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Abstract

We examine the effects of a “bubble” in the foreign exchange market, defined as an exogenous process that

temporarily shifts the exchange rate away from the value implied by fundamentals.  The bubble process is

analogous to Bernanke and Gertler’s (1999) specification of an asset price bubble.  We evaluate the

performance of alternative simple monetary policy rules under both bubble and no-bubble scenarios and

investigate whether policymakers should react to the deviation of the exchange rate from its steady-state

value.

The policy experiments employ a small-scale forward-looking structural model calibrated to UK data,

which we previously used in Batini and Nelson (2000).  For this model, which includes an uncovered

interest parity condition, we find that the appropriate response to the exchange rate is captured by the

expected inflation term, provided that the response coefficient and the inflation horizon are optimized.

When uncovered interest parity is relaxed, there appears to be more merit in incorporating a separate

exchange rate term in the monetary policy rule.
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1. Introduction

The nominal exchange rates of many countries fluctuate considerably on a daily basis.  A

substantial fraction of this variability persists even when exchange rate data are time-

aggregated to a quarterly frequency.  And, as many observers have noted, much of the

observed variation in quarterly nominal exchange rates is also apparent in real exchange

rates (e.g. Mussa, 1986; Monacelli, 1999a).

Real exchange rates are one of the key asset prices in the economy.  A number of

economists have expressed concern that, while some fluctuations in the real exchange

rate and other asset prices reflect responses to fundamental economic shocks, a

substantial proportion may be due to “nonfundamental” forces that push asset prices in a

particular direction for a prolonged period of time, creating an asset price “bubble” (see,

among others, Grossman and Shiller, 1981; Okina, 1984; Evans, 1986; Borensztein,

1987; Wu, 1995; and Charemza, 1996).  Recently, there has been much debate about

whether policymakers should attempt to restrain or “prick” perceived asset price bubbles.

In particular, a key question is whether monetary policy makers should respond explicitly

to deviations of asset prices from their steady-state or fundamental levels as part of their

pursuit of inflation and output gap stability (see e.g. Kent and Lowe, 1997; Cogley, 1999;

Bernanke and Gertler, 1999; Allen and Gale, 2000, and Cecchetti, Genberg, Lipski, and

Wadhwani, 2000).

Much of this discussion has been motivated by the behavior of the US stock market

during the mid- and late 1990s.  However, the behavior of exchange rates in certain

periods has seemed suggestive of “exchange rate bubbles.”  For example, some

commentators have claimed that the appreciation of the US dollar from 1980 to 1985 was

excessive relative to underlying fundamentals (e.g. Okina, 1984, and Evans, 1986).

Similarly, it is difficult to reconcile the appreciation of the UK exchange rate in the late

1990s (see Table 1) with uncovered interest parity or with standard models of the

equilibrium real exchange rate.  The labeling of the level of the UK exchange rate as

“unsustainable” in the Bank of England’s February 2000 Inflation Report is informative

in this respect.
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Table 1:  Alternative measures of UK exchange rate appreciation

Nominal Exchange
Rate Index £/$ £/DM

1996 Q3 100 1.5546 2.3280
2000 Q1 128.27 1.6054 3.1845
% change 28.27 3.27 36.79

Note: For this table only, a rise in the index represents a nominal exchange rate
appreciation.  Data are quarterly averages.

To the extent that asset prices matter for spending and pricing decisions in goods

markets, they are a relevant variable for forecasting inflation.  The question is whether

this implies that inflation-targeting central banks should respond to asset prices

specifically.

Several observers, including recently Bernanke and Gertler (1999) and Vickers (1999),

have argued that the appropriate response by policy makers to asset prices is fully

captured by responding to expected inflation.  On the other hand, Cecchetti, Genberg,

Lipski, and Wadhwani (CGLW) (2000) maintain that there is a gain in macroeconomic

performance from incorporating a separate response to asset prices in a monetary policy

rule, over and above the expected inflation term.  All the studies mentioned here agree

that it is appropriate to respond to asset prices in some way; the area of contention is:

does expected inflation serve as a sufficient statistic for the effects of asset prices on

welfare, so that, given expected inflation, there is no role for asset prices in monetary

authorities’ reaction functions?

In this paper, we examine whether it is desirable to respond to asset prices when the

economy is described by a forward-looking, open-economy macroeconomic model that

we have used in previous work (Batini and Nelson, 2000).  CGLW (2000) report some

results using a version of this model and find that, when exchange rate shocks alone are
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operative, there may be welfare gains from responding to the exchange rate.  But,

because their findings are based on experiments that abstract from which IS and Phillips

curve shocks, CGLW leave open the question of whether a separate response to exchange

rates is justified when all shocks are present—a question which we address in this paper.

In addition, we report the results of responding to the exchange rate in a policy rule both

with and without the presence of “bubbles”—while CGLW only consider no-bubble

scenarios when they consider policy responses to the exchange rate.  The particular

bubble process we use is similar to that used in Bernanke and Gertler (1999).  As in their

experiments, a bubble is defined as an exogenous process that, for a time, drives an asset

price in an explosive fashion away from its fundamental level.  In the Bernanke-Gertler

exercises, the asset price subject to a bubble is a stock price.  We focus, instead, on a

bubble in the foreign exchange market.  We believe this is of interest for several reasons.

First, as noted above, exchange rates have been suspected of occasionally being driven by

nonfundamental factors.  Secondly, the exchange rate is a key variable for output and

inflation behavior in virtually every open-economy macroeconomic model, in contrast to

stock prices, which do not matter for aggregate demand (for a given real interest rate) in

many models.  Finally, unlike many other asset prices, exchange rates potentially have

effects on the price level over and above their effect on aggregate demand, due to the

presence of import prices in consumer price indices.

The paper is organized as follows.  Section 2 describes our model and describes in detail

the interaction in the model between asset prices and macroeconomic behavior. Section 3

describes our loss function and how we specify the “bubble” in our simulation

experiments.  Section 4 presents results obtained from stochastic simulations of the

model under alternative monetary policy rules—both with and without explicit responses

to the real exchange rate.  We investigate the extent to which the presence of a bubble

changes the appropriate horizon for inflation targeting, and the appropriate response of

monetary policy to exchange rates.  In Section 5, we contemplate two extensions—

allowing agents to view the bubble probabilistically; and dropping uncovered interest

parity.  Section 6 concludes.
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2. The model

2.1  Model specification

The model we use in this paper is the same as that used in our earlier study of optimal

horizons for inflation targeting (Batini and Nelson, 2000).  The structural equations of the

model are:

yt = Etyt+1 –σ(Rt – Etπ t+1) + δ q% t−1 + vt (1)

π t = απ t−1 + (1 – α)Etπ t+1 + ϕyyt−1 + ϕq∆q% t−1 + ut (2)

Etqt+1 = qt + Rt – Etπ t+1 + κt + zt, (3)

where yt is log output, Rt is the nominal interest rate (in quarterly fractional units), π t is

quarterly inflation, qt is the log real exchange rate (measured so that a rise is a

depreciation), and q% t = ¼Σ j=0
3qt−j is a four-quarter moving average of qt.  These variables

are all expressed relative to steady-state values.  In particular, qt is expressed in terms of

deviations from its steady-state equilibrium log value, qss.

Equation (1) is the IS equation.  In the absence of the exchange rate terms, the IS curve

would be the standard, optimization-based expectational IS function. 1  The exchange rate

terms are included to capture the effect of exchange rate movements on net exports and,

hence, aggregate demand.  Note, however, that if equation (1) had been obtained by

substituting a static export demand function and the economy’s resource constraint into a

consumer Euler equation, then terms in current and expected future qt would appear

rather than lagged qt.  The motivation for using lags of qt is largely empirical and is

closely related to our treatment of the exchange rate terms in the Phillips curve, discussed

below.
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The price-setting specification in equation (2) can be considered a quarterly

approximation of Ball’s (1999) open-economy Phillips curve.  As in Ball’s specification,

expected inflation affects current inflation with a unit coefficient.  But unlike Ball, who

abstracted from any forward-looking behavior in price setting, we make inflation depend

on a linear combination of its lagged value and its next-period rational expectation.  This

specification has been used by many authors including Fuhrer and Moore (1995), Fuhrer

(1997), Roberts (1997), Bernanke and Gertler (1999), and Rudebusch (2000), and is

consistent with forward-looking price setting,but with a fraction of price setters using

backward-looking rules of thumb in their decision making.  The specific weights we

choose—0.80 on π t−1, 0.20 on Etπ t+1—are Fuhrer’s estimates, obtained from quarterly US

data.

In equation (2), two forcing processes drive inflation.  The first is yt−1.  In our model, this

variable is both the output gap and output, due to our assuming that potential output is

constant.  The other forcing process is the real exchange rate.  Following Ball, we assume

that it is the prior year’s change in the real exchange rate that matters for aggregate

inflation behavior.  This delayed response might result from slow pass-through of

exchange rate changes to import prices.  In Section 2.2 below, we compare the dynamics

of this specification with that of a more conventional—and more forward-looking—

specification of the open-economy influences on inflation.

Together, the IS equation and Phillips curve restrict the extent to which exchange rate

behavior has macroeconomic consequences, in the absence of a policy response.  These

restrictions take two forms.  First, as with the IS equation, shorter-term fluctuations in the

exchange rate do not matter for aggregate demand and inflation behavior, because private

agents respond only to annual averages of the exchange rate terms.  Secondly, we set the

coefficients in (1) and (2) to values that appear low relative to the importance that might

be suggested by the openness of the UK and similar economies.  These low values are

motivated by prior work by ourselves and others that suggest that exchange rate effects

                                                                                                                                                                                                
1 See McCallum and Nelson (1999) for a derivation of this equation from optimizing behavior.  For a
derivation which allows for some lags in spending decisions, see Rotemberg and Woodford (1999).
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are generally weak in estimated output and inflation equations for the UK (e.g. Batini and

Turnbull, 2000; Nelson, 2000a; and Goodhart and Hofmann, 2000).2  Specifically we set

δ = 0.05 in equation (1) and ϕq = 0.025 in equation (2).

Finally, vt, ut, and κt are stationary disturbance terms.  Of these, vt, and ut are exogenous

IS and Phillips curve shocks.3  κt is an exogenous shock that creates transitory deviations

from strict uncovered interest parity (UIP).  When we contemplate exchange rate bubbles,

we will introduce another shock beside κt, labeled zt in equation (3), that creates more

violent, “bubble-like” deviations from UIP.  We discuss this process further in Section 3

below.  The stationary shocks are all assumed to be AR(1) processes:

vt = ρv vt−1 + εvt (4)

ut = ρu ut−1 + εut (5)

κt = ρκκt−1 + εκt, (6)

As in our previous work, we calibrate the IS shock process according to McCallum and

Nelson’s (1999) estimates—we set ρv = 0.30 and the standard deviation of εvt (denoted

σ(εvt)) in (4) to 1%.  For the Phillips curve shock εut, we continue to assume a white noise

process (ρu = 0) but no longer use the σ(εut) = 1% value that we used in our earlier work.

This value seems excessive relative to the innovations in empirical inflation equations for

the UK if 1970s data are excluded.  We instead set σ(εut) = 0.5%.4  Finally, the UIP shock

term κt is assumed to have AR(1) coefficient ρκ = 0.753 and innovation standard

                                                                
2 Similar findings have been reported for other countries.  For example, Beechey et al (2000) are unable to
find a significant effect of the real exchange rate in their estimated IS equation for the Australian economy.
See also the results for several countries in Stock and Watson (2000).
3 vt can be interpreted as a shock to consumers’ preferences or as an exogenous government spending
sequence.  The ut process has various interpretations, including as a pricing error by firms, or (as discussed
in Clarida, Gali, and Gertler, 1999 and Erceg, Henderson, and Levin, 1999), as a disturbance to the Phillips
curve that arises from labor market rigidities.
4 Because of the new innovation variance, the optimal response coefficients for simple interest rate rules for
this model will generally be different from those we found in Batini and Nelson (2000).  Accordingly, we
reoptimize these coefficients in Section 4.
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deviation 0.92%, based on our estimates of this process using quarterly UK data for 1981

Q1–1998 Q1.  All shocks are assumed to be mutually uncorrelated.

2.2  Properties of the model

We experiment below with policy rules that respond to asset prices—specifically, the real

exchange rate—and examine the consequences of such policies for aggregate economic

performance.  Therefore, it is especially important to establish that the specification of

the open economy elements of the model—the interaction of exchange rate changes with

aggregate demand and inflation—is empirically plausible.  For this reason, we now

compare the model’s predictions for cross-correlations between the exchange rate and

other variables with those of an alternative open-economy specification, and confront

both alternatives with the data.  We show that our baseline model gives a better match

with the data.

Alternative Phillips curve: Compared to a model that would emerge from aggregating the

prices of domestically produced goods with those of imported consumer goods, the price-

setting equation (2) is missing forward-looking terms in the exchange rate.  In the case of

instant pass-through of exchange rate changes to import price changes, terms in Et∆qt+1

would be present; and in a model of optimal price setting in the presence of costs of

adjusting import prices, lags of qt would enter the aggregate price equation, as they do in

(2), but expected future values of qt would also appear (see Monacelli, 1999b).  We will

concentrate on the differences between our price-setting specification and that of a more

standard price-setting specification with instantaneous pass-through.  Specifically, we

report comparisons with an alternative version of our model in which the IS and UIP

equations (1) and (3), and their calibration, are as before, but in which the

parameterization of the Phillips curve is changed to:

π t = απ t−1 + (1 – α)Etπ t+1 + φyyt−1 + 0.4(0.8∆qt −0.2Et∆qt+1) + ut , (7)
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which is similar to Batini and Haldane’s (1999) Phillips curve, in the sense that it can

arise from substituting a price-setting equation for domestically produced goods into a

consumer price index, and assuming that nominal import prices move mechanically with

contemporaneous nominal exchange rate movements.

Apart from the dating of the exchange rate terms, another difference of (7) from (2) is the

magnitude of the coefficients on the real exchange rate—much larger in (7) than in our

Phillips curve.  On this score, (7) might appear more plausible a priori as its size is partly

motivated by the percentage of goods in UK consumer price indices that are imported

(Batini and Haldane, 1999, p. 167).  But there are several reasons for believing that the

appropriate values of the coefficients on real exchange rate change in the Phillips curve

may nevertheless be small even in quite open economies.  One reason, noted in Section

2.1 above, is the empirical difficulty to pick up sizable effects.  Another is that domestic

economic conditions may dominate the price-setting considerations of sellers of imported

goods, in part because of “pricing to market” reasons which lead them to mimic the

behavior of price setters of domestically produced goods (e.g. Bergin and Feenstra,

1999).  Finally, even if import prices follow exchange rate movements closely, higher

import prices may tend to leave purchasers with less to spend on non-imported goods,

putting downward pressure on those goods’ prices and reducing the net impact of

exchange rate changes on the aggregate price level.

Matching the data: To investigate the relative empirical merits of equations (2) and (7),

we now compare each specification to data, when each is supplemented by equation (1)

to describe aggregate demand and equation (3) to enforce uncovered interest parity.

Specifically, we will be comparing the vector autocorrelation functions generated by each

model, and comparing them to those generated by UK quarterly data for 1980 Q1–1999

Q2.  A policy rule is needed to generate the theoretical models’ implied moments, and a

rule based on empirical evidence is needed for this comparison.  Due to the presence of

multiple policy regime changes in the UK during the 1980–1999 sample, we have to

settle on using a policy rule that describes only a portion of the sample period.  The
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policy rule specification that we use is that estimated in Nelson (2000b) for the UK for

1992 Q4–1997 Q1:

4*Rt = 0.29 (4*Rt−1) + 0.90 Et ∆4pt+1 + 0.32yt + 4*eRt. (8)

A shock standard deviation of 0.1% (or 0.4% in annualized units) is used. 5

The vector autocorrelation function for the variables [yt ∆pt Rt qt ∆qt]’ for our baseline

specification (solid lines) and UK data (broken lines) are given in Figure 1.  The data

correlations are computed from UK data on linearly detrended log output (our yt

measure), the quarterly seasonally adjusted log-change in the RPIX price index (∆pt), the

nominal Treasury bill rate (Rt), and the real exchange rate (qt, the log of the inverse of the

IMF’s real exchange rate measure),6 and its quarterly first difference (∆qt).

In both the data and our model, the correlations between ∆pt and qt−j and ∆qt−j are

negative for j ≥ 0.  If we move away from the price-setting equation in our model in favor

of equation (7), the correlations between ∆pt and current and lagged q and ∆q become

positive.  Thus, the Phillips curve (7) produces counterfactual predictions about the

dynamic relationship between asset price movements and movements in current and

future inflation, but our baseline model (with equation (2)) does not.  Given the

importance of this relationship for the issues that we are concerned with in this paper, use

of our baseline model seems preferable, despite the less firm theoretical foundations for

the manner in which the qt terms enter the Phillips curve.

                                                                
5 This is in the range of values found for estimated monetary policy reaction functions for the US and the
UK over 1980–1999.  It is larger than the policy shock standard deviation found by Nelson for the UK for
1992–1997, but the low value he found may largely reflect the brevity of the estimation period.
6 The inversion is necessary to make rises in qt correspond to depreciations, as they do in our theoretical
model.
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3. Loss function and specification of the bubble

In our quantitative work below, we will evaluate the welfare performance of various

parameter settings for the nominal interest rate feedback rule:

Rt = φπEtπ t+k + ρRRt−1 + φqqt−1, (9)

where φπ > 0, ρR ∈[0,1], and φq ≥ 0.  This rule is one in which policy responds to inflation

expected k periods ahead, and to lagged real asset prices, as in Bernanke and Gertler

(1999).  As noted earlier, in our case the asset price is the log real exchange rate, qt.  In

keeping with much other work on policy rules, we also allow for, but do not impose, a

degree of interest rate smoothing (i.e., dependence of Rt on its lagged value).  In line with

our previous work, in contemplating alternative rules, we consider not only different

values for the coefficients (φπ, ρR, φq) but also different feedback horizons (the value of k

in rule (9))—alternative dates in the future for the inflation forecast used in the monetary

policy rule.  Much of our interest is in the merits of nonzero φq values, and the effect that

the presence of exchange rate “bubbles” (defined below) has on the choice of both the

optimal exchange rate response φq, and on the optimal feedback horizon k.

The objective function that we use to rank alternative rules is:

L =  λπ  Var(4*π t+j) + λyVar(yt) + λ∆R Var (4*∆Rt), (10)

where 4*π t is annualized quarterly inflation, yt is the log output gap, and λπ , λy, and λ∆R

denote the weights assigned to inflation deviations from target, output deviations from

potential, and volatility in the first difference of the nominal interest rate, respectively. 7

Var(•) denotes unconditional variance of a variable.  Equation (10) is the objective

                                                                
7 Inflation-targeting central banks are often judged by their ability to keep inflation close to target in the
manner most consistent with minimizing departures of output from potential.  Both these concerns are
captured in (10).  Two differences of (10) from the criteria on which central banks are judged are that
inflation is an annualized quarterly rate in (10), not a four-quarter rate; and there is a penalty for interest
rate variations.  In Section 4 below we discuss the effect of the latter term on our results.
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function used in Rudebusch and Svensson (1999).  As they note, it can be regarded as the

unconditional mean of the intertemporal loss function of the form Et Σ  j= 0 ∞β j [λπ  (4*π t+j

− 4*π t+j
T)2 + λy(yt+j − yt+j

T)2 + λ∆R (4*∆Rt+j)2], where the inflation target π t
T is constant,

the output target yt
T is equal to potential output (which is constant in our experiments),

and the discount factor β  approaches unity.  We use the weights λπ  = 1.0, λy = 1.0, and

λ∆R = 0.5, following Rudebusch and Svensson’s baseline values.  However, because there

is considerable debate over the appropriate weights suggested by theory (see Woodford,

1999), we also report the values of the individual components of the loss function. 8

In Section 4 below, we report the outcomes of two sets of experiments.  In the first set,

there is no bubble in any period.  In this case, the variable zt does not appear in the UIP

condition (3), whose only disturbance term is then the stationary process κt.  The solution

of our model can then be written as a first-order dynamically stable vector autoregressive

system with independently and identically distributed innovations.  Analytical formulae

for the second moments of the variables in our model are available in this case (see

Hamilton, 1994, p. 265), and we use these to compute the loss function (10).

In the second set of experiments, there is a bubble.  In this case, the model’s solution

includes a state variable (zt) which we model as follows:

zt = ρzzt−1 + ezt, ρz > 0 (11)

where ezt = 0, t = 0, ..., tBUB−1;

ezt = 0.01, t = tBUB;

ezt = 0, tBUB < t < tBUB+n;

ezt = −(ρz)nezt, tBUB+n;

ezt = 0, t > tBUB+n .

                                                                
8 Woodford finds that a forward-looking, optimization-based macroeconomic model provides support for a
ratio of inflation (measured in quarterly units) to output gap loss function weights of 20:1, and contrasts
this finding to studies that assign equal weights a priori.  Our setting of λπ = λy  = 1.0 is actually quite
consistent with Woodford’s finding, since inflation is annualized in the objective function (10), implying a
ratio of weights equal to 16:1 when inflation is expressed in quarterly units.
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Here, tBUB denotes the period in which the bubble commences (zt becomes nonzero) and

tBUB+n the period in which it bursts (i.e., zt returns to zero).  We set ρz = 1.15.

Specification (11) implies that when there is a bubble, the state vector9 contains an

explosive time series process and includes a heteroskedastic process (the ezt sequence) in

the vector of innovations.  Analytical formulae for the model moments are no longer

available in this case, and instead, we compute the value of (10) and other moments by

taking averages across 600 stochastic simulations.

Finally, we need to specify the length of the bubble.  Following Bernanke and Gertler

(1999), we make the termination point of the bubble probabilistic.  Specifically, we

assume that the probability of the bubble lasting another period is 0.6.  This implies that

the maximum length of the bubble is approximately three years.  To implement this

probabilistic assumption in our stochastic simulations, we divide our 600 stochastic

simulations into thirteen unequal amounts, each associated with the bubble terminating

after 1, 2, ..., 13 periods.10  Because the probability of the bubble lasting 13 periods is

smallest (0.612), the percentage of the simulations in which the bubble lasts 13 periods is

the lowest (indeed, of the 600 simulations, only one (0.612*600 ≈1) has the bubble lasting

this long).

There are two aspects of our bubble specification which are dictated by computational

convenience, but which might well be relaxed in future work.  First, the above

formulation follows Bernanke and Gertler in making the termination point of the bubble

exogenous.  Monetary policy cannot therefore literally “prick” the bubble.  But it can, if it

wishes, attempt to offset the effect of the bubble on the exchange rate by moving Rt to

affect qt, which is driven, through (3), by both fundamentals and the bubble.  Whether

such offsetting action—in the form of a response of monetary policy to qt movements—is

desirable is what we wish to determine.

                                                                
9 And, therefore, the solution expressions for endogenous variables.
10 I.e., n = 0, 1, ..., 12 in equation (11).
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Secondly, within each simulation of our model, agents forecast next period’s value for

the bubble as Etzt+1 = ρzzt.  This is a rational expectation provided the commencement and

termination dates of the bubble are completely unknown to agents.  When the bubble has

been zero, agents’ expectation is that it will remain zero indefinitely; once it has

commenced, their expectation is that it will grow explosively indefinitely.  Within each

simulation run of the model, therefore, agents do not take into account any probability of

termination in forming their expectations of zt.  A generalization that allows agents to

view the termination point probabilistically is desirable; we make a simple attempt at this

in Section 5.1.

While this specification of the bubble process is in line with Bernanke and Gertler

(1999), it does not produce a “rational bubble” in the sense of Blanchard and Watson

(1982).  In Blanchard and Watson’s framework, a bubble emerges endogenously from the

dynamics of rational expectations models.  Their rational bubble is intimately related to

the existence of multiple model solutions.  By contrast, the solution algorithm that we

employ is unable to produce rational bubbles of the Blanchard-Watson variety.  It does,

however, impose more economic structure than standard solution procedures.  More

precisely, in regions of the parameter space (φπ, ρR, φq, k) for rule (9) which generate

multiple rational expectations equilibria—i.e., multiple dynamically stable solutions for

the endogenous variables such as output, inflation, and the real exchange rate—we use

the minimal state variable criterion of McCallum (1983, 1999) to select a unique

equilibrium.11  The loss function generated by the MSV equilibrium is then used to

evaluate the rule’s performance.  This procedure also differs from that used in other

investigations of the optimal feedback rule and the optimal feedback horizon.  For

example, Levin, Wieland, and Williams (LWW) (2000) discard any policy rule that

generates multiple stable solutions.12  We believe that evaluating rules according to their

associated MSV equilibrium is preferable because it employs more of the structure of the

                                                                
11 “Dynamic stability” here refers to the coefficients on lagged dependent variables in the solution
expressions for the endogenous variables, rather than to the dynamics of the exogenous variables, which are
allowed to have unit or explosive roots in their autoregressive representations (and, indeed, do so for our
bubble process zt).
12 Similarly, Amato and Laubach (2000) state that a “particularly pertinent” drawback with instrument rules
such as (9) is that that they “oftentimes causes indeterminacy of rational expectations equilibrium.”
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economic model on the solution procedure, while at the same time ensuring continuity in

the loss function evaluations.

To see why, imagine that a rule like Rt = 1.5 Etπ t+1  was associated with a unique stable

rational expectations solution, but Rt = 1.51 Etπ t+1 generated multiple stable solutions.  In

this case, the MSV procedure would tend to select among the multiple solutions the one

whose properties (solution coefficients for the endogenous variables, as well as impulse

responses) were “close” to those of the Rt = 1.5 Etπ t+1 case.  The alternative procedure

used by LWW for example, would automatically discard all of the solutions (and loss

functions) associated with a response coefficient greater than 1.5.  This seems undesirable

because it leaves unsettled the issue of what is the economically relevant solution when

multiple solutions arise.

4. Results

We first present results on the performance of rule (9) applied to our model when the rule

parameters are the same as those used in Bernanke and Gertler (1999).  In particular,

following Bernanke and Gertler, we present results with rule (9) when the forecast of

inflation to which monetary policy responds is held at k = 1 quarter, when the response

coefficient φπ in (9) is set to either 1.01 or 2.0, and when the response to (log) asset prices

(stock prices in their case) is set to 0.10.  Because nominal and real interest rates are

expressed in quarterly rather than annualized units in our model, Bernanke and Gertler’s

asset price response of 0.10 corresponds to a value of φq = 0.025 in rule (9).  For

simplicity, Bernanke and Gertler do not consider interest rate smoothing; however, we do

include smoothing cases (i.e., ρR > 0 in (9)) in our experiments below.

Results with Bernanke and Gertler’s parameterizations of rule (9) are reported for our

model in Table 2, both for “no-bubble” cases and for cases where there is a bubble.  As

discussed in Section 3, the no-bubble case corresponds to the case zt = 0 for all t in
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equation (3).  Thus, IS, Phillips curve, and “normal-sized” UIP shocks (the κt process in

eq. (3)) are hitting the economy in these experiments, but there are no bubble episodes.13

No bubble, no optimization of response coefficients

Consider the no-bubble cases first.  Table 2 indicates that, in our model, as in Bernanke

and Gertler (1999), a nominal interest rate response of 2.0 to next period’s expected

inflation rate is superior to a response of 1.01 for both inflation and output gap control.

Once a smoothing term is included, the coefficients on expected inflation should be

interpreted as short-run coefficients; for example, the rule Rt = 1.01 Etπ t+1 + 0.9 Rt−1

implies a long-run response of 10.1 to inflation.  The rules with smoothing terms

dominate the corresponding rules without smoothing.  This is not so much because they

reduce interest rate volatility (as measured by σ(4*∆Rt)) but because they reduce inflation

variability without much cost in output variability. 14  The effect of the inclusion of the

interest rate variability term in (10) on these results is, instead, to keep down the optimal

value of φπ in (9).  The optimal value of φπ would take very high double-digit values if

the interest rate variability term were dropped from (10).

As Table 2 shows, adding a small response of 0.025 to the real exchange rate to produce

the rule Rt = 1.01 Etπ t+1 + 0.9 Rt−1+ 0.025 qt−1 delivers the best welfare outcome in the

table.  The loss function in this case is 17.36, a small improvement over the 17.49 loss

recorded without the exchange rate response.  Larger exchange rate responses (e.g. 0.05),

however, reduce welfare (producing a loss of 17.65), relative to the zero-response case.

                                                                
13 It is important to note that because the loss function is expressed in variances, differences in the
performances of alternative rules that seem small when given in percentage standard deviations of variables
can translate into quite large differences in loss function values.  For this reason, we do not compare
alternative loss function values by taking ratios of the two.
14 The latter property of rules with interest rate smoothing in forward-looking models has been emphasized
by Rotemberg and Woodford (1999).
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Table 2: One-period-ahead inflation forecast based rules
(coefficients not optimized)

Results with No Bubble

σ(4* π) σ(y) σ(4*∆R) σ(q )
Loss

Rt = 1.01 Etπ t+1 12.22 1.93 2.77 5.37 156.89
Rt = 2.0 Etπ t+1 4.02 1.76 4.22 4.59 28.15
Rt = 1.01 Etπ t+1 + 0.9 Rt−1 3.22 2.12 2.30 5.79 17.49
Rt = 2.0 Etπ t+1 + 0.9 Rt−1 2.94 2.18 3.81 6.34 20.63
Rt = 1.01 Etπ t+1+ 0.025 qt−1 12.56 1.83 2.79 4.89 165.07
Rt = 2.0 Etπ t+1+ 0.025 qt−1 4.06 1.74 4.28 4.42 28.72
Rt = 1.01 Etπ t+1 + 0.9 Rt−1+ 0.025 qt−1 3.26 2.04 2.28 5.30 17.36
Rt = 2.0 Etπ t+1 + 0.9 Rt−1+ 0.025 qt−1 2.95 2.13 3.78 6.02 20.40
Rt = 1.01 Etπ t+1 + 0.9 Rt−1+ 0.050 qt−1 3.33 1.98 2.30 4.90 17.65

Results with Bubble Operative
Rt = 1.01 Etπ t+1 12.15 1.95 2.77 5.38 155.25
Rt = 2.0 Etπ t+1 4.09 1.78 4.28 4.66 29.16
Rt = 1.01 Etπ t+1 + 0.9 Rt−1 3.42 2.17 2.59 7.80 19.84
Rt = 2.0 Etπ t+1 + 0.9 Rt−1 3.08 2.18 4.28 10.39 23.43
Rt = 1.01 Etπ t+1+ 0.025 qt−1 12.81 1.86 2.80 4.96 171.48
Rt = 2.0 Etπ t+1+ 0.025 qt−1 4.13 1.77 4.35 4.51 29.66
Rt = 1.01 Etπ t+1 + 0.9 Rt−1+ 0.025 qt−1 3.51 2.07 3.06 10.41 21.30
Rt = 2.0 Etπ t+1 + 0.9 Rt−1+ 0.025 qt−1 3.14 2.17 4.88 13.68 26.46
Rt = 1.01 Etπ t+1 + 0.9 Rt−1+ 0.050 qt−1 16.96 10.53 42.34 177.34 1294.8

Note: For the no-bubble case, standard deviations and loss function values are obtained
using analytical formulae for the vector autoregressive representation of the solution of
the model.  For the operative-bubble cases, these moments and losses reported are the
averages across stochastic simulations, as described in Section 3.  The standard deviation
of the real exchange rate is reported as a memo item only; there is no exchange rate term
in the loss function (10).
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Bubble operative, no optimization of response coefficients

What happens when the bubble is operative?  In this case, as Table 2 shows, the rules

with a nonzero response to the exchange rate deliver unambiguously poorer welfare

outcomes.  Indeed, the last row shows that a response of 0.05 produces a calamitous

increase in the loss function to 1294.8 compared to 19.84 for the corresponding rule with

a zero response.  A moderate response of 0.025 to the exchange rate does appear to

reduce output gap variability, but the impact of this improvement on the loss function is

swamped by the rise in inflation and interest rate variability. So compared to the no-

bubble case, the results suggest that the presence of the bubble tends to raise loss

functions, but that attempting to reduce the bubble’s effects on the exchange rate

magnifies the increase in loss.

In uncovering the reason for these results, one should distinguish between two cases: (i)

responding to qt−1 and with no interest rate smoothing; and (ii) responding to both qt−1

and Rt−1.  Provided there is no smoothing, responding to qt−1 does tend to reduce the

variability of the real exchange rate.  For example, with the bubble, Table 2 indicates that

the rule Rt = 1.01 Etπ t+1 produces σ(qt) = 5.38%, while the rule Rt = 1.01 Etπ t+1 + 0.025

qt−1 reduces σ(qt) to 4.51%.  This reduction in exchange rate volatility is also associated

with a reduction in output gap volatility, but the favorable effect of this on the loss

function is offset by higher inflation variability.

When there is smoothing, however, φq > 0 actually increases the variability of qt when a

bubble is present.  For example, the rule {φπ = 1.01, ρR = 0.9, φq = 0} yields σ(qt) =

7.80% in Table 2, but {φπ = 1.01, ρR = 0.9, φq = 0.025} gives σ(qt) = 10.41%.  The reason

why responding to the exchange rate has a perverse effect on exchange rate variability

appears to be the associated expectations of future interest rate changes.  With ρR > 0 and

φq > 0, it is known that the long-run response of the interest rate to an exchange rate

movement will be greater than the initial response.  Furthermore, due to the

explosiveness of the zt process, a bubble innovation will (for a given policy response)
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have a greater impact in the future than today.  For both these reasons, the fall in the

interest rate in response to a bubble shock is expected to be greater in the future than it is

today.  This has a destabilizing effect on exchange rate expectations, creating

anticipations of an explosive depreciation.  So while the interest rate response is

successful in offsetting the impact of the bubble—whose effect alone would be to

produce exchange rate appreciation—policy succeeds in doing so at the cost of promoting

an unbounded depreciation.

Some graphical insight into these points is provided by Figures 3 and 4.  These depict the

path of qt from a simulation that sets the bubble length to 12 periods and suppresses the

IS, Phillips curve, and stationary UIP shocks, so that the only source of variability is the

bubble. 15   Figure 3 gives the path of qt when ρR = 0 (no smoothing).  The bubble tends to

produce an explosive appreciation, and the policy rule is able to restrain but not prevent

                                                                
15 It thus differs from the simulations whose results are reported in the tables; these always have IS, Phillips
curve, and stationary UIP shocks operating alongside the bubble shock.
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this appreciation (solid line).  Once the bubble bursts, the exchange rate returns quickly to

its steady-state value.  As the dashed line shows, an explicit exchange rate response

(φq > 0) is counterproductive as it reinforces the appreciation, but its overall effect is

small.

Figure 4 above gives the corresponding qt paths with ρR = 0.9.  Interest rate smoothing

gives agents signals about future interest rates, which then affect the current exchange

rate through the UIP condition (3).  Because they induce expectations of unbounded

future falls in interest rates,16 these policy rules are successful at stopping the forces for

appreciation that the bubble creates, but do so at the cost of producing an explosive

depreciation.  With the bursting of the bubble, expectations of interest rate declines

abruptly come to a halt, and the exchange rate plunges below its steady-state value.

                                                                
16 Our model does not impose a zero lower bound on nominal interest rates.  If this were imposed, there
would be a limit to expectations of falls in nominal interest rates in response to a bubble shock.  But if we
changed the sign of our initial bubble shock, rules with interest rate smoothing would promote expectations
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These oscillations are considerably worse when there is a nonzero exchange rate response

in the policy rule.

No bubble, optimized response coefficients

In Table 2 we found that while responding to the exchange rate damaged welfare in

several cases, the lowest loss function value in the no-bubble experiments was obtained

with a rule that did include a nonzero response to the exchange rate.  However, viewed as

special cases of the feedback rule (9), the rules examined in Table 2 may not be

informative about the overall welfare picture, because none of the parameters in the rules

were optimized.  Rather, the inflation response φπ, the exchange rate response φq, and the

horizon k were fixed at the values considered by Bernanke and Gertler, and the

smoothing parameter ρR was set at arbitrary values.  In Table 3, we rectify this problem

and report the results of optimized versions of rule (9).  The results for the optimal

horizon k are obtained by searching over k = 0, …, 10.17

Again, let us focus first on the no-bubble scenario.  When the horizon is fixed at k = 1, it

is optimal to respond to the real exchange rate as well as expected inflation, although the

optimal response coefficient is quite low (φq = 0.022).  However, this is not a fully

optimal version of rule (9) due to the horizon k not being optimized.  When it is

optimized, together with the other coefficients, the resulting rule is Rt = 1.34 Etπ t+2 +

1.00 Rt−1 + 0.00qt−1, identical to the rule obtained when φq = 0 was imposed.18  In other

words, it is not optimal, in the bubble-free version of our model, to incorporate any

separate response to the exchange rate.  When the inflation feedback horizon and the

coefficient associated with it have been chosen optimally, it appears desirable to respond

                                                                                                                                                                                                
of unbounded increases in interest rates, and the zero lower bound would not put a limit on these
expectations.
17 We previously found optimal values of φπ , ρR , and k  with the model used here (Batini and Nelson,
2000), but we used a different value for the Phillips curve innovation variance.  Therefore, we need to
reoptimize the parameters in (9) in light of the parameterization of the model that we are using in this
paper.  In addition, of course, we set φq = 0 in our previous work, while now we wish to find the optimal
value of φq.
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to exchange rates only indirectly, and to the extent that they affect the conditional

expectation of inflation at that horizon.  This is in line with Bernanke and Gertler’s

(1999, p. 78) recommendation that “policy should not respond to changes in asset prices,

except insofar as they signal changes in expected inflation.”

By contrast, CGLW (2000) found that in our model when the economy is subjected only

to stationary UIP shocks (the κt process in (3), with zt = 0), a nonzero response to the

exchange rate improves welfare compared to our optimized rule in Batini and Nelson

(2000).  The major reason we do not reproduce that result is that our simulations include

IS and Phillips curve shocks, which were not present in the CGLW experiments;

responding to exchange rates is welfare-reducing when these shocks are permitted to

coexist with risk premium shocks.

Bubble operative, optimized response coefficients

We now report results from simulations that add the bubble process.  Three types of

results are presented: (a) the performance in this environment of rules of the form (9) that

were optimized for the no-bubble case; (b) the effect on these rules’ performance of

adding an arbitrary exchange rate response; (c) a re-optimized version of (9) with the

coefficients (including φq) optimized according to minimizing average welfare across the

600 stochastic simulations under bubble conditions.

As Table 3 shows, the rule {φπ = 1.34, ρR = 1.0} gives somewhat poorer inflation and

interest rate outcomes than it did in the no-bubble case, but the outcomes are still

respectable.  If we simply add a 0.025 response of the nominal interest rate to qt−1, the

variability of all three components of the objective function increases, and overall welfare

is 50% worse.

                                                                                                                                                                                                
18 This rule is in turn very close to that we found in Batini and Nelson (2000), which was 1.24 Et πt+2 + 0.98
Rt−1.  The lower value for the Phillips curve shock standard deviation that we use here is the source of the
small differences.
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Table 3: Forecast based rules: coefficients and horizons optimized

Standard deviations
σ(4*π) σ(y) σ(4*∆R) Loss

Results with No Bubble
Rule (9), φπ and ρR optimized, φq = 0
imposed,  horizon fixed at k = 1 quarter:
Rt = 0.88 Etπ t+1 + 0.87 Rt−1 3.30 2.08 2.08 17.3685
Rule (9), φπ and ρR and φq optimized,
horizon fixed at k = 1 quarter:
Rt = 0.83 Etπ t+1 + 0.93 Rt−1 + 0.024qt−1 3.30 2.05 2.05 17.2021
Rule (9), φπ and ρR and φq optimized,
φq = 0 imposed, horizon optimized
Rt = 1.34 Etπ t+2 + 1.00 Rt−1 3.30 2.04 2.04 17.1527
Rule (9), φπ and ρR and φq optimized,
horizon optimized
Rt = 1.34 Etπ t+2 + 1.00 Rt−1 + 0.00qt−1 3.30 2.04 2.04 17.1527

Results with Bubble Operative
Rt = 1.34 Etπ t+2 + 1.00 Rt−1 3.57 2.07 2.81 20.98
Rt = 1.34 Etπ t+2 + 1.00 Rt−1 + 0.025 qt−1 3.97 2.16 4.55 31.01
Rule (9), φπ, ρR and φq optimized,
φq = 0 imposed, horizon optimized:
Rt = 1.21 Etπ t+2 + 0.86 Rt−1 3.53 1.96 2.38 19.15
Rule (9), φπ and ρR optimized, φq = 0
imposed,  horizon fixed at k = 1 quarter:
Rt = 0.87 Etπ t+1 + 0.87 Rt−1 3.48 2.13 2.27 19.27
Rule (9), φπ and ρR and φq optimized,
horizon fixed at k = 1 quarter:
Rt = 0.87 Etπ t+1 + 0.87 Rt−1+ 0.00qt−1 3.48 2.13 2.27 19.27
Optimal feedback rule with expected
inflation, smoothing, and exchange rate
response, all coefficients optimized,
horizon optimized
Rt = 1.21 Etπ t+2 + 0.86 Rt−1+ 0.00qt−1 3.53 1.96 2.38 19.15

Note: See notes to Table 2.
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The third rule reported in the “bubble operative” cases in Table 3 is one for which the

response coefficients and horizon have been optimized.  Relative to the no-bubble case,

the optimal values of ρR and φπ are lower, the optimal feedback horizon is unchanged at k

= 2, and the optimal exchange rate response remains zero.  Thus the bubble does alter the

optimal parameterization of rule (9), but not in a manner that is supportive of a nonzero

response to asset prices.  The sharply lower value of ρR is probably optimal because it

reduces the destabilizing effect on the exchange rate that interest rate smoothing has

when the bubble is operative, discussed earlier.

Table 3 also indicates that if a horizon of k = 1 is imposed and the coefficients are

reoptimized, there is still no support for φq > 0.  The presence of the bubble therefore

reduces the case for φq > 0, just as it did in Table 2.

One possible reason why a response to qt−1 does not seem desirable in Table 3 is that in

the structural model only the four-quarter average of q, i.e. q% , matters for demand and

inflation.  Tables 4 and 5 investigate this issue by contemplating rules where q% t−1 rather

than qt−1 appears in rule (9), i.e. the longer-term, economically relevant average of the

real exchange rate is the asset price that is allowed to enter the rule.

Responding to the economically relevant exchange rate concept does produce an

improvement over responding to a simple one-period lag of qt.  This can be verified by

noting that all the losses reported in Tables 4 and 5 are lower than the losses from the

corresponding rules in Tables 2 and 3 that used qt−1 instead of q% t−1.  However, once the

coefficients and feedback horizon for the expected inflation rate in the policy rule are

optimized, Table 5 indicates that there is no welfare gain from responding to q% t−1: the

best rules (both with and without the bubble) are the same as those found in Table 3, and

involve a zero response to the exchange rate.

Finally, for comparison we report, in Tables 6 and 7, results using a model in which the

exchange rate figures more prominently, namely our model but with the Phillips curve (2)
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Table 4: One-period-ahead inflation forecast based rule
with annual average of exchange rate in rule

(coefficients not optimized)

Standard deviations
σ(4* π) σ(y) σ(4*∆R) Loss

Results with No Bubble
Rt = 1.01 Etπ t+1+ 0.025 q% t−1 12.34 1.80 2.76 159.32

Rt = 2.0 Etπ t+1+ 0.025 q% t−1 4.06 1.74 4.26 28.548

Rt = 1.01 Etπ t+1 + 0.9 Rt−1+ 0.025 q% t−1 3.22 2.05 2.36 17.35

Rt = 2.0 Etπ t+1 + 0.9 Rt−1+ 0.025q% t−1 2.93 2.14 3.88 20.68

Rt = 1.01 Etπ t+1 + 0.9 Rt−1+ 0.050 q% t−1 3.27 1.99 2.42 17.55
Results with Bubble Operative

Rt = 1.01 Etπ t+1+ 0.025 q% t−1 12.37 1.83 4.94 160.19

Rt = 2.0 Etπ t+1+ 0.025 q% t−1 4.11 1.76 4.31 29.18

Rt = 1.01 Etπ t+1 + 0.9 Rt−1+ 0.025 q% t−1 3.50 2.09 2.95 20.98

Rt = 2.0 Etπ t+1 + 0.9 Rt−1+ 0.025 q% t−1 3.15 2.17 4.76 25.98

Rt = 1.01 Etπ t+1 + 0.9 Rt−1+ 0.050 q% t−1 4.56 2.30 5.26 39.88

Note: See notes to Table 2.



27

Table 5: Forecast based rules: coefficients and horizons optimized with annual
average of exchange rate in rule

Standard deviations
σ(4*π) σ(y) σ(4*∆R) Loss

Results with No Bubble
Rt = 1.34 Etπ t+2 + 1.00 Rt−1 + 0.025 q% t−1 3.31 2.00 2.11 17.16

Rt = 1.21 Etπ t+2 + 0.86 Rt−1 + 0.025 q% t−1 3.45 1.91 2.08 17.70

φπ, ρR and φq optimized, horizon fixed at
k = 1 quarter:
Rt = 0.83 Etπ t+1 + 0.93 Rt−1 + 0.024q% t−1 3.30 2.05 2.05 17.20

φπ, ρR and φq optimized, horizon optimized:
Rt = 1.34 Etπ t+2 + 1.00 Rt−1 + 0.00q% t−1 3.30 2.04 2.04 17.15

Results with Bubble Operative
Rt = 1.34 Etπ t+2 + 1.00 Rt−1 + 0.025 q% t−1 3.86 2.34 4.52 30.62

Rt = 1.21 Etπ t+2 + 0.86 Rt−1 + 0.025 q% t−1 3.36 2.05 3.21 20.66

φπ, ρR and φq optimized, horizon fixed at
k = 1 quarter:
Rt = 0.87 Etπ t+1 + 0.87 Rt−1+ 0.00q% t−1 3.48 2.13 2.27 19.27

φπ, ρR and φq optimized, horizon optimized
Rt = 1.21 Etπ t+2 + 0.86 Rt−1+ 0.00q% t−1 3.53 1.96 2.38 19.15

Note: See notes to Table 2.
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Table 6: One-period-ahead inflation forecast based rules
(coefficients non optimized) with Phillips curve (7)

Standard deviations
σ(4* π) σ(y) σ(4*∆R) Loss

Results with No Bubble
Rt = 1.01 Etπ t+1 19.76 1.89 4.53 404.40
Rt = 2.0 Etπ t+1 6.51 1.57 6.64 66.96
Rt = 1.01 Etπ t+1 + 0.9 Rt−1 8.32 1.64 6.60 93.68
Rt = 2.0 Etπ t+1 + 0.9 Rt-1 6.28 1.52 7.21 67.77
Rt = 1.01 Etπ t+1+ 0.025 qt−1 19.95 1.81 4.31 410.57
Rt = 2.0 Etπ t+1+ 0.025 qt−1 6.49 1.57 6.65 66.72
Rt = 1.01 Etπ t+1 + 0.9 Rt−1+ 0.025 qt−1 8.11 1.63 6.41 89.05
Rt = 2.0 Etπ t+1 + 0.9 Rt-1+ 0.025 qt−1 6.23 1.52 7.16 66.77
Rt = 1.01 Etπ t+1 + 0.9 Rt-1+ 0.050 qt−1 7.93 1.62 6.25 85.10

Results with Bubble Operative
Rt = 1.01 Etπ t+1 19.86 1.92 4.87 410.08
Rt = 2.0 Etπ t+1 6.59 1.58 6.69 68.35
Rt = 1.01 Etπ t+1 + 0.9 Rt−1 8.45 1.66 6.69 96.62
Rt = 2.0 Etπ t+1 + 0.9 Rt-1 6.36 1.54 7.28 69.26
Rt = 1.01 Etπ t+1+ 0.025 qt−1 20.10 1.85 4.74 418.53
Rt = 2.0 Etπ t+1+ 0.025 qt−1 6.58 1.59 6.69 68.16
Rt = 1.01 Etπ t+1 + 0.9 Rt−1+ 0.025 qt−1 8.22 1.64 6.51 91.52
Rt = 2.0 Etπ t+1 + 0.9 Rt−1+ 0.025 qt−1 6.32 1.54 7.26 68.67

Rt = 1.01 Etπ t+1 + 0.9 Rt-1+ 0.050 qt−1 8.07 1.63 6.36 87.97

Note: See notes to Table 2.
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Table 7: Forecast based rules: coefficients and horizons optimized
Phillips curve (7) used

Standard deviations
σ(4*π) σ(y) σ(4*∆R) Loss

Results with No Bubble
Rule (9), φπ and ρR optimized, φq = 0
imposed,  horizon fixed at k = 1 quarter:
Rt = 2.01 Etπ t+1 + 0.43Rt−1 6.04 1.54 6.78 61.83
Rule (9), φπ, ρR and φq optimized, horizon
fixed at k = 1 quarter:
Rt = 1.61 Etπ t+1 + 0.62Rt−1 + 0.35qt−1 6.12 1.55 6.08 58.30
Rule (9), φπ, ρR and φq optimized, φq = 0
imposed, horizon optimized
Rt = 3.64 Etπ t+2 + 0.43Rt−1 6.05 1.52 6.10 57.47
Rule (9), φπ, ρR and φq optimized, horizon
optimized
Rt =  2.96 Etπ t+2 + 0.55Rt−1 + 0.19qt−1 6.09 1.54 5.94 57.08

Results with Bubble Operative
Rule (9), φπ and ρR optimized, φq = 0
imposed, horizon fixed at k = 1 quarter:
Rt = 2.04 Etπ t+1 + 0.33Rt−1 6.13 1.56 6.81 63.21
Rule (9), φπ, ρR and φq optimized, horizon
fixed at k = 1 quarter:
Rt = 1.49 Etπ t+1 + 0.60Rt−1 + 0.35qt−1 6.24 1.58 5.89 58.82
Rule (9), φπ, ρR and φq optimized, φq = 0
imposed, horizon optimized
Rt = 3.50 Etπ t+2 + 0.40Rt−1 6.11 1.54 6.07 58.08
Rule (9), φπ, ρR and φq optimized, horizon
optimized
Rt =  2.80 Etπ t+2 + 0.50Rt−1 + 0.20qt−1 6.13 1.55 5.92 57.53

Note: See notes to Table 2.
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replaced by equation (7).  As discussed in Section 2.2, we regard equation (2) as

preferable on empirical grounds, but it is of interest to see what effect our use of that

specification has had on the results.

Table 7 indicates that with no bubble, the alternative Phillips curve does provide support

for a strong exchange rate response, although the improvement in welfare comes entirely

from lower interest rate variability (measured by 4*∆R); inflation and output gap

variability actually rise in the φq > 0 case.  When a bubble is present, again a large

response to the real exchange rate is favored, and its effect continues to be mainly to

reduce interest rate volatility.  Thus, if one believes that the exchange rate is as important

for price setting as it is in (7), then there may be a case for a nonzero value of φq in

reaction functions such as (9).  However, we believe that (7) gives an exaggerated

impression of the importance of the exchange rate for inflation behavior, and that (2) is

more reasonable.  And, as Tables 3 and 5 above showed, this preferred specification does

not support a response to the exchange rate separate from the response to expected

inflation.

5. Extensions

In this section, we present two extensions.  The first allows agents to view the bubble

probabilistically.  The second alters the structure of our model by dropping uncovered

interest parity and forward-looking price setting.

5.1  Allowing Agents to View the Bubble Probabilistically

Our experiments in Section 4 did not allow agents—within each simulation—to account

for the probabilistic nature of the bubble’s duration.  One formulation that allows agents

to attach probability to the bubble bursting next period (to the exchange rate returning to

fundamentals next period) is:

pEtqt+1 + (1−p)Etqt+1
FUN  = qt + Rt – Etπ t+1 + κt + zt (13)
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Etqt+1
FUN  = qt

FUN
 + Rt – Etπ t+1 + κt . (14)

Equation (14) replaces Etqt+1 in (3) with a linear combination of itself and of the

fundamental value, Etqt+1
FUN, that—as equation (14) indicates—would prevail in the

absence of any bubble.  We set p = 0.6 (so that agents have the correct probability that the

bubble will burst next period).  Equations (13)–(14) take us most of the way to a situation

where agents take full account of the probabilistic nature of the bubble’s termination

date: they apply the correct probabilities (0.4 and 0.6) to the bubble being present and

absent next period.19

Because (13)–(14) collapse to the UIP condition (3) in the case of no bubble, the only

results in Tables 2 and 3 that need to be re-calculated are those where the bubble is

operative.  The results of using eqs. (13)–(14) instead of (3) are given in Table 8.  If

agents view the bubble probabilistically, the bubble’s effect is dampened—future

expectations of the real exchange rate and (through the reaction function (9)) the nominal

interest rate are restrained.  Consequently, the loss function outcomes in Tables 2 and 3

tend to be less unfavorable than those in Tables 2 and 3.  Nevertheless, the results of

Section 4 carry through: there does not appear to be a welfare gain from responding

specifically to asset prices.

5.2  Dropping Forward-Looking Price-Setting in Goods and Foreign Exchange Markets

This section presents results that investigate the implications of dropping the uncovered

interest parity (UIP) and forward-looking price setting assumptions used in our model.

The uncovered interest parity condition—equation (3) in this paper—is a key element of

most open-economy macroeconomic models, as an arbitrage condition that emerges from

                                                                
19 The only sense in which it does not is that having a probability over the bubble would affect not only the
conditional expectation of qt+1 but also the conditional expectation of πt+1.  To avoid keeping track of a
whole sequence of “bubble-operative” and “no bubble” versions of endogenous variables, we opt for the
simpler formulation given in (13)–(14).
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Table 8: Rule Performances When Agents Model the Bubble Probabilistically

Bubble Operative, Rule Coefficients Not Optimized

σ(4* π) σ(y) σ(4*∆R) σ(q )
Loss

Rt = 1.01 Etπ t+1 12.25 1.93 2.77 5.27 157.62
Rt = 2.0 Etπ t+1 4.01 1.75 4.22 3.60 28.05
Rt = 1.01 Etπ t+1 + 0.9 Rt−1 3.27 2.13 2.37 4.84 18.01
Rt = 2.0 Etπ t+1 + 0.9 Rt−1 2.96 2.17 3.92 7.50 21.19
Rt = 1.01 Etπ t+1+ 0.025 qt−1 12.89 1.83 2.71 4.85 173.46
Rt = 2.0 Etπ t+1+ 0.025 qt−1 4.07 1.75 4.29 4.39 28.85
Rt = 1.01 Etπ t+1 + 0.9 Rt−1+ 0.025 qt−1 3.31 2.04 2.50 6.89 18.26
Rt = 2.0 Etπ t+1 + 0.9 Rt−1+ 0.025 qt−1 3.00 2.13 4.10 8.51 21.92
Rt = 1.01 Etπ t+1 + 0.9 Rt−1+ 0.050 qt−1 8.93 5.44 20.61 85.94 321.66

Results with Bubble Operative, Rule Coefficients Optimized
Horizon fixed at one quarter, φπ and
ρR optimized in (9), φq = 0 imposed:
Rt = 0.79 Etπ t+1 + 0.9 Rt−1 3.37 2.11 1.96 5.97 17.69
Horizon fixed at one quarter, φπ and
ρR optimized in (9), φq > 0 allowed:
Rt = 0.79 Etπ t+1 + 0.9 Rt−1 + 0.00qt−1 3.37 2.11 1.96 5.97 17.69
Horizon optimized, φπ and ρR

optimized in (9), φq = 0 imposed:
Rt = 1.11 Etπ t+2 + 0.89 Rt−1 + 0.00qt−1 3.45 1.96 1.97 4.55 17.65
Horizon optimized, φπ and ρR

optimized in (9), φq > 0 allowed:
Rt = 1.11 Etπ t+2 + 0.89 Rt−1 3.45 1.96 1.97 4.55 17.65
Adding arbitrary coefficients on qt−1
to optimized rule:
Rt = 1.11 Etπ t+2 + 0.89 Rt−1 + 0.025qt−1 3.84 1.84 1.99 5.99 20.12
Rt = 1.11 Etπ t+2 + 0.89 Rt−1 + 0.05qt−1 4.27 2.00 4.31 16.56 31.52
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forward-looking behavior by foreign exchange market participants under free movement

of perfectly substitutable foreign and domestic securities.  McCallum (1994) notes that

the UIP condition is a core equation in many policy institutions’ macroeconomic models.

At the same time, however, unrestricted econometric estimates tend to reject the

restrictions necessary to generate the UIP condition.  Blundell-Wignall, Fahrer, and

Heath (1993, p. 73) observe that “[n]o economic hypothesis has been rejected more

decisively, over more time periods, and for more countries, than UIP,” and Wadhwani

(1999) extensively documents the poor fit of the equation on UK data.20  The response by

many macro-modellers—including ourselves in Section 2 above—has typically been to

model the empirical deviations from strict uncovered interest parity21 as though they are a

structural shock process, interpretable as a time-varying risk premium.  On the other

hand, a growing amount of analysis is conducted with models that respond to the

rejection of UIP by replacing it with an alternative exchange rate equation which, while

continuing to posit a relationship between exchange rates and the interest rate differential,

allows some deviation from the forward-looking arbitrage condition embodied in UIP.

Ball (1999), for example, employs in a small analytical model a static relationship

between the real exchange rate and the real interest rate, which we write as:

qt = −b (Rt − Etπ t+1) + et, (15)

with b > 0.  This equation is a version of (3) provided we drop Etqt+1, set b = 1.0, and

interpret the shock et as −(κt + zt).  Wadhwani (1999) and Beechey et al (2000) provide

empirical models of the exchange rate for the UK and Australia, respectively, which can

be regarded as alternatives to UIP, and share some similarities with (15).  Given the

importance for practical policy making of contemplating alternative specifications to

UIP, we report in this section results based on simulations of our model with equation

(15), specialized to the case b = 1.0, replacing equation (3).  Since specification (15) is

                                                                
20 McCallum (1994) provides a rationalization for the empirical rejection of UIP in terms of policymakers’
reaction functions.  Wadhwani, however, presents experiments that suggest that this factor may not fully
account for the rejection of UIP by UK exchange rate data.
21 Strict UIP is equation (3) without the κt and zt terms.
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Table 9: One-period-ahead inflation forecast based rules
(coefficients not optimized)

No forward looking price setters and
UIP dropped, replaced by equation (15)

Results with No Bubble

σ(4* π) σ(y) σ(4*∆R) σ(q )
Loss

Rt = 1.01 Etπ t+1 12.43 1.57 2.09 1.40 159.28
Rt = 2.0 Etπ t+1 4.00 1.86 3.69 1.59 26.26
Rt = 1.01 Etπ t+1 + 0.9 Rt−1 3.15 2.51 2.40 2.21 19.26
Rt = 2.0 Etπ t+1 + 0.9 Rt−1 2.85 2.69 4.14 2.79 23.91
Rt = 1.01 Etπ t+1+ 0.025 qt−1 12.46 1.56 2.09 1.38 159.95
Rt = 2.0 Etπ t+1+ 0.025 qt−1 4.61 1.86 3.70 1.57 26.42
Rt = 1.01 Etπ t+1 + 0.9 Rt−1+ 0.025 qt−1 3.14 2.46 2.46 2.13 18.95
Rt = 2.0 Etπ t+1 + 0.9 Rt−1+ 0.025 qt−1 2.84 2.64 4.13 2.72 23.59
Rt = 1.01 Etπ t+1 + 0.9 Rt−1+ 0.050 qt−1 3.14 2.42 2.47 2.07 18.75

Results with Bubble Operative
Rt = 1.01 Etπ t+1 12.41 1.56 2.09 1.38 158.39
Rt = 2.0 Etπ t+1 3.97 1.88 3.68 1.56 26.06
Rt = 1.01 Etπ t+1 + 0.9 Rt−1 3.15 2.50 2.46 2.16 19.21
Rt = 2.0 Etπ t+1 + 0.9 Rt−1 2.84 2.68 4.13 2.75 23.84
Rt = 1.01 Etπ t+1+ 0.025 qt−1 12.13 1.56 2.10 1.36 150.65
Rt = 2.0 Etπ t+1+ 0.025 qt−1 4.03 1.88 3.71 1.54 26.63
Rt = 1.01 Etπ t+1 + 0.9 Rt−1+ 0.025 qt−1 3.14 2.45 2.46 2.11 18.88
Rt = 2.0 Etπ t+1 + 0.9 Rt−1+ 0.025 qt−1 2.85 2.65 4.15 2.69 23.73
Rt = 1.01 Etπ t+1 + 0.9 Rt−1+ 0.050 qt−1 3.12 2.40 2.46 2.03 18.54

Note: For the no-bubble case, standard deviations and loss function values are obtained
using analytical formulae for the vector autoregressive representation of the solution of
the model.  For the operative-bubble cases, these moments and losses reported are the
averages across stochastic simulations, as described in Section 3.  The standard deviation
of the real exchange rate is reported as a memo item only; there is no exchange rate term
in the loss function (10).
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only one of many alternatives to UIP that could be contemplated, we will not attempt to

obtain optimized versions of rule (9) subject to this specification.  Instead we simply

report, for illustration, the performance under this alternative specification of the non-

optimized versions of rule (9) that we used in Table 2 (including those rules examined by

Bernanke and Gertler, 1999).22

In these experiments, we also drop another key element of forward-looking behavior by

setting α = 1.0 in the price setting equation (2).  Thus, the experiments contemplated are

for an economy in which there is considerably less forward-looking behavior in the

pricing of goods and assets.

The results in Table 9 are different from those for the baseline model in two respects: (a)

There are, generally, improvements in welfare from including a response to the exchange

rate.  (b) Responding to the exchange rate in bubble conditions does not result in greatly

increased losses; rather, the response to the exchange rate improves welfare.  This result

confirms, as suggested in our discussion in Section 4, that the expectational dynamics

associated with UIP were responsible for the sharply higher losses when policy

responded to an exchange rate bubble.  Intuitively, responding to the exchange rate

bubble is now more desirable because (as substitution of (15) into (1) indicates) the

bubble now has the character of a “large” IS shock.

One response to Table 9 is that UIP is a standard element of open-economy macro

models and a fundamental arbitrage condition, and that alternative specifications should

be ruled out a priori.  An alternative response is that the size of empirical violations of

UIP makes it necessary to consider alternatives such as (15).  Table 9 suggests that, if one

takes the second position, there are some gains to responding to the exchange rate over

and above expected inflation.

                                                                
22 For comparability with Section 4, we revert to the assumption that agents do not view the bubble
probabilistically.
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6. Conclusions

In this paper we have investigated the appropriate form of simple interest rate feedback

rules when the economy is hit by several shocks including, for a certain amount of time,

an explosive “bubble” shock which perturbs the uncovered interest parity condition

governing the exchange rate.

In Section 4, using the model we used in Batini and Nelson (2000), we found that the

optimal response of monetary policy to asset prices was fully captured by their effect on

expected inflation.  In the absence of a bubble, responding to the exchange rate separately

did reduce exchange rate variability but did not, in most cases, improve overall welfare

because inflation variability increased.  With a bubble present, reacting to the exchange

rate did not even necessarily reduce exchange rate volatility, and led to poorer welfare

outcomes.

In Section 5.2, we adopted a more backward-looking version of the model, to capture the

concern that uncovered interest parity may not be an empirically valid description of

exchange rate behavior.  The alternative to UIP that we contemplated generated results

that were more supportive of incorporating a response to the exchange rate.  Therefore, a

crucial issue in determining whether it is appropriate to respond to exchange rates is

whether one views the UIP condition as an essential part of the structure of a

macroeconomic model or whether one prefers alternative specifications, such as those of

Ball (1999) or Wadhwani (1999).

There are several issues raised by the analysis that are possible future extensions.  First,

by expressing our model in terms of deviations from the steady state, we have taken it for

granted that the monetary authority knows the steady-state value of the real exchange

rate, qss.  In the more realistic case, qss is unknown or may vary in response to structural

changes in the domestic and international economies.  A policy that responds to

deviations of the exchange rate from its steady-state value must then rest on an estimate

of qss that is subject to measurement error.  Our conjecture is that introducing this
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measurement error would reduce the attractiveness of rules that feed back on the

exchange rate.  Certainly, imprecise knowledge about qss appears to have played a role in

motivating the central banks of Canada and New Zealand to reduce the weight placed by

policy on Monetary Conditions Indices, which, when used as operating targets, include

the deviation of the real exchange rate from its steady-state level as an integral

component.

Another extension is to generalise the results to alternative specifications of the effects of

asset prices on aggregate demand.  For example, one possibility is that private agents may

react to the bubble and non-bubble components of an asset price with different

elasticities.  Development of macroeconomic models to enrich the links between asset

prices and the economy—and investigation of the implied appropriate form of monetary

policy rules—are important areas for future research.
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