlo replications assuming two
breaks, where coverage refers to the inclusion of the corresponding true break date in a confidence
set. ILR refers to inverted likelihood ratio and QP refers to Qu and Perron (2007a). In terms of
the model in (10), the two breaks in mean only are set at Δβ1 = 1,Δβ2 = −1 with the variance
fixed at Σ1 = Σ2 = Σ3 = 1, the two breaks in variance only are set at Σ1 = 1.5,Σ2 = 0.5,Σ3 = 1.5
with Δβ1 = 0,Δβ2 = 0, and the different breaks in mean and variance are set at Δβ1 = 1,Δβ2 = 0
and Σ1 = Σ2 = 1.5,Σ3 = 0.5.

32



the asymptotic expected length is reduced because a break in both variables is effectively a

larger magnitude break. Indeed, when there is no correlation, the asymptotic lengths for both

methods reduce by exactly 50%, as would happen with a doubling of the squared magnitude

of a break in a univariate setting given the scale of the variance. Again, the average lengths

drop roughly in proportion to the reduction in the asymptotic lengths. However, in this

case, the asymptotic lengths depend on the sign of the correlation. A negative correlation

for the errors better identifies the break date and reduces the asymptotic length because

the structural break is assumed to correspond to a common positive movement in the two

variables. A positive correlation increases the asymptotic length because it is harder to

identify the break as distinct from a typical positive co-movement in the two variables due

to the errors. The average lengths again reflect the asymptotic lengths. Overall, then,

these results support the findings in Bai, Lumsdaine, and Stock (1998) and Qu and Perron

(2007a) that adding equations to a multivariate model can produce more precise inferences,

either given correlation in the errors when there is a break in one of the equations or given

common breaks across equations, which can be helped or hindered by correlation in the

errors depending on the common impact of the break.

4 Structural Breaks in Postwar U.S. Real GDP and

Consumption

We apply our proposed likelihood-ratio-based method of constructing confidence sets to

investigate structural breaks in postwar quarterly U.S. real GDP and consumption of non-

durables and services. We first consider univariate models of the growth rates of output

and consumption and then we consider a multivariate model that imposes balanced long-run

growth between output and consumption. The data were obtained from the BEA website for

the sample period of 1947Q1 to 2012Q1.15 Annualized quarterly growth rates are calculated

as 400 times the first differences of the natural logarithms of the levels data.

15The raw data are from the BEA Tables 1.1.5 and 1.1.6 for the vintage of April 27, 2012. We need both
real and nominal measures for total consumption and consumption of durables in order to construct a chain-
weighted measure of real consumption of nondurables and services based on Whelan’s (2000) suggestion of
a Tornqvist approximation to the ideal Fisher index.
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4.1 Univariate Models

The typical approach to investigating structural breaks is to consider a univariate model.

Although this can be less efficient than considering a multivariate model, as we found in our

Monte Carlo analysis, it has the benefit of making the interpretation of estimated breaks

straightforward. Thus, we begin our analysis with univariate models of output growth and

consumption growth, respectively, as the results will help with understanding the results for

the multivariate model presented below.

For the univariate analysis, we assume that log output has a stochastic trend with drift

and a finite-order autoregressive representation. Specifically, our model for quarterly output

growth is an AR(p) process:

Δyt = γy +

p∑
j=1

ζy,jΔyt−j + eyt, eyt ∼ i.i.d.N (0, σ2
y). (12)

Similarly, we assume log consumption has a stochastic trend with drift and a finite-order

autoregressive representation. Thus, our model for quarterly consumption growth is also an

AR(p) process:

Δct = γc +

p∑
j=1

ζc,jΔct−j + ect, ect ∼ i.i.d.N (0, σ2
c ). (13)

For lag selection, we employ Kurozumi and Tuvaandorj’s (2011) modified BIC to account

for the possibility of multiple structural breaks. Given an upper-bound of four lags and four

breaks, with the common adjusted sample of 1948Q2 to 2012Q1, we find that the highest

lag order selected is p = 1 for output growth and p = 2 for consumption growth.

Figure 2 plots the output growth series over the postwar period. Although the series

clearly resembles the realization of a low-order autoregressive process with fairly low per-

sistence, the parameters for this process may have changed over time. Applying Qu and

Perron’s (2007a) testing procedure to an AR(1) model estimated over the longest available

sample period for conditional maximum likelihood of 1947Q3 to 2012Q1 with 15% trimming

at the beginning and end of the sample period and between break dates, we find evidence of

one break (the same as the number of breaks chosen by the modified BIC statistic mentioned

above). The break is estimated to have occurred in 1983Q2, which corresponds closely to
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Figure 2: U.S. Real GDP Growth and Confidence Sets for AR(1) Model

Output Growth

ILR 81:4−86:4| |

QP 69:1−84:1| |

1945 1955 1965 1975 1985 1995 2005 2015

Notes: Sample period is 1947Q3 to 2012Q1. ILR refers to inverted likelihood ratio and QP refers
to Qu and Perron (2007a).

the timing of the so-called “Great Moderation” widely reported in the literature (e.g., Kim

and Nelson (1999) and McConnell and Perez-Quiros (2000)). The break is significant at the

5% level and there is no support for an additional break, even at the 10% level. Estimates

for the long-run growth rate, largest eigenvalue measure of persistence, and the conditional

standard deviation are reported in Table 7.16 Likelihood ratio tests of parameter restrictions

suggest that the break corresponds to a change in the conditional standard deviation only,

which is estimated to have dropped by more than 50%.17

The ILR confidence set is also reported in Figure 2. It covers a reasonably short interval of

1981Q4-1986Q1. Notably, as mentioned in the introduction, this interval is similar in length

to the 67% confidence interval for the Great Moderation reported in Stock and Watson

(2002) based on Bai’s approach. For illustration, we compare our confidence set to the

95% confidence interval calculated by the QP approach using the same model and data. As

discussed in the previous section, the QP confidence interval is based on the distribution

of the break date estimator, as in Bai (1997), but is also applicable in the multivariate

setting that we consider in the second part of our application. Aside from any concerns

16For easy comparison across models, we measure persistence by the (modulus of the) largest eigenvalue
of the companion matrix for the stationary representations of an autoregressive model or a vector error
correction model. For the AR(1) model, this is simply the autoregressive coefficient.

17Note that, for simplicity, we always consider the unrestricted model when constructing confidence sets, as
this allows for a more straightforward comparison of results across models when certain parameter restrictions
are rejected for only one model, but not for another.
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Table 7: Autoregressive Model of U.S. Real GDP Growth: 1947Q3-2012Q1

Regime Break Date LR Growth Rate Largest Eig. Cond. SD
1 3.460 0.330 4.487
2 1983Q2 2.712 0.538 2.195

we might have about its finite-sample coverage properties, the QP confidence interval is

noticibly wider, running from 1969Q1-1984Q1, thus also including the possible “productivity

growth slowdown” in the early 1970s (see, for example, Perron (1989) and Hansen (2001)).

Therefore, the interval is much less informative about when the structural break occurred,

including whether or not it was abrupt.

Figure 3 plots the consumption growth series. Although consumption is by far the largest

expenditure component of U.S. real GDP, it is not as important for quarterly fluctuations

in output given the volatility of other components, especially investment. Thus, it is not

foregone conclusion that consumption growth will exhibit the same volatility reduction as

output in the mid-1980s. Instead, it appears that there are breaks in consumption growth

that do not manifest themselves in the overall behaviour of aggregate output. Indeed, ap-

plying Qu and Perron’s (2007a) testing procedure to an AR(2) model estimated over the

longest available sample period for conditional maximum likelihood of 1947Q4 to 2012Q1

with 15% trimming, we find evidence of two breaks (again the same as the number chosen

by the modified BIC statistic) that are estimated to have occurred in 1958Q3 and 1993Q3,

respectively. The breaks are significant at the 5% level and there is no support for additional

breaks at the 10% level. Estimates for the long-run growth rate, largest eigenvalue measure

of persistence, and the conditional standard deviation are reported in Table 8. Likelihood

ratio tests of parameter restrictions for this model suggest that both of these are breaks

in the conditional standard deviation of consumption growth, with the second break also

corresponding to a decrease in the long-run growth rate and an increase in persistence.

The confidence sets for the two structural breaks in consumption growth are also reported

in Figure 3. As with output growth, the ILR confidence sets are shorter than those based

on the QP approach, although the differences in length are not as big as before. Notably,

despite more similar lengths, the confidence sets still have different implications from each

other about the timing of the breaks, with the ILR confidence sets shifted later in the
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Figure 3: U.S. Consumption Growth and Confidence Sets for AR(2) Model

Consumption Growth

First Break

ILR 57:2−69:2| |

QP 47:3−60:2| |

Second Break

ILR 92:1−96:3
97:3−98:2, 01:1| || | ||

QP 88:2−94:4| |

1945 1955 1965 1975 1985 1995 2005 2015

Notes: Sample period is 1947Q4 to 2012Q1. ILR refers to inverted likelihood ratio and QP refers
to Qu and Perron (2007a).

sample period. However, in both cases, the confidence sets exclude the periods of a possible

productivity growth slowdown in the early 1970s and the Great Moderation in the mid-

1980s that correspond to the most widely-hypothesized breaks in U.S. economic activity.

Given these apparently different breaks from output growth, it is an open question as to

whether a multivariate model of output and consumption would lead to different or more

precise inferences about structural breaks in these two series, as found, for example, by Bai,

Lumsdaine, and Stock (1998). We turn to this question next.

4.2 Multivariate Model

Following Cochrane (1994), we assume that real GDP and consumption of nondurables and

services have balanced long-run growth due to a common stochastic trend, possibly reflect-

ing common shocks to productivity as suggested by a stochastic neoclassical growth model

(see Bai, Lumsdaine, and Stock (1998) for a full theoretical motivation of this assumption).

The empirical justification for the balanced-growth assumption comes from the apparent

cointegrating relationship between these particular measures of consumption and output. If

we impose a balanced long-run relationship corresponding to a cointegrating vector of (1 −1)
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Table 8: Autoregressive Model of U.S. Consumption Growth: 1947Q4-2012Q1

Regime Break Date LR Growth Rate Largest Eig. Cond. SD
1 3.067 -0.044 3.092
2 1958Q3 3.264 0.511 1.841
3 1993Q3 1.976 0.901 0.951

for the natural logarithms of consumption and output from 1947Q1 to 2012Q1, we find that

we can reject a unit root with a p-value of 0.008 for an ADF test for the consumption rate,

ct − yt with a constant in the test regression and BIC for lag selection. Thus, there is em-

pirical support for the idea that output and consumption (appropriately measured) have a

balanced long-run relationship.

Assuming log output and consumption have a finite-order vector autoregressive represen-

tation, cointegration with known cointegrating vector (1 − 1) implies that the growth rates

of output and consumption can be captured by the following VECM(p) model:

Δyt = γy +

p∑
j=1

ζyy,jΔyt−j +

p∑
j=1

ζyc,jΔct−j + πy(ct−1 − yt−1) + eyt, (14)

Δct = γc +

p∑
j=1

ζcy,jΔyt−j +

p∑
j=1

ζcc,jΔct−j + πc(ct−1 − yt−1) + ect, (15)

where et ∼ N (0,Ω). This form of cointegration also directly implies that the long-run

consumption rate is constant and consumption and output share the same long-run growth

rate. We parameterize these two long-run rates as follows:

E[ct − yt] = κ,

E[Δyt] = E[Δct] = μ.

It is possible then to solve for these two long-run parameters given estimates of the VECM

parameters in (14) and (15) as follows:

⎡
⎣ κ

μ

⎤
⎦ =

⎡
⎣−πy 1−∑p

j=1(ζyy,j + ζyc,j)

−πc 1−∑p
j=1(ζcy,j + ζcc,j)

⎤
⎦

−1 ⎡
⎣ γy

γc

⎤
⎦ . (16)
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Using this relationship in (16), we can uncover structural breaks in the long-run consumption

rate and the long-run growth rate by testing for structural breaks in the conditional mean

parameters of the VECM. Bai, Lumsdaine, and Stock (1998) emphasize that this is a test

for break in the long-run growth rate, μ, under the assumption of no break in unconditional

mean of the cointegrating relationship, κ. However, we leave it as an empirical issue whether

a common break in the conditional mean parameters corresponds to a break in the long-run

consumption rate, long-run growth, or both.18

As with the univariate model for output growth, we find that the highest lag order

selected by the modified BIC is p = 1. However, under the assumption of no breaks, the

second lags of the growth rates are jointly significant at 5% level based on a likelihood ratio

test (notably, the second lag of consumption growth in (15) has t-statistic of 2.1). Therefore,

to avoid under-fitting, we consider p = 2.19

Applying Qu and Perron’s (2007a) testing procedure for structural breaks to the VECM(2)

model estimated over the longest available sample period for conditional maximum likeli-

hood of 1947Q4 to 2012Q1 with 15% trimming, we find evidence of three breaks estimated

in 1958Q1, 1982Q4, and 1996Q1 at the 5% level. The estimated timing of these breaks

corresponds closely to the timing for the breaks in the univariate models of output growth

and consumption growth. Thus, the first and third break likely correspond to a change in

the behaviour of consumption, while the second break corresponds to the Great Moderation.

However, in contrast to the univariate results, we now find evidence of four breaks estimated

in 1961Q3, 1972Q4, 1982Q3, and 1996Q1 at the 10% level. The first, third, and fourth breaks

again correspond closely to the breaks found in the univariate models. But the second break

estimated in 1972Q4 appears to conform, at least in its timing, to the widely-hypothesized

productivity growth slowdown that should affect both output and consumption and may be

18In a related empirical study, Cogley (2005) considers a time-varying parameter version of Cochrane’s
(1994) VECM model of output and consumption to investigate changes in the long-run growth rate and
long-run consumption rate for the U.S. economy. He finds a gradual decline in the long-run growth rate
from the mid-1960s to the early 1990s, followed by a gradual increase in long-run growth in the 1990s. He
also finds that the consumption rate is very stable over the postwar period, although it gradually declines
in the 1990s. However, Bayesian estimation of the time-varying parameter model imposes the strong prior
that structural change is gradual, precluding the possibility of large, abrupt changes that are considered and
found in our analysis.

19Because p = 2 was the lag order selected for the univariate model of consumption growth, allowing for
a second lag also has the virtue of nesting the univariate models in our multivariate analysis.
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Figure 4: U.S. Real GDP Growth, Consumption Growth, Log Consumption Rate, and
Confidence Sets for VECM(2) Model

Output Growth

Consumption Growth

Consumption Rate

First Break
ILR 57:2, 57:4−63:1||| |
QP 59:2−62:4| |

Second Break
ILR 71:2−73:1| |
QP 71:2−73:4| |

Third Break
ILR 82:4−84:3| |
QP 81:1−83:1| |

Forth Break
ILR

95:2, 95:4−96:1
96:3−97:1, 97:3−97:4||||||||

QP 95:1−96:2| |

1945 1955 1965 1975 1985 1995 2005 2015

Notes: Sample period is 1947Q4 to 2012Q1. ILR refers to inverted likelihood ratio and QP refers
to Qu and Perron (2007a).

better identified by the consideration of a multivariate model that imposes the same long-run

growth rate for both series.

Figure 4 plots the output growth, consumption growth, and the consumption rate series

over the postwar period. Visually, it is difficult to detect whether the estimated break in

1972Q4 corresponds to a break in the long-run growth rate or the long-run consumption rate.

However, it is easier to see that the estimated break in 1996Q1 corresponds to a reduction

in the long-run consumption rate in addition to a change in the behaviour of consumption

growth detected in the univariate analysis. Indeed, the reasonable clarity of this change

could explain the slight change in timing of the estimated break date from 1993Q3 for a

change in consumption behaviour in the univariate analysis.
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Table 9: Vector Error Correction Model of U.S. Real GDP and Consumption Growth:
1947Q4-2012Q1

Regime Break Date LR Growth Rate LR Con. Rate Largest Eig. Cond. SDs
1 3.188 -181.218 0.776 4.566 2.719
2 1961Q3 4.225 -188.367 0.783 3.068 1.571
3 1972Q4 2.826 -184.370 0.803 3.713 1.666
4 1982Q4 2.875 -188.825 0.807 1.496 1.273
5 1996Q1 1.585 -196.138 0.746 1.842 0.948

Table 9 reports the estimates of the long-run growth rate, long-run consumption rate,

largest eigenvalue measure of persistence, and conditional standard deviations of output

growth and consumption growth for the VECM(2) model with four structural breaks. Con-

sistent with the univariate findings, the first break in the early 1960s clearly corresponds to a

reduction in consumption growth volatility. The second break in the early 1970s corresponds

to a reduction in the long-run growth rate of 1.4 annualized percentage points, in line with

a productivity growth slowdown, more than a change in the long-run consumption rate or a

change in volatility or persistence.20 The third break in the mid-1980s clearly corresponds to

a reduction in output growth volatility, consistent with the Great Moderation. The fourth

break in the mid-1990s corresponds to an additional reduction in the long-run growth rate of

1.3 annualized percentage points, as well as to the reduction in the long-run consumption rate

evident in Figure 4.21 Interestingly, the largest eigenvalue measure of persistence remains

remarkably stable over the full sample period. Likelihood ratio tests of parameter restric-

tions generally support our interpretation of the breaks, although it can be harder to relate

how rejections of restrictions on intercept, slope, and/or the conditional variance/covariance

parameters map into some of the parameters of interest. Thus, we report confidence sets for

the unrestricted model that allows all parameters to change with each break.

The most striking result for the multivariate model is how precise the confidence sets

20It should be noted that our results in terms of the timing of break dates are almost identical if we
consider per capita measures of output and consumption using U.S. civilian population data. Thus, breaks
in long-run growth rates appear to reflect shifts in productivity growth rather than discrete changes in the
population growth rate.

21Given the assumption of balanced growth for output and consumption, the magnitude of the estimated
reduction in the long-run growth rate in Table 9 is influenced by changes in the average growth rates for
both output and consumption. However, it should be noted that, on its own, the average growth rate for
output declined by 1.1 annualized percentage points between regimes 4 and 5, quite consistent with a sizeable
growth slowdown of 1.3 annualized percentage points reported in the table.
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are in Figure 4. This finding is consistent with our Monte Carlo results for the system of

equations and with the analysis in Bai, Lumsdaine, and Stock (1998) and Qu and Perron

(2007a) on the usefulness of multivariate inference about break dates. The ILR confidence

sets are much shorter than in the univariate analysis, although it should be noted that they

cover or nearly cover the entire admissible sets for the first two breaks given estimated break

dates and 15% trimming. Perhaps surprisingly, the QP confidence intervals, which are not

affected by trimming, are even shorter than the ILR confidence sets in three of the four cases.

Of course, again, the Monte Carlo analysis should leave us with serious concerns about the

finite-sample coverage properties of the QP confidence intervals. But the general implication

of the results is that the structural changes were abrupt. Notably, too, the increased precision

in confidence sets is not just for breaks in parameters that are common to both output and

consumption in the VECM model, such as the long-run growth rate. The confidence sets

for the Great Moderation, which appears to be a much more important phenomenon for

output growth than for consumption growth, also become a lot more precise with the length

of the ILR confidence set for this break shrinking from 18 quarters to 8 quarters.22 Thus,

the improvement in inferences arises from both the model structure and from the additional

multivariate information.

5 Conclusion

We have proposed a likelihood-ratio-based approach to constructing confidence sets for the

timing of structural breaks. In particular, the confidence set includes all hypothesized break

dates that cannot be rejected based on a likelihood ratio test. The asymptotic validity for

this approach is established for a broad setting of a system of multivariate linear regression

equations under the assumption of a slowly-shrinking magnitude of a break, with the asymp-

totic expected length of the 95% confidence sets being about half that of standard methods

employed in the literature. Monte Carlo analysis supports the finite-sample performance of

the proposed approach in a number of realistic experiments, including given small breaks.

22This result is not due to trimming reducing the admissible set of break dates given four breaks. In
particular, we re-calculated the ILR confidence sets using 10% trimming instead of 15% trimming and found
that the confidence sets for the third and fourth breaks were unchanged.
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An application to U.S. real GDP and consumption demonstrates the empirical relevance of

the performance gains of the proposed approach. Specifically, the analysis provides much

more precise inferences about the timing of the “productivity growth slowdown” in the early

1970s and the “Great Moderation” in the mid-1980s than previously found in the literature.

It also suggests the presence of an additional large, abrupt decline in the long-run growth rate

of the U.S. economy in the mid-1990s, at least when taking cointegration between output

and consumption into account.
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A Appendix

Proof of Proposition 1. Following Qu and Perron (2007a,b), we consider the jth break

date τj without loss of generality. The log-profile likelihood ratio subject to the restrictions

g(β,Σ) = 0 under the null hypothesisH0 : τj = τ 0j and the alternative hypothesisH1 : τj 	= τ 0j

is given by

LRj(τ
0
j ) = −2

[
lrj

(
τ 0j , β̂(τ

0
j ), Σ̂(τ

0
j )
)
− lrj

(
τ̂j, β̂, Σ̂

)]
= −2

{
lrj

(
τ 0j , β̂(τ

0
j ), Σ̂(τ

0
j )
)
− lj

(
τ 0j , β

0
j ,Σ

0
j

)}
︸ ︷︷ ︸

−max
βj,Σj

lrrj (τ
0
j ,βj ,Σj)

+2
{
lrj

(
τ̂j, β̂, Σ̂

)
− lj

(
τ 0j , β

0
j ,Σ

0
j

)}
︸ ︷︷ ︸

max
τj ,βj ,Σj

lrrj (τj ,βj ,Σj)

= max
τj

lrj(τj, β
0
j ,Σ

0
j) + op(1), (A.1)

where the maximization is taken over CM . The second line in (A.1) results from adding

and subtracting the log-likelihood at the true values lj
(
τ 0j , β

0
j ,Σ

0
j

)
to the first line.23 The

equality of the second and the third lines in (A.1) follows from Theorem 1 in Qu and Perron

(2007a).

We focus on the term lrj(τj, β
0
j ,Σ

0
j) = −2

[
lj
(
τ 0j , β

0
j ,Σ

0
j

)− lj
(
τj, β

0
j ,Σ

0
j

)]
in the third line

of (A.1) in order to find the asymptotic distribution of LRj(τ
0
j ). Letting lrj(τj, β

0
j ,Σ

0
j) =

lrj(τj − τ 0j ) and r = τj − τ 0j ,

lrj(r) = 0 for r = 0

lrj(r) = 2
(
−r

2
(log|Σ0

j | − log|Σ0
j+1|)

−1

2

τ0j∑
t=τ0j +r

(yt − x′
tβ

0
j+1)(Σ

0
j+1)

−1(yt − x′
tβ

0
j+1)− (yt − x′

tβ
0
j )(Σ

0
j)

−1(yt − x′
tβ

0
j )

⎞
⎠ for r < 0,

lrj(r) = 2
(
−r

2
(log|Σ0

j | − log|Σ0
j+1|)

−1

2

τ0j +r∑
t=τ0j +1

(yt − x′
tβ

0
j )(Σ

0
j)

−1(yt − x′
tβ

0
j )− (yt − x′

tβ
0
j+1)(Σ

0
j+1)

−1(yt − x′
tβ

0
j+1)

⎞
⎠ for r > 0.

23Note that lrj (τ̂j , β̂, Σ̂) = lrj (τ̂j) in (4).
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Then, letting s = v2T (τj − τ 0j ), with vT defined in Assumption 7, the proof of Theorem 3 in

Qu and Perron (2007b) shows that, for s ≤ 0,

lrj([
s

v2T
]) ⇒ 2

(
−|s|

2
Ξ1,j + Λ1,jW1,j(s)

)
, (A.2)

and, for s > 0,

lrj([
s

v2T
]) ⇒ 2

(
−|s|

2
Ξ2,j + Λ2,jW2,j(s)

)
, (A.3)

where

Λ1,j =

(
1

4
vec(A1,j)

′Ω0
1,jvec(A1,j) + δ′jΠ1,jδj

)1/2

, (A.4)

Λ2,j =

(
1

4
vec(A2,j)

′Ω0
2,jvec(A2,j) + δ′jΠ2,jδj

)1/2

, (A.5)

Ξ1,j =

(
1

2
tr(A2

1,j) + δ′jQ1,jδj

)
, (A.6)

Ξ2,j =

(
1

2
tr(A2

2,j) + δ′jQ2,jδj

)
. (A.7)

Note that W1,j(0) = W2,j(0) = 0 because W1,j(s) and W2,j(s) are independent and starting

at s = 0.

Qu and Perron (2007a) derive a Bai-type distribution of τ̂ − τ0 by taking the arg max

of (A.2) and (A.3) over CM and using the continuous mapping theorem. Here, instead, we

are deriving the distribution of the likelihood ratio by taking the max of (A.2) and (A.3)

over CM . Thus, under the null hypothesis H0 : τj = τ 0j we have

LRj(τ
0
j ) ⇒ max

s

⎧⎨
⎩

2
(
− |s|

2
Ξ1,j + Λ1,jWj(s)

)
for s ≤ 0

2
(
− |s|

2
Ξ2,j + Λ2,jWj(s)

)
for s > 0,

where we can simplify this expression to relate it to a known distribution from Bhattacharya

and Brockwell (1976). Let LRj(τ
0
j ) = ξ = max[ξ1, ξ2] where ξ1 = maxs≤0 2

(
− |s|

2
Ξ1,j + Λ1,jWj(s)

)
and ξ2 = maxv>0 2

(
− |s|

2
Ξ2,j + Λ2,jWj(s)

)
. By a change in variables s = (Λ2

1,j/Ξ
2
1,j)v and
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the distributional equality with W (a2x) ≡ aW (x), for s ≤ 0,

ξ1 = sup
s≤0

2

(
−|s|

2
Ξ1,j + Λ1,jWj(s)

)
= max

v≤0

Λ2
1,j

Ξ1,j

2

(
−|v|

2
+Wj(v)

)
= 2ω1,j × ξ1, (A.8)

where ξ1 = maxv≤0

(
− |v|

2
+Wj(v)

)
and

Λ2
1,j

Ξ1,j

=
Λ2

1,jv
2
T

Ξ1,jv2T
=

Γ2
1,j

Ψ1,j

≡ ω1,j.

Similarly, for s > 0 with s = (Λ2
2,j/Ξ

2
2,j)v,

ξ2 = max
s>0

2

(
−|s|

2
Ξ2,j + Λ2,jWj(s)

)
= max

v>0

Λ2
2,j

Ξ2,j

2

(
−|v|

2
+Wj(v)

)
= 2ω2,j × ξ2, (A.9)

where ξ2 = maxv<0

(
− |v|

2
+Wj(v)

)
and

Λ2
2,j

Ξ2,j

=
Λ2

2,jv
2
T

Ξ2,jv2T
=

Γ2
2,j

Ψ2,j

≡ ω2,j.

Thus, we have the simplified expression for the distribution of the likelihood ratio under the

null hypothesis:

LRj(τ
0
j ) ⇒ max

s

⎧⎨
⎩

2ω1,j

(
− |v|

2
+Wj(v)

)
for v ≤ 0

2ω2,j

(
− |v|

2
+Wj(v)

)
for v > 0.

Bhattacharya and Brockwell (1976) show that ξ1 and ξ2 in (A.8) and (A.9) are iid ex-

ponential random variables with respective distribution functions P (ξ1 ≤ x) = 1− exp(−x)

for x ≤ 0 and P (ξ2 ≤ x) = 1− exp(−x) for x > 0. Thus,

P (ξ ≤ x) = P (max[2ω1,jξ1, 2ω2,jξ2] ≤ x)

= P (2ω1,jξ1 ≤ x)P (2ω2,jξ2 ≤ x)

= P

(
ξ1 ≤

x

2ω1,j

)
P

(
ξ2 ≤

x

2ω2,j

)

=

(
1− exp(− x

2ω1,j

)

)(
1− exp(− x

2ω2,j

)

)
.
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Then, using the distribution of the profile likelihood ratio for the break date τj, we can con-

struct a 1−α confidence set Cj,1−α = {τj|LRj(τj) ≤ κα,j} by inverting the α-level likelihood

ratio test. The probability of coverage Cj,1−α for any τ 0j is given by Pτ0j

(
τ 0j ∈ Cj,1−α

)
, where

we can easily calculate a critical value κα,j such that

Pτ0j

(
τ 0j ∈ Cj,1−α

)
= (1− exp(−κα,j/2ω1,j)) (1− exp(−κα,j/2ω2,j)) = 1− α. (A.10)

Note that κα,j will be unique because for all κ > 0 the CDF is a strictly increasing function

d(1−exp(−κ/2ω1,j))(1−exp(−κ/2ω2,j))

dκ
> 0.

Lemma 1 Under the null hypothesis H0 : τ = τ0, if lr(τ̂ − τ0) ⇒ ξ = maxv
(−1

2
|v|+W (v)

)
for v ∈ (−∞,∞), then Eτ0 [λ{τ |lr(τ̂ − τ) ≤ x}] = 4(1 − exp(−x))

{
x− 1

2
(1− exp(−x))

}
,

where λ denotes a Lebesque measure.

Proof of Lemma 1. As shown in Bhattacharya and Brockwell (1976), the CDF of

ξ = maxv
(−1

2
|v|+W (v)

)
is given by P (ξ ≤ x) = (1 − exp(−x))2. Then letting C1−α =

{τ |lr(τ̂ − τ) ≤ κα}, Siegmund (1986) shows that the expected length for a 1− α confidence

set C1−α is given by

Eτ0 [λ{C1−α}] = Eτ0 [λ{τ |τ ∈ C1−α}]
=

∫ ∞

−∞
Pτ0 (τ ∈ C1−α) dτ

= 4(1− α)1/2
{
− log[1− (1− α)1/2]− 1

2
(1− α)1/2

}
. (A.11)

See Siegmund (1986) for more details.

Because we can find a critical value κα such that

P
(
ξ ≤ κα

)
= (1− exp(−κα))

2 = 1− α,

it implies that

κα = − log[1− (1− α)1/2]. (A.12)
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Then, by substituting (A.12) into (A.11), we can express the expected length for a 1 − α

confidence set as a function of the critical value κα rather than the level 1− α as follows:

Eτ0 [λ{C1−α}] = 4(1− exp(−κα))

{
κα − 1

2
(1− exp(−κα))

}
. (A.13)

Proof of Proposition 2. For the general case, as in our setup under Assumptions 1-8,

first consider the period before the true jth break date, τj − τ 0j ≤ 0 (i.e. v ≤ 0). Given a

critical value κα,j, the expected length of a 1− α confidence set in the segment τj − τ 0j ≤ 0

can be shown to be the following:

Eτ0j
[λ{τj|LRj(τj) ≤ κα,j, τ̂j − τj ≤ 0}]

= Eτ0j

[
λ{τj | LRj(τj)

2ω1,j

≤ (κα,j/2ω1,j), τ̂j − τj ≤ 0}
]

=
(
Γ2
1,j/Ψ

2
1,j

)
︸ ︷︷ ︸

(i)

2(1− exp(−κα,j/2ω1,j))

{
κα,j/2ω1,j − 1

2
(1− exp(−κα,j/2ω1,j))

}
︸ ︷︷ ︸

(ii)

.(A.14)

The expression (i) in the third line of (A.14) is used for re-scaling because the expected

length of the confidence set is measured on v ∈ (−∞, 0] and

τj − τ 0j = r = s/v2T = (Λ2
1,j/Ξ

2
1,j)v/v

2
T = (Λ2

1,jv
2
T/Ξ

2
1,jv

4
T )v

=
(
Γ2
1,j/Ψ

2
1,j

)
v. (A.15)

Note that from Proposition 1 the second line in (A.14) implies that

LRj(τj)

2ω1,j

⇒ ξ = max
v

(−1
2
|v|+Wj(v)

)
for v ≤ 0. (A.16)

Thus, the expression (ii) in the third line of (A.14) is calculated for P (ξ ≤ κα,j

2ω1,j
) by substi-

tuting the critical value κα,j/2ω1,j into half of the expected length in Lemma 1 given that we

are considering v ≤ 0. The expected length for v > 0 is calculated in a similar fashion such
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that the expected length for the entire 1−α likelihood-ratio-based confidence set is given by

2
(
Γ2
1,j/Ψ

2
1,j

)
(1− exp(−κα,j/2ω1,j))

{
κα,j/2ω1,j − 1

2
(1− exp(−κα,j/2ω1,j))

}

+ 2
(
Γ2
2,j/Ψ

2
2,j

)
(1− exp(−κα,j/2ω2,j))

{
κα,j/2ω2,j − 1

2
(1− exp(−κα,j/2ω2,j))

}
.

Note that as either ω1,j or ω2,j gets larger (i.e., the magnitude of a structural break is larger),

the expected length becomes shorter because there is more precise information about the

timing of the structural break.

Proof of Corollary 1. If there is no break in variance, Σj = Σ for all j and B1,j =

B2,j = 0. In addition, if the errors form a martingale difference sequence, Π1,j = Q1,j

and Π2,j = Q2,j. From these simplifications, ω1,j = ω2,j = 1,
(

Γ1,j

Ψ1,j

)2

= 1
Δβ′

jQ1Δβj
, and(

Γ2,j

Ψ2,j

)2

= 1
Δβ′

jQ2Δβj
. Then, by substituting these values into the critical value and the

expected length in Proposition 1, we can find the results in Corollary 1. The results in

Remarks 1 and 2 follow in the same way.

Proof of Corollary 2. If there is no break in conditional mean, Δβj = 0 and, in addi-

tion, if the standardized errors, ηt, are identically Normally distributed, ηtη
′
t has a Wishart

distribution with var(vec(ηtη
′
t)) = In2 + Kn, where Kn is the commutation matrix. Then,

Ω1,j = Ω2,j = Ω = In2 +Kn. Furthermore, because Kn is an idempotent matrix,

vec(B1,j)
′Ω0vec(B1,j)/4

= vec(B1,j)
′(In2 +Kn)vec(B1,j)/4

= vec(B1,j)
′vec(B1,j)/2.
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Thus,

ω1,j =
Γ2
1,j

Ψ1,j

=
1
4
vec(B1,j)

′Ω0
1,jvec(B1,j)

1
2
tr(B2

1,j)

=
1
2
vec(B1,j)

′vec(B1,j)
1
2
tr(B2

1,j)

= 1

because vec(B1,j)
′vec(B1,j) = tr(B2

1,j). Similarly, ω2,j = 1. Then,
Γ2
1,j

Ψ2
1,j

= 2
tr(B2

1)
, and

Γ2
2,j

Ψ2
2,j

=

2
tr(B2

2)
.

Fisher (1930) Bai and Perron (1998) Bai and Perron (2003) Siegmund (1986) Whelan

(2000) Kurozumi and Tuvaandorj (2011)
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